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PREFACE

The purpose of this book is to bring together the many aspects of robot calibra-
tion from the arenas of industrial application and academic research, and present
a structured overview of the topic that can then be of use to engineers in both
groups. In attempting to address the interests of both groups, it is hoped that a
sound theoretical background is developed for what is, in essence, a very practical
problem facing those involved in the implementation of advanced automation.
Before outlining individual chapters in this book, it is worth reviewing the short
history of robot calibration so that future developments may be observed in this
context.

In the years since robot manipulators were first used to automate pick and
place operations, it was assumed that different machines of the same model line
were identical in their operation, and faulty units could be replaced without
consideration to whether the new unit would behave exactly as its predecessor.
Engineers found this assumption to be incorrect and the new units had to be
manually retaught to perform the required operation. Apparently this procedure
was acceptable in most cases since machine breakdowns were rare and the
number of locations taught to the arm was small. The concept of off-line pro-
gramming was developed as a means of automatically generating robot control
programs for otherwise tedious applications involving large numbers of taught
points. For tasks such as the insertion of large numbers of electronic components
into a printed circuit card, the existing data base used to manufacture the card
was used to define the locations of the insertions, thereby avoiding the time-
consuming and error-prone manual teaching phase. In transforming the inser-
tion locations, as defined by the task, to sets of joint angles, as used by the robot,
the ideal, or nominal, kinematic model of the arm was used. These transformed
task points were used to generate the program that moved the arm sequentially
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from one point to the other. When completed, engineers noticed substantial
differences between where the arm was supposed to go and where the program
sent it. In addition, the errors were so large that many practical tasks could not
be performed solely by off-line programming techniques.

As a result of such observed behavior, the concepts of repeatability and accu-
racy as applied to manipulators became apparent. With these concepts came the
realization that even small deviations from the nominal robot geometry could
produce substantial errors at the end effector. For example, an angular error of
only 0.5° at a rotary joint will produce an error at the end of a 6-ft arm of over
0.5 in. This problem was well known to the U.S. machine tool industry, which had
realized that overseas competitors were able to produce more accurate machines
at a lower price. This was achieved not by manufacturing tools that were better
engineered with tighter tolerances and stiffer mechanical structures, but by
building the machine to a high level of mechanical repeatability, and compensat-
ing for absolute accuracy deficiencies with internal compensation software on
an individual machine basis. Such a procedure is defined as machine calibration,
and is consistent with our intuitive concepts of calibration of measurement
instruments such as oscilloscopes or voltmeters.

Machine tool manufacturers realized the economic advantages of calibration
and began to look at these techniques for high precision measurement systems,
such as coordinate measurement machines. At about that time, robot calibration
became a significant problem. Initially the two groups of engineers, one consist-
ing of those working with machine tools and the other working in the newer area
of robotics, used different approaches and different mathematical tools. Typi-
cally, the two groups were unaware of each others efforts. With the growth of
published work in robotics in the early 1980s, however, the gaps were filled and
the resources of both groups were brought to bear on what was basically the
same problem. Even with this coalescence of ideas, it is still valuable to realize
that those working in the calibration of machine tools are generaly involved in
orders of magnitude of accuracy greater than those working with industrial
manipulators. As a result, methods for calibrating machine tools may involve
techniques that are deemed to provide “higher order” improvements for robot
calibration at the expense of much complexity. These methods may include effects
such as ambient temperature variations or structural loading conditions that
may be easily defined for a coordinate measuring machine and difficult to
characterize for a robot. It is worthwhile, however, for those interested in robot
calibration to keep in touch with what is going on in the world of machine tools.

For the purposes of developing a structure, or procedure, for robot calibra-
tion, we have divided the overall task into four subtasks: (1) modeling, (2)
measurement, (3) identification, and (4) implementation. Although such a struc-
ture will be useful in addressing the many factors that affect the accuracy of
positioning, our principal interest is in the effect that kinematics, or geometry,
has on the manipulator. The basis for this focus is that in most of the calibration
tests performed on manipulators by ourselves and other engineers, it was found
that correction of the kinematic errors produced improvements in the accuracy
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to the same order of magnitude as the repeatability. This is not to say that
kinematic errors are the only source of errors, just that experience has shown
them to be the most common.

The introductory chapter defines some of the terminology to be used through-
out the book, and gives some examples of how relatively small geometric errors
can produce significant positioning errors at the end effector. The source of errors
is discussed further as is the methodology for defining the calibration process.
Chapter 2 develops the modeling theme by describing some of the techniques
used to describe the geometry of a wide range of manipulators using a consistent
and easily used convention. Despite some drawbacks for certain types of manipu-
lator structure, the Denavit—-Hartenberg method is used to illustrate how kine-
matic errors propagate through a multilink manipulator, and how the system
Jacobian relates the variations in nominal kinematic parameters to a set of
measurements of the manipulator pose. This relationship forms the basis of the
calibration procedure and is utilized extensively later in the book. This chapter
continues by looking at issues of model equivalence and completeness, enabling
the work of other researchers to be compared and evaluated. Cases of special
kinematic configurations such as closed chains are dealt with as are alternative
modeling techniques designed for configurations known to cause difficulties with
the Denavit—Hartenberg approach.

The calibration equations developed in Chapter 2 imply that measurements
have to be made to find the deviations from the nominal kinematic structure.
Chapter 3 addresses the various issues associated with the measurement process.
Just as in instrument calibration, the measurement system used should ideally
be at least one order of magnitude more accurate than the device being calibrated.
This requirement often poses stringent constraints on the type of measurement
systems available for robot calibration. The ideal measurement system would be
capable of measuring all six components of pose, including three spatial positions
and three orientations. No commercially available system capable of doing this
with the required accuracy, however, has been demonstrated. Typically, measur-
ing systems obtain only partial pose information. For example, only the three
spatial displacements from an arbitrary origin may be provided. The measure-
ment systems described in Chapter 3, therefore, are structured according to the
amount of pose data obtained.

Once manipulator pose measurements have been taken, and a suitable mathe-
matical model of the robot has been developed, the deviations of the actual
kinematics from the nominal values have to be calculated. This is the focus of
Chapter 4, and is known as the identification step. Parameter identification has
been achieved in practice using a variety of readily available software packages,
such as those contained in the IMSL FORTRAN subroutine libraries. This
chapter describes the underlying theory behind these identification methods both
for linear and nonlinear approaches to the problem. Linear methods involve
least-squares estimation theory, minimum variance estimation, and the applica-
tion of Kalman filtering techniques to kinematic parameter error estimation. The
alternative nonlinear search techniques are simpler since they do not rely on an
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analytical expression for the system Jacobian, but use only forward kinematic
models, at the expense of increased computation time. A case study of a particular
manipulator is provided, which shows the application of these identification
techniques, and indicates the kind of performance measures available from each
to predict the accuracy of identification. The study also provides insight into the
planning of robot calibration experiments by optimizing the location of the
points used to take pose measurements of the robot end effector. The influence
that the number and location of such points has on the resulting accuracy of
identification is also examined.

Chapter 5 is concerned with the implementation of the calibrated robot data.
Ideally the robot controller should have the actual kinematic parameters “em-
bedded” in it. This, however, is rarely a practical option. Usually the required
off-line locations in the task space are converted to modified locations in the
robot joint space through an inverse kinematic analysis using the actual kine-
matic data. This may pose a problem since a robot that has an analytical solution
to the inverse kinematics problem for the nominal model may have no such
solution for the kinematic model after calibration. These ideas are developed
fully in this chapter.

The work developed so far involving modeling, measurement, identification,
and implementation is integrated in Chapter 6 using a case study. The complete
calibration of a PUMA manipulator is described in detail and covers all of the
above steps. Two kinematic models are used to indicate that the resulting
improvement in accuracy is indeed independent of model choice. Measurements
are taken in the laboratory with a small coordinate measuring machine. A
parameter identification program is written in FORTRAN and uses IMSL rou-
tines to perform the identification. A complete listing of the source code for this
identification is given in the Appendix. Finally, the improved accuracy of the
robot is assessed and shown to be better by more than one order of magnitude.

The book concludes with a short description in Chapter 7 of the current status
of robot performance standards. Although not the same as calibration, perfor-
mance assessment of manipulators is of considerate interest to manufacturers
and users alike. Some of the most popular methods of performance measurement
are described. It is shown that robot performance measurement shares many of
the measurement techniques used in robot calibration. Unlike a typical robot
calibration, however, areas other than kinematic compensation are usually ad-
dressed. These areas are also outlined in Chapter 7.

Finally, it is our pleasure to acknowledge the contributions of many people
and organizations over the years who have shared our involvement with robotics
in general and robot calibration in particular. Of particular note is the contribu-
tion of our colleague, Dr. Louis Everett. His patient assistance and valuable
insights have been of significant benefit to our research efforts. Louis is directly
responsible for the unique work on modeling of closed-loop manipulators that
is summarized in Chapter 2. More significantly, the results of his efforts are
reflected throughout this book. We have also benefited from the contributions
by engineers in Brown and Sharpe, General Dynamics (Fort Worth, Texas),
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Texas Instruments, LTV Aeroproducts Division, and IBM Corporation (Austin,
Texas and Boca Raton, Florida). Research work has been partially supported
by Texas A&M University, The Program for Automation in Manufacturing at
Texas A&M, and The Florida Atlantic University Robotics Center funded
through the Florida High Technology and Industry Council. We would also like
to thank the many graduate students who have worked with us in this area. In
particular, Dr. Geo-Ry Tang, Dr. Uday Pathre, Dr. Hanqi Zhuang, Mr. Satya
Padavala, Mr. Saleem Karimjee, and Mr. Shoupu Chen. We would also like to
express our sincere thanks to Mrs. Tammy Spies, Mrs. Patricia Mooring, and
Mrs. Joan Buttery for their most capable and patient assistance in preparation
of this manuscript.

Benjamin Mooring

Zvi Roth

Morris Driels

Austin, Texas

Boca Raton, Florida
Montery, California
April 1990
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CHAPTER 1

OVERVIEW OF MANIPULATOR
CALIBRATION

In the late 1970s and early 1980s, interest in the application of robot manipula-
tors to automated manufacturing soared. The advent of highly capable computer
controlled manipulators seemed to indicate that truly flexible automation was
feasible and many manufacturers rushed to take advantage of this technology.
Unfortunately, the goal of using a robot manipulator as the key element in a
flexible manufacturing system proved to be elusive for many manufacturing
tasks. The failure of robotics to live up to initial expectations may be attributed
to a number of factors. The high initial capital costs of automation along with
other economic and technical problems caused many managers to avoid the use
of robots.

Although the use of robot manipulators in flexible manufacturing systems still
presents significant problems, the goal remains a highly desirable one. One of the
significant technical problems to be addressed is the inability of most robots to
be programmed off-line or to share programs with other robots. To attempt to
solve this problem, a good deal of attention has been paid to the area of
manipulator calibration. In this book, we will attempt to meet two primary
objectives. The first will be to demonstrate the need for manipulator calibration
and to illustrate the significance that the process can have to various aspects of
automated manufacturing. The second objective is to describe the details of the
calibration procedure. While accomplishing this, we will attempt to point out
the various approaches that have been reported as well as the research issues
that remain to be addressed. We will begin this process by defining several
necessary terms and giving a simple example of the calibration process.



2 OVERVIEW OF MANIPULATOR CALIBRATION
1.1 DEFINITIONS AND EXAMPLES

Typically, a robot manipulator consists of a set of rigid links connected by joints.
One end of the manipulator is attached to a rigid surface and is referred to as
the base. The other end of the manipulator is equipped with a surface that allows
the mounting of a specialized gripper or tool, which we will refer to as the end
effector. The primary purpose of the manipulator is to move the end effector to
a specified position or along a specified trajectory. Since the end effector is usually
a rigid body being moved in three-dimensional space, it is important that the
robot achieve the desired orientation as well as position. The combination of
position and orientation will be referred to as a pose. For example, assume that
an end effector consists of a thin, cylindrical rod. If we wish to position the end
of the rod at a given point in space, there are an infinite number of directions from
which we may approach the point and still reach the desired position. Although
all of these configurations place the end of the rod at the desired position, they
each have a different orientation and, hence, a different pose. For a rigid body
moving in three-dimensional space, six quantities are required to completely
define a pose. The position of a point on the body may be defined by specifying
the three position coordinates of the point in some convenient coordinate system.
Likewise, three angles may be specified to define the orientation of the body.
When specified in this manner, we will say that the pose has been defined in task
space. Since there is a relationship between the configuration of a manipulator
and the pose of the end effector, a pose may also be defined by specifying the
geometry of the manipulator and the joint displacements necessary to achieve
the pose. When specified in this manner, we will say that the pose has been defined
in joint space. It is important that the distinction between task space and joint
space is clearly understood. To define a pose in task space, a reference coordinate
system is established and the position and the orientation of the end effector are
specified in this coordinate system. The end effector pose may be described in
task space, therefore, without knowledge of the manipulator geometry or con-
figuration. In fact, the task space pose description is completely independent of
the manipulator. To describe a pose in joint space, however, one must precisely
know the geometry of the manipulator and then specify the joint displacements
for that particular pose. As an example, consider the pose illustrated in Figures
1.1a and 1.1b. The end effector in this example is represented by the triangular
plate shown in Figure 1.1a. The plate is initially defined at the origin of the task
space coordinate system and is then displaced to a new position as shown in the
figure. In the task space description, point A on the end effector is located in the
reference coordinate system by the vector r , that has three Cartesian components
in the reference coordinate system. Furthermore, the orientation of the end
effector may be specified by the three angles 6, 6,, and 6,. These angles represent
consecutive rotations about the x, y, and z axes of the reference coordinate
system. In this example, 0, and 6, are zero while 0, is 180°. For convenience, we
may combine the elements of position and orientation into one pose vector, P,



1.1 DEFINITIONS AND EXAMPLES 3

given by

P= 1.1
0 (L.1)

0}’
9 -

z

Therefore, the pose vector, P, is all that is required to define the pose in task
space as illustrated in Figure 1.1a. On the other hand, a joint space description
of the same pose requires knowledge of the joint desplacements of the manipu-
lator, the geometry of the manipulator, and the location of the manipulator in
the task space coordinate system. This is illustrated in Figure 1.1b. The robot
illustrated is a PUMA 560. This information implies that we know the geometry
of the manipulator. The location of the robot in the task space is specified by
defining the relationship between the robot base coordinate system and the task
space coordinate system. It is important to note that for a typical task, the
parameters that define the robot geometry and location in the task space will
be constants. Once these constants are specified, there is a direct relationship

(a)

Figure 1.1a. Task space pose description.
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Robot base
coordinate
system
Xg
Reference
coordinate 2
system R

(6)

Figure 1.1b. Joint space pose description.

between the robot configuration as given by the joint displacements and the pose
as defined in the task space. This relationship may be expressed as

P = f(n,6) (1.2)

where n is a vector of constants that describes the geometry of the manipulator
and the location of the manipulator in the workspace and 0 is the vector of joint
displacements for any particular pose. Equation 1.2, therefore, represents the
transformation from joint space to task space.

Having defined two distinct ways of describing a pose, we will now consider
several ways of measuring the ability of a particular manipulator to achieve a
given pose. The first and perhaps most common measure of a robot’s positioning
capability is repeatability. Simply put, repeatability is the ability of a manipulator
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to return to a previously achieved pose. For example, assume that a manipulator
is moved to a particular pose and the associated set of joint displacements is
recorded and stored in the robot controller. If the manipulator is moved away
from this position and then commanded to move back, the end effector will not
return to exactly the same pose. The reasons for this deviation could include
small errors in the control of the joint displacements, flexibility in the robot
structure, compliance in the joints, or a number of other factors. Repeatability
is a measure of the ability of the robot to reachieve the previous pose. It is
typically specified as a displacement of the origin of a coordinate system in the
end effector after the robot is returned to the specified pose. For example, a
repeatability of 0.005 in. would imply that a point on the end effector would
always return to within a sphere of radius 0.005 in. This definition of repeatability
is easy to understand but extremely difficult to put into practice. For example,
the particular point in the end effector that is to be measured is not specified
in the definition. If there are significant variations in wrist orientation, a point
far from the wrist rotation center would yield a significantly lower repeatability
than one close to the center of rotation. Also, no measure of orientation is
specified and no indication is given of the location in task space that repeatability
is measured. These issues will be addressed at length in Chapter 7, Robot
Performance Measures. For the purpose of this discussion, we will use the simple
definition of repeatability that is given above.

In addition to repeatability, many robot manufacturers will specify the resolu-
tion of their robot as a performance measure. Like repeatability, resolution can
mean different things to different people. Some engineers think of resolution as
the smallest move that a robot can make. This view of resolution becomes difficult
to quantify, however, because the minimum possible move may vary significantly
throughout the workspace. Another definition for resolution involves the digiti-
zation of the various signals moving in and out of the robot controller. Consider
a robot joint with a rotary potentiometer as the position feedback transducer.
The potentiometer converts the displacement of the joint into a proportional
voltage that is used as a feedback signal in the controller. Since robot manipula-
tors are controlled almost exclusively by digital computers, the analog voltage
must be converted into a digital value. Let’s assume that the analog to digital
converter has a resolution of 12 bits. This means that the entire range of the joint
must be expressed in 2*2 or 4096 increments. If the joint range is 360°, any joint
motion less than approximately 0.088° cannot be sensed. Throughout the entire
robot system there are a number of these digital conversions. The overall reso-
lution of the robot will be given by the coarsest level of digitization for each joint.
In other words, the resolution for a joint is the smallest signal change that can
be both sensed and acted on by the controller. A more detailed description of
resolution is given in Chapter 7, Robot Performance Measures.

Another measure of a manipulator’s ability to achieve a specified pose is
accuracy. Accuracy is the ability of a manipulator to move the end effector to a
pose that is specified in task space. The fundamental difference between accuracy
and repeatability is that repeatability is the ability of the robot to return to a
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previously achieved pose and accuracy is the ability of the manipulator to move
to a pose that is specified in task space and that may have never been previously
reached. Another way of making the distinction between accuracy and repeat-
ability is to consider the means by which the goal pose is specified. When
considering repeatability, the pose has been previously attained and, therefore,
the necessary joint displacements are known. In other words, the pose has been
specified in joint space. With accuracy, however, the pose is specified in task space
and the particular set of joint angles necessary to achieve the pose must be
determined. As with repeatability, a more complete description of accuracy
measurement will be given in Chapter 7.

Experience has shown that industrial manipulators have much better repeat-
ability than accuracy. The reasons for this difference and the impact that it has
on the utility of robot manipulators will be addressed in a later section of this
chapter. In the following paragraphs, we present the results of several simple tests
that are designed to illustrate the repeatability and accuracy of a PUMA 560
manipulator. The purpose behind this example is to illustrate the relative levels
of repeatability and accuracy in a commonly available robot manipulator.

The first experiment is an investigation of repeatability. The manipulator, a
PUMA 560, and the working environment are shown in Figure 1.2. The end
effector used in these experiments consists of five tooling balls rigidly fixed and
defined in a tool coordinate system. This end effector is illustrated in Figure 1.3.
The device used to measure the location of the end effector is a small coordinate

Figure 1.2. PUMA 560 and coordinate measuring machine.
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Figure 1.3. End effector for repeatability and accuracy experiments.

measuring machine (CMM). The CMM is equipped with a trigger probe that
may be positioned arbitrarily in its working volume. When the trigger probe
contacts an object, the Cartesian coordinates of the center of the trigger probe
are recorded. To determine the pose of the manipulator end effector, the trigger
probe is moved so that it contacts several points on the surface of one of the
tooling balls in the end effector. A minimum of four points must be used to
determine the center of the tooling ball. This process is then continued until the
centers of three of the tooling balls have been located in the task space. These
three points are then used to precisely determine the end effector pose. The end
effector is equipped with five tooling balls to ensure that the CMM can reach at
least three of the tooling balls for any orientation of the end effector.

The first experiment is intended to illustrate the repeatability of the manipula-
tor. To accomplish this, the end effector is moved into an arbitrary pose and the
joint displacements of the PUMA are recorded. The end effector pose is also
measured with the CMM. The manipulator is then moved away from the initial
pose and commanded to return to the taught configuration. After returning, the
end effector pose is again measured with the CMM. The process of moving away
and then returning to the initial pose is repeated 75 times. For each of the 75
poses, the distance, r, between the origin of the tool coordinate system in the
current pose and the origin of the tool coordinate system in the initial pose
is determined. The measure of variation in orientation is accomplished by
recognizing that a rigid body may be changed from an arbitrary orientation to
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Figure 1.4. Repeatability results—Experiment A.
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any other orientation with one single rotation about an axis in space. For
each measured pose, the total rotation angle, 6, necessary to change from the
current orientation to the initial orientation was determined. If the manipulator
has perfect repeatability, the tool coordinate system will always return to the
same pose. The variation in position and orientation that is measured in this
experiment, therefore, tends to illustrate the levels of repeatability in the robot.
The results of this experiment are illustrated in the histograms shown in Figure
14a and Figure 1.4b. These figures each consist of 20 bars that represent the
number of times a measurement fell within the range indicated on the horizontal
axis. For example, Figure 1.4a shows that only one pose had a position error, r,
that fell between 0.0 and 0.0005 in. while eleven poses had a position error that
fell between 0.0025 and 0.0030 in. The figures illustrate that both position and
angular error are approximately normally distributed about a mean value, The
position error, r, has a mean of 0.0032 in. and a standard deviation of 0.0014 in.
The orientation error, 6, has a mean of 0.0642° with a standard deviation of
0.0230°. Although it has been shown [9] that repeatability can vary from one
location in the working volume to another, it is usually assumed that a manipula-
tor will have fairly constant repeatability over large parts of the working volume.
This property can be illustrated by repeating the experiment described above for
another manipulator pose. For the second pose, the manipulator end effector
was moved to the opposite end of the CMM working volume. The results of the
second experiment are illustrated in Figure 1.5a and 1.5b. In this pose, the
position error has a mean of 0.0041 in. with a standard deviation of 0.0019 in.
The angular error has a mean of 0.0905° with a standard deviation of 0.0323°.
Although not exactly the same as in the previous experiment, these values
indicate that the repeatability of the robot does not change significantly from
one pose to the next. As mentioned earlier, the various aspects of repeatability
will be discussed in more detail in Chapter 7. For the present discussion, it is
important only to remember that the positioning repeatability of the manipu-
lator is typically better than 0.007 in. and the orientation repeatability is usually
better than 0.16°. Also, it is important to keep in mind that the repeatability does
not vary significantly over large portions of the working volume.

With the results of the repeatability experiment in mind, we will now describe
an experiment to illustrate the accuracy of the same manipulator. In this test, we
will command the manipulator to move to nine specific poses in the working
volume shared by the CMM and the robot. At each pose, the CMM is used to
measure the actual pose of the robot which may then be compared with the
commanded pose. The same measures of position error, r, and orientation error,
9, may be used again to quantify the deviation of each pose from the commanded
pose. The results of this experiment are given in Table 1.1. Clearly there is a
significant difference between the errors in accuracy and those for repeatability.
A typical repeatability position error, r, was 0.005 in. while several of the accuracy
position errors were in excess of 0.500 in. The difference in orientation errors is
also significant, varying from an average of approximately 0.070° in the repeat-
ability experiment to one error of almost 2° in the accuracy experiment. In
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TABLE 1.1. Accuracy Experiment

Pose Position Orientation
Number Error () in. Error (6) deg
1 0.456 0.619
2 0.454 0.396
3 0.564 0.665
4 0.481 0.646
5 0.496 1.904
6 0.518 0.641
7 0.363 1.116
8 0.469 0.748
9 0.153 0.757

addition to the wide difference in magnitude of the errors, the variation of the
robot accuracy across the workspace is also apparent. For example, we see a
maximum position error of 0.564 in. and a minimum of only 0.153 in. The
accuracy errors are so large that one would assume that there is an error in the
location of the robot base coordinate system. If the actual location of the robot
base is not precisely known in the world coordinate system, we would not expect
accurate positioning of the end effector. To eliminate such errors, great care was
taken in the experiment to precisely determine the robot base location for this
experiment. In fact, the base location which minimized the accuracy errors for
the nine poses was used. We may be confident, therefore, that the level of accuracy
indicated in Table 1.1 is valid for the robot under study.

The experiments described above were designed to illustrate two aspects of
precision that are common to most robot manipulators. First, the repeatability
of the manipulator is quite good when compared with accuracy. In fact it is not
uncommon to see accuracies that are several orders of magnitude worse than
that of the manipulator repeatability. The second point to note is that manipula-
tor repeatability is relatively constant across the work volume while the accuracy
can vary significantly.

1.2 RELATIONSHIP BETWEEN MANIPULATOR PRECISION
AND PROGRAMMING

In the previous section, we attempted to demonstrate that robot manipulators
have significant differences in their level of repeatability and accuracy. We now
want to discuss the impact that this difference has on the use of a robot in an
industrial environment. A robot task may be programmed in one of two ways.
The first, and most common approach to programming is to have an operator
move the manipulator through the set of key configurations that make up the
task. Each important configuration is stored in the robot controller and the task
isaccomplished by having the controller move the robot through the appropriate
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series of stored configurations. During the programming process, the robot
motion is controlled by an operator who uses a device called a teach pendant.
With the teach pendant, the operator manipulates the various joints of the robot
until the end effector is in the desired position and the robot configuration is
stored in the controller. Clearly, this process can be quite time consuming and
can require a skilled operator to produce a usable program. We will refer to this
type of programming as the teaching method.

As mentioned above, the teaching method can be quite time consuming. Since
lengthy manufacturing delays for robot programming are not desirable, it would
be beneficial to develop the robot program away from the actual manufacturing
line and simply transfer the completed program to the robot. This concept is
referred to as off-line programming. Off-line programming may be accomplished
with another robot in a laboratory environment or with a computer simulation
of the robot and its working environment.

From the descriptions above, it would seem that off-line programming is so
desirable that it would be by far the most widely used approach. This, however,
is not the case. Only a few applications have been reported that utilize true off-line
programming. The reason for this is explained by again considering the disparity
between repeatability and accuracy. In the teaching method, a series of robot
configurations that make up the task are stored. It is important to note that these
configurations are defined by the joint displacements of the manipulator. In other
words, the task is stored in joint space. During the teaching process, the operator
ensures that the end effector is in the the appropriate pose at each task point. The
conversion from task space to joint space is therefore made at each key task point
with a visual confirmation by the operator. Since the key task points have been
previously taught, the ability of the robot to attain these poses is measured by
the manipulator repeatability. Off-line programming, on the other hand, relies
on the assumption that a correct joint space description of a pose may be
determined from the task space description. For example, assume that a robot
has been set up in a laboratory and used to program a task. At each key task
point, the end effector has been moved into position and the joint displacements
have been recorded. It is now desired to move the program to another robot on
the factory floor. Although the robots are repeatable, they are probably not
accurate. This implies that for a given set of joint displacements, each robot will
go to a significantly different pose. In other words, inaccurate manipulators have
a different relationship between the joint space and task space descriptions of a
pose for each robot and programs cannot be transferred from one machine to
another.

To overcome problems associated with both repeatability and accuracy, some
robot users have resorted to a third class of robot programming, which we will
refer to as workspace feedback. For portions of the task that do not require high
precision, either the teach method or off-line programming may be used. For
those parts of the task that require high precision, the workspace is instrumented
in a way that will provide the actual end effector pose to the controller. The
controller may then make whatever correction is necessary to complete the task.
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TABLE 1.2. Relationship between Programming Approach
and Robot Precision

Type of Most Significant Available Level
Programming Aspect of Precision of Precision
Teach method Repeatability Moderate to high
Workspace feedback Resolution Very high

Off-line Accuracy Low

For example, one typical manipulator application is the placement of surface
mounted electronic components. Most manipulators accomplish this task with
the aid of a vision system that provides information about the relationship
between the current position of the component to be mounted and the desired
placement. The digitized image provides the information necessary for the con-
troller to correct errors resulting from either repeatability or accuracy.

Itis clear from the discussion above that the various methods of programming
are closely related to the different aspects of precision. These relationships have
been summarized in Table 1.2. As illustrated in the table, each approach to
programming is most dependent on a different aspect of robot precision. The
teach method requires that the manipulator be as repeatable as possible. Al-
though highly repeatable robots are available, the teach method of programming
is time consuming and must be repeated each time a manipulator is replaced,
moved, or its environment modified. The workspace feedback approach makes
the manipulator part of a closed loop feedback system. When this is the case,
resolution becomes the most significant aspect of precision. Since repeatability
and accuracy errors are eliminated by the feedback device, it is necessary to
ensure only that the robot has sufficient resolution to respond to the commands
generated by the controller. The resolution of most robots is excellent and well
within the limits necessary for this type of programming. There is, however, a
significant disadvantage to this type of programming. When workspace feedback
is employed, the pose sensor and its associated software are very task specific. At
the present time, there is no general purpose sensing system that will precisely
determine the pose of an end effector in a cluttered workspace for many different
tasks. The workspace sensor system must be designed and programmed for a
specific task. This process can be quite expensive and time consuming. In many
applications, the design of the sensor system and programming of the feedback
control through the controller can cost more than the manipulator itself. The
other significant disadvantage of this approach is the loss of flexibility of the
system. One of the attractive aspects of using robots is their flexibility and ease
of reprogamming. Flexible manufacturing is supposed to offer the capability of
quickly changing or modifying a task. When a complicated and task-specific
sensor system has been added to a manipulator, this flexibility is lost. In fact, this
desired flexibility is only a reality when off-line programming is used. New tasks
may be planned and programmed without disturbing the operation of the current
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task. When necessary, task changeover can be accomplished with a minimum of
effort and impact on the production process. As indicated in Table 1.2, however,
off-line programming relies on accurate robots that are not generally available.

1.3 MANIPULATOR CALIBRATION

As indicated in the previous discussion, the utility of robot manipulators would
be significantly enhanced if they were made to be as accurate as they are
repeatable. To enhance the accuracy, we must first understand the reason for the
difference between accuracy and repeatability. As described above, repeatability
is defined as the ability of the manipulator to return to a pose that has been
stored in joint space. Accuracy, however, is the ability of the robot to move to a
pose defined in task space. To achieve a pose that is defined in task space, the
robot controller must convert the task space definition of the pose into joint
space. The individual joints are then moved so that the desired configuration is
obtained. The conversion from task space to joint space is accomplished by using
a mathematical model of the manipulator. This mathematical model relates the
Jjoint displacements to the end effector pose and vice versa. When the mathemati-
cal model used by the robot controller to describe the robot motion differs from
the actual geometry of the manipulator, the joint space definition of a pose
defined in task space will not be accurate. To illustrate this concept, consider the
simple 3 degree of freedom SCARA robot illustrated in Figure 1.6. In the design
illustrated, all three axes of motion are intended to be parallel to each other and
perpendicular to the base of the robot. For the purpose of this example, we will
assume that when the joints have zero displacement, the arm is along the X axis

Figure 1.6. Three degree of freedom SCARA robot.
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of the task space coordinate system and the tool point on the end effector has a
displacement in the Z direction of 24 in. The relationship between the joint
displacements, 6, 8,, and d and the position of the tool point, r;, is given by

Tox = 24c08(0;) + 24 cos(; + 6,) (1.3)
r,, = 24sin(6,) + 24sin(6; + ;) (1.4)
Tz =24 —d; (1.5)

In this example, Equations 1.3 through 1.5 represent the mathematical model
that would be used to relate joint displacements to the position of the tool point.
Now, assume that when the robot is constructed, a slight error is made in the
alignment of axis 1 so that the axes of motion are not quite parallel with the base
of the robot. The position of the tool point as predicted by our model will not
be the position that is actually achieved by the manipulator. If the controller uses
the model of the perfect robot to determine the joint displacements necessary to
reach a pose defined in task space, an error will result. In this example, we will
assume that the joint 1 axis is misaligned by 0.5° in the X—Z plane of the task
space coordinate system. This would result in a positioning error that varies
throughout the workspace and reaches a maximum value of over 0.083 in. when
the arm is fully extended. When considering that a SCARA robot of this size
could have a repeatability of better than 0.005 in., the significance of even slight
variances between the mathematical model and the actual robot geometry be-
comes clear.

Since we have concluded that deviations between the mathematical model
used in the controller and the actual arm geometry are a source of inaccuracy,
it is clear that there are two basic ways of enhancing accuracy. The first would
be to build every robot so that all of the various parameters match the “design”
or “nominal” values as closely as possible. In other words, the manufacturing
tolerances on every part would be extremely tight. Clearly, this approach is not
feasible because of the excessive costs that would be involved. If we cannot make
the robot match the model, then the second alternative is to make the mathemati-
cal model match the robot. This is the essence of manipulator calibration. Simply
put, manipulator calibration is the process of defining an appropriate mathemati-
cal model and then determining the various model parameters that make the
model match the robot as closely as possible.

1.3.1 Source and Significance of Manipulator Errors

Before beginning a more detailed discussion of manipulator calibration, it is
beneficial to examine the most common sources of inaccuracy. Any difference
between the actual robot geometry and that reflected in the mathematical model
will produce some level of inaccuracy. Our purpose here is to examine a typical
manipulator in an effort to identify the most probable sources of error and to
make some assessment of their impact on the accuracy of the manipulator.

In a study of manipulator calibration, Whitney, Lozinski, and Rourke [14]
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divided the sources of manipulator error into geometric and nongeometric errors.
Geometric errors were defined as errors in the parameters that define the geo-
metric relationships between the axes of motion. In other words, these are errors
in those parameters that are not a function of the manipulator loading or motion.
For example, errors in link length and joint axis orientation would be classified
as geometric errors. Geometric errors usually arise during the construction of a
manipulator and are a function of the tolerances used. To illustrate the relation-
ship between assigned tolerances and variations in axis alignment, we will con-
sider a brief example. Figure 1.7 is an illustration of a design for a robot
component that will be the mounting surface for two bearings that make up a
revolute joint. In the figure, a reference plane, A, and a reference line, B, are
established. The bearing surfaces are required to be concentric to the line B to
within 0.020 in. Since these surfaces will ultimately determine the location and
orientation of the revolute axis, these tolerances may be used to examine the
possible axis deviations. To illustrate this, we will define the point p to be located
on the rotation axis halfway between the bearings. The unit vector d will lic along
the rotation axis. If it is assumed that both bearings are at the tolerance limit in
the vertical direction, point p will be displaced by 0.020 in. and d will remain
parallel to its intended direction. If the left bearing is at the tolerance limit in the
vertical direction and the right bearing is at the tolerance limit in the opposite
direction, the point p will not move. The vector d, however, will make an angle,
a, with the intended direction. In this example, o will be given by

0.040
=tan!| —— .
% — tan ( > ) (L6)

where L is the distance between the bearing centers. If we let L be 2 in., the angle
o is 1.146°, which is an exceedingly large misalignment. This example illustrates
that axis location can be relatively insensitive to assignment of tolerances. Axis
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orientation, however, may be highly sensitive to bearing placement. This is
especially true if the bearings are close together. In many instances, the tolerances
necessary to ensure a precise axis alignment are unreasonably tight and would
significantly increase manufacturing costs.

Other sources of error are termed nongeometric errors. Nongeometric errors
require knowledge of the robot loading or motion. Joint compliance, gear back-
lash, dynamicerrors in the controller, and bending of the links would be examples
of nongeometric errors.

The source and significance of manipulator errors are topics that have at-
tracted the attention of a number of researchers. There has been a good deal of
controversy over which sources of error are the most significant and, therefore,
the most important in the calibration process. At the present, it appears that
there is no simple answer to this question. For example, Whitney, Lozinski, and
Rourke [14] determined that the most significant error sources for the robot that
they examined were several nongeometric errors. The robot used in their study
was a PUMA 560. On the other hand, Judd and Knasinski [S5] examined an
Automatix AID 900 manipulator and found that the geometric errors were
responsible for approximately 95% of the measured error and the nongeometric
errors appeared to be almost negligible. Stone [13] reported a study of several
PUMA 560 manipulators where it is shown that reduction of geometric errors
caused a significant improvement in accuracy, but the effect of nongeometric
errors was not studied.

At the present, it seems that the significance of various error sources depends
highly on the particular robot or robot design that is being studied. For example,
if a robot manufacturer develops a design that places high stress on the drive
components we might expect to see significant nongeometric errors such as joint
compliance and gear backlash. This would be especially true if tight tolerances
were held during robot construction to ensure that the joint axes were positioned
and oriented as designed. Conversely, if close attention is paid to the design of
the controller and drive train for each joint, we would not expect to see the same
level of significance in the nongeometric errors. If the design is such that the
orientation of a joint axis is particularly sensitive to the location of a bearing,
we might expect to see normal manufacturing tolerances lead to significant
geometric errors. This train of thought seems to suggest that modifications in
manipulator design would lead to enhanced accuracy. Although this is true, the
tradeoffs that always exist in the design process will at times dictate that accuracy
issues give way to more pressing concerns such as dexterity, weight, or cost. The
point that we are trying to make is that the most significant error sources will
be determined by the design and manufacturing process for a given robot model.
This should be kept in mind when developing a calibration procedure for a given
manipulator.

1.3.2 Levels of Manipulator Calibration

Since the significant sources of error can vary from one robot design to the next,
calibration procedures can vary widely in their scope and complexity. For
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example, some robot calibration procedures consider only the joint transducer
information while others may involve changes in the kinematic or dynamic model
of the robot. In an effort to classify most of the current approaches to robot
calibration, we have chosen to define three levels of robot calibration.

For the purpose of this work, level 1 calibration shall be defined as “joint level”
calibration. The goal is to determine the correct relationship between the signal
produced by the joint displacement transducer and the actual joint displacement.
This usually involves calibration of the kinematics of the drive and the joint
sensor mechanisms. A level 2 calibration is defined as the entire robot kinematic
model calibration. At this level the purpose of the calibration is to determine
the basic kinematic geometry of the robot as well as the correct joint-angle
relationships. Level 3 calibration is defined as “nonkinematic” (nongeometric)
calibration. Nonkinematic errors in positioning of the end effector of a robot are
due to effects such as joint compliance, friction, and clearance, as well as link
compliance. Also, if the robot is under dynamic (rather than kinematic) control,
correction for changes in the dynamic model of the robot constitutes a level 3
calibration.

1.3.3 What This Book Addresses

This text is intended to address issues related to level 1 and level 2 calibration.
The decision to limit the discussion to these topics was made primarily because
we feel that many significant issues involving level 1 and 2 calibration procedures
have been resolved and that implementation of these techniques in an industrial
environment is feasible. Also, the models that result from these calibration pro-
cedures are relatively easy to implement in existing robot controllers. Level 3
calibration, on the other hand, is still very much a research issue. The number of
parameters involved at this level is significantly higher and, hence, the complexity
of the associated data collection and identification procedures is much greater.
Furthermore, to successfully implement the results of a level 3 calibration, the
robot controller must make significant use of the manipulator dynamics. At the
present, the vast majority of controllers for commercially available robots use a
dynamic model only for joint level control. Joint coordination in these controllers
is obtained from a kinematic model. A more detailed look at level 3 calibration
may be obtained by reviewing the following papers [1-4, 6—8, 10—12].

1.4 THE CALIBRATION PROCESS

This section will provide an overview of the complete calibration process to
which the remainder of the book is directed. In doing so, we will use terms that
will be defined in detail in later chapters. The novice therefore may not fully
understand the details of what follows but perhaps the strategy of calibration
will be established and hence provide a framework for later chapters. This
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strategy may best be explained by reconsidering the relationship between joint
space and task space as expressed in Equation 1.2.

P =f(n0) (1.7)

where P is the end effector pose as defined in task space, 0 is the vector of joint
displacements, and n represents the set of constants used in the model. The goal
of manipulator calibration has been defined as defining an appropriate functional
form for Equation 1.7 and then determining the coefficients, n, that make the
model match the performance of the actual robot as closely as possible. This
process falls conveniently into four sequential operations: modeling, measure-
ment, identification, and implementation, each of which relates to the above
equation. These areas will be dealt with in detail in subsequent chapters, however
an overview of each is now given.

1.41 Modeling

The first step in the calibration process is the determination of a suitable func-
tional form for Equation 1.7. Examination of the literature on kinematic model-
ing shows a wide variety of models used by different researchers in the field, and
a number of questions arise as to how the models vary and which model should
be used for a given manipulator. These questions are addressed through the
concepts of completeness, equivalence, and proportionality and will be dealt with
in detail in Chapter 2.

1.4.2 Measurement

The second step in the calibration process is measurement. The goal of the
measurement process is to accurately determine either the end effector pose, or
some subset of the pose, for a set of robot joint displacements. A typical measure-
ment data set is obtained by moving the robot to some location, i, in the work-
space, recording the joint displacements, 8;, and then using an external measuring
system to determine some portion of the pose, P,;. The robot is then moved to
another location and the process repeated, continuing for as many measurements
as necessary.

There are two aspects to the measurement process that need to be given careful
consideration. The first is what measurement system should be used, and the
second is how to plan the observation strategy correctly. There are only a few
systems that have the necessary precision to make adequate pose or partial pose
measurements. Each has its own characteristics such as precision, speed and ease
of use, level of measurement noise, cost, and the amount of information obtained
from each robot pose. These systems are discussed in detail in Chapter 3. In
general, the measurement process is time consuming, laborious, and prone to
human error. There is some benefit, therefore, in minimizing the number of
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measurements that have to be taken, without compromising the end result of the
calibration process. These issues will be addressed in Chapter 6, which presents
a case study of the calibration of a PUMA 560 manipulator.

1.4.3 ldentification

The identification process may be explained by considering the following equation
6Pi = Pmi - Ppi (1.8)

where P,; is a measured pose and P,; is the pose predicted by the model at the
ith measurement location. Using Equation 1.7, this expression may be rewritten
as

oP; =P, — f(n.6) (19

where 0, is the set of joint displacements associated with measurement position
i. The vector 3P, gives an indication of the difference between the pose predicted
by the model and the measured pose for the given joint displacements. The
purpose of the identification step is to choose the vector of model coefficients n
that will minimize 6P, in some sense for the set of measured poses.

There are a number of well-known approaches to identification that will be
described in detail in Chapter 4. Issues such as the relationship of the measure-
ment noise to the accuracy of the resulting parameters and identification oriented
observation strategy planning will also be addressed.

1.4.4 Implementation

Implementation means using calibration information to improve manipulator
performance. So far, the calibration process should have given us an accurate
kinematic model, with known parameters, that allows an accurate relationship
between the joint variables and tool pose. The implementation phase is perhaps
the least generalized aspect of the process since the details of the actual imple-
mentation tend to be somewhat machine and task specific. There are, however
some generic concepts that provide a framework for this aspect of the problem.

Since the objective of the previous three phases, modeling, measurement,
and identification, has been to determine the best model of the manipulator,
conceptually the implementation phase simply involves the modification of the
nominal model embedded in the robot controller. Clearly any manipulator
controller that is able to accept an externally specified pose and convert it to a
set of joint variables is performing an inverse solution on some model. However,
the detailed architecture of a particular robot controller is not usually available
to the user, making it difficult to implement calibration data in this way. In
situations in which a controller does not contain a model of the manipulator, as
in cases in which tool to joint transforms are not provided and the arm is only
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able to be “taught” poses, implementation in the existing controller cannot be
achieved.

Solving the above problems is usually accomplished by implementing the
calibration data in an off-line preprocessor. Since virtually all manipulators
are capable of being driven by the specification of a set of joint angles, this
preprocessor performs the conversion of each world specified pose into the
corresponding joint set through an inverse kinematic solution of the accurate
manipulator model. The sets of joint variables are then sent to the existing joint
controller and executed by the manipulator. This process is usually done once
for a particular task, although there is no reason why it cannot be done in real
time if the preprocessor may be used exclusively by a single manipulator.

Although this represents a simplistic overview of how calibration data may
be utilized, Chapter 5 addresses some of the more subtle issues involved. For
example, although a particular manipulator may have a model that has a known,
closed form inverse, the model resulting from the calibration process may not.
This may require the use of iterative numerical methods to derive the joint
variable set from a specified pose. This and other related issues will be considered
later in the text.

1.5 CONCLUSION

In this chapter, we have tried to demonstrate that the low levels of accuracy
that typically exist in robot manipulators significantly impact their utility in a
typical manufacturing setting. Furthermore, it has been shown that the source
of this inaccuracy is the deviation between the actual structure of the robot and
the mathematical model used in the controller. The purpose of calibration is to
enhance manipulator accuracy by modifying the model so that it more closely
matches a particular manipulator.

In the remainder of this book, the details of the calibration process will be
described. Chapters 2 through 5 are dedicated to the four steps of the calibration
process: modeling, measurement, identification, and implementation. Each of
these chapters presents the various approaches to these steps and identifies
research issues that are yet to be resolved. Chapter 6 details the calibration of a
PUMA 560 robot. This case study is included to demonstrate the application of
the calibration to an actual industrial manipulator. The final chapter overviews
several approaches to measuring the performance of robot manipulators so that
enhancements in accuracy may be properly quantified.
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CHAPTER 2

KINEMATIC MODELING FOR
ROBOT CALIBRATION

The first step in any calibration procedure is to obtain a valid manipulator model.
The purpose of the model is to relate the outputs of the joint displacement
transducers to the pose of the end effector. There are two basic forms that any
manipulator model may take. The forward or direct model computes the end
effector pose given the joint transducer readings. The inverse model, on the other
hand, determines the set of joint displacements that is necessary to achieve a
specified pose. Although both models relate the same sets of information (joint
displacements and pose), they are distinctly different in form and complexity.
There are a number of methods of generating the forward model for a typical
serial link manipulator. Most of these methods are easy to implement and lead
to a unique relationship between the joint transducer displacements and the pose.
The inverse model, however, can be quite difficult to derive and there is no easily
applied methodology that will work for any robot geometry. The inverse model
may also exhibit multiple solutions. This is reasonable since a given end effector
pose may be obtained with several manipulator configurations.

Both the forward and inverse models come into play during the calibration
process. Fortunately, the inverse model is used only during the implementation
phase and will be addressed in Chapter 5. The model referred to in the “modeling
phase” of calibration is the forward model. In this chapter, we will consider
forward models for both Level 1 and Level 2 calibration procedures. In the
discussion of Level 2 models, we will review the formalism established by Denavit
and Hartenberg [5] and then demonstrate the extension of this method to relate
variations in the kinematic parameters to variations in the pose. Readers that
have not previously been introduced to kinematic modeling may wish to refer
to one of the following books for a more detailed discussion of the fundamen-
tals of kinematic modeling [1,4, 10, 22].

23
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21 LEVEL 1 MODELS

A Level 1 calibration has been defined as “joint level” calibration. The purpose
is to correctly relate the signal from the joint displacement transducer to the
actual joint displacement. There are a variety of joint displacement transducers
and the more popular devices are described in Chapter 3. Since most manipulator
joints are revolute or prismatic, these devices are usually rotary or linear and
produce a digital signal or analog voltage. In some designs, the transducer is
mounted directly to the joint axis. If this is the case, the model is simply the
equation necessary to relate the transducer signal to the joint displacement. In
the case that the position transducers are on a prime mover such as a motor
shaft, the model includes the kinematics of the drive system. If we define the signal
from the transducer as #; and the actual joint displacement as 6;, the following
relationship holds:

6; = hi(n;, ;) 2.1

where h; () is the appropriate input—output functional relationship in explicit
form and the vector y; represents the vector of parameters in the function h( ).
In the large majority of cases the function h( ) is assumed to be linear and can
be written as

0; = kiyn; + kip (22

In this model the vector y; will be [k;,k;,]7. The purpose of the Level 1
calibration, therefore, would be to determine the values of the vector y; correctly.
As an example of this type of model, we will consider a situation in which we
have an incremental encoder connected directly to a revolute axis. The output
from the encoder is a pulse count, n. In this case, the joint angle, 6, will be given by

0=kon+k, (2.3)

where k, is the angle represented by each pulse and k, is the joint angle when
the pulse count is zero. The purpose of a calibration would be to determine the
appropriate values of k, and k,. In this example, the value of k;, would be
determined by simply obtaining the number of lines on the encoder and checking
to see if the electronic counter in the controller multiplies the count by 1, 2, or
4. If, for example, we have a device with 500 lines and a count multiplier of 2,
there would be 1000 counts per revolution. If the device is connected directly to
the joint shaft, this gives a value of 360°/1000 counts or k, = 0.36 deg/count.
Given the physical arrangement described in the example, there would be no
variation in this value and, therefore, it could be treated as a constant and not
included in the calibration process. The value of k,, however, gives the joint angle
when the pulse count is zero. This value must be set every time the controller is
powered up since the encoder gives a relative pulse count and not an absolute
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reading of joint angle. The value, k,, is usually referred to as the joint offset and
may be determined by moving the joint to a known angle and resetting the pulse
counter. Many robots automatically do this as a part of the start-up sequence
and the process is referred to as the homing or initialization procedure. In
actuality this is an automated Level 1 calibration using the model described
above.

In cases involving high precision it may become necessary to develop a more
sophisticated model to describe the relationship between the transducer signal
and the joint displacement. This is usually the case if it is necessary to include
drive train kinematics in the relationship. As an example, consider a revolute
joint driven by a dc motor through a gear train. If the joint transducer is an
encoder mounted on the motor shaft rather than the joint axis, nonlinearities in
the gear train between the motor and the joint axis will affect the relationship
between the joint angle and the encoder. If we assume that one of the gears is
slightly eccentric, the relationship between joint angle and motor shaft angle will
have a harmonic component. A valid model in this case might be

0 =k,n+ ky, + kysin(kyn + ks) 2.4)

where n is the encoder count, k; and k, are the slope and joint offset, k, reflects
the ratio to the eccentric gear, and k is a phase angle. Whereas k, and k, may
be treated as constants that are determined from the encoder specifications and
joint design, k,, k5, and k5 must be determined by calibrating the joint.

As illustrated above, the specific form of a Level 1 model is highly dependent
on the type of nonlinearities that may exist in the joint. It is common to find
nonlinearities from gear backlash and component compliance. Some joint trans-
ducers also produce nonlinearities that may be included in the calibration model.

2.2 LEVEL 2 MODELS

Once the Level 1 model has been determined, a model must be developed that
relates the joint angles to the end effector position. A number of different ap-
proaches exist for developing the kinematic model of a robot manipulator. The
most popular method has been the procedure established by Denavit and
Hartenberg [5], which is based on homogeneous transformation matrices. This
procedure consists of establishing coordinate systems on each joint axis. Each
coordinate system is then related to the next through a specific set of coefficients
in the homogeneous transformation matrices. This modeling procedure will be
reviewed to acquaint the reader with the nomenclature to be used throughout
the rest of the text and is not intended to be a complete introduction to kinematic
modeling. Those who are unfamiliar with kinematic modeling may wish to refer
to one of the the following books for a more detailed discussion of kinematic
modeling [1,4,10,22].

Once the Denavit—Hartenberg (DH) procedure has been reviewed, the model
will be used to demonstrate the derivation of the relationship between variations
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in the model parameters and the predicted end effector pose. This relation-
ship will first be applied to a single link and then to an entire manipulator.
This analysis is followed by a discussion in the limitations of the DH that
are significant to calibration and a review of models that overcome these
limitations.

Before beginning a more detailed discussion of modeling, it is appropriate to
consider the notation that will be used in the following sections. Since the
mathematical expressions will involve scalars, vectors, and matrices, it is impor-
tant to establish a consistent notation to enhance clarity. A number of different
notations have been proposed for kinematic modeling and the choice is some-
what a matter of personal taste. We have chosen to follow the notation used by
Paul [22] since it has been widely adopted. All scalars will be represented by an
uppercase or lowercase character that is not shown as boldface. For example, 6,
1, k,, and k, would represent scalar values. Vectors will be denoted by boldface,
lowercase characters such as r and y. Matrices will typically be used to represent
coordinate frames or transformations and will be denoted by boldface, uppercase
characters. Examples of matrices would be T or A. In many cases, subscripts will
be used to designate various components or coordinate frames. In each case, the
meaning of the subscript notation will be defined.

2.3 DENAVIT-HARTENBERG METHOD

One of the most fundamental problems in describing a working environment in
which one or more robots operate, together with supporting equipment, is how
to explain the relative positions of the various pieces of equipment. This is
important since many robot operations are position driven. For example, a robot
has to pick up a part from a certain location, put it down in another location,
change end effectors by collecting a different gripper from yet another location,
and so on. The study of kinematics reveals that a method exists allowing us to
define these positions in a consistent and unambiguous manner. The method
consists of attaching coordinate frames (or just frames) to each object or location
of interest so that when the object moves, so does the frame. The problem then
is reduced to one specifying the relationship between the frames. Fortunately,
kinematics helps here too, since homogeneous transformations allow us to do
just that. These concepts will be fully explained in the next paragraph; however,
they are illustrated in Figure 2.1, which shows a robot workcell. Each object of
interest together with some important locations used by the robot, as well as
with their coordinate frames, are shown.

In the analysis of kinematic structures consisting of serial links and joints,
accepted methods for defining the position and orientation of one link with
respect to another are in common use. We have seen in the previous paragraph
that one method is to allocate kinematic frames to each of the robot links and
then to define the position of the robot by specifying the transformation from
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one link to the other. In this way, the spatial orientation of quite complex
kinematic structures may be specified in a unified, straightforward method. The
DH method involves the allocation of coordinate frames to each link using a set
of rules to locate the origin of the frame and the orientation of the axes. The
position of consecutive links is then defined by the homogeneous transformation
matrix, which transforms the frame attached to link n — 1 into the frame fixed
to link n. This transformation is obtained from simpler transformations repre-
senting the three basic translations along, and three rotations about, the frame’s
x, ¥, and z axes. These fundamental transforms, expressed in a 4 x 4 matrix
notation, may be shown as follows:

1 00 x'
01 0 y

T(x,y',z') = 0o 0 1 ﬁ (2.5)
0000

End Effector

Z6 & Ze

Fixture

Figure 2.1. Components of a robotic workcell.
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1 0 0 0
0 cosf, —sinf, O
= x x 2.6
R(x, 0 0 sind, cosf, 0 @8)
|0 0 0 1
cosf, 0 sinf, O]
0 1 0 o0
= 2.7
R(3.6,) —sinf, 0 cosf, 0 @7
| 0 0 0 1]
[cosf, —sing, 0 0]
sin 6, cosf, 0 O
R(z,0,) = 0 0 { o (2.8
0 0 0 1]

where T(x',y’,z’) implies a translation given by the vector r = [x’,y’,z']7 and
R(x, 0,) implies a rotation of 6, about the x coordinate axis.

When applied to the linkage shown in Figure 2.2, for example, we can use
Equations 2.5-2.8 to define the position of link 2 with respect to link 1 by
specifying the transformation, commonly called the A matrix, which transforms
frame 1 into frame 2. It may be seen that this transformation takes the following
form:

A = T(d,,0,0)R(z,8,)T(d,,0,0) 2.9)

or

Figure 2.2. Two link mechanism.
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cosf, —sinf, O d,+d,cosb,
sin 0, cosf;, O d,sin 6,
A= .
0 0 1 0 (210
0 0 0 1

For more general linkage structures, which are usually three dimensional in
nature, the transformations are more complex. In such cases, much labor may
be avoided by establishing a common methodology for allocating the frames on
the links, and defining a common set of transformations to get from one link to
the next. In his description of the DH method, Paul [22] derives the standard
transformation for the noncoplanar kinematic chain shown in Figure 2.3. The
process is begun by identifying the axis of motion for each joint. Next, the
common normal between consecutive joint axes is then identified. The origin of
coordinate frame n is then located at the intersection of joint axis #n + 1 and the
common normal between axis n + 1 and axis n. The z axis of coordinate system
n points along the axis of joint n + 1 and the x axis is aligned with the common
normal as shown in Figure 2.3. Assigning the frames in this manner allows the
transformation matrix from frame n — 1 to frame n to be expressed as

A, = R(z,0,)T(0,0,r,)T(,, 0, )R(x, ;) 2.11)

Joint n-1

Joint n+1

Figure 2.3. Kinematic frame allocation.
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The above equation may be interpreted as a means of transforming frame
n — 1 to frame n by the following sequential steps

* Rotate frame n — 1 about z,_; by an angle 8,, the joint angle

* Translate along z,_, a distance r,, the offset

* Translate along the rotated x,_;, a distance I, the link length, and
* Rotate about x, the twist angle «,,.

If the assignment of frames is adopted for all links, Equation 2.11 may be used
as a recursive transformation relating the position of one frame with respect to
the previous one. Just as in Equation 2.10, the transformation matrix is a function
of the link geometry such as the length [,, the twist «,, the offset between the
common normals r,, and also the joint angle ,, This leads to the general form
of the homogeneous transformation as follows:

cosf, —sinf,cosa, sinf,sina, [,cosf,
A= sin 8, cosf,cosa, —cosb,sina, [,sind, (2.12)
0 sin «,, cos a,, 1,
0 0 0 1

For a revolute joint, the parameters /,, a,, and r, are constants that describe the
robot geometry and 8, is the variable that describes the joint displacement. In a
prismatic joint, only the orientation of the joint axis is important. The location
of the origin of the coordinate system, therefore, is determined by moving the
axis of the prismatic joint so that it intersects the axis of the next joint. This forces
the length of the common normal, J,, to be zero. In a prismatic axis, therefore,
a, and 6, define the link geometry and r, is the joint variable.

Since the specification of position and orientation of a rigid body in space
requires six generalized coordinates, a robot manipulator will require six degrees
of freedom to achieve complete dexterity within its workspace. A manipulator
with six links and six joints will be described by six A matrices as defined by
Equation 2.8, with all of the [, o, and r variables defined, and the instantaneous
position of the arm defined by the six joint variables. As an example, we will
consider the PUMA 560 arm, the analysis of which is well documented by Paul
[22] and others. Figure 2.4 shows a schematic of this arm with each link, joint,
and coordinate frame defined as shown. The base frame, 0, is fixed while the final
frame, 6, defines the end of the manipulator. It is easily seen that the compound
transformation

T, = A A, (2.13)
defines the transformation from frame 0 to frame 2 while

T, = A,A,A, (2.14)
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Figure 2.4. PUMA manipulator.

defines the transformation from frame 0 to frame 3, and so on. Continuing, we get
Te = A A, A A A A (2.15)

where Ty is a function of the six joint variables, and is a 4 x 4 homogeneous
transformation describing the position and orientation of frame 6, attached to
the end link of the manipulator, with respect to the base.

Equation 2.15 represents the forward model for a 6 axis manipulator. Since
we will consider using this model for calibration, there are several aspects of this
model that should be reviewed. If the DH procedure is followed, each revolute
joint will require three constants to describe the link geometry and one variable
to define the joint rotation. Each prismatic joint requires two constants for link
geometry and one joint variable. In a revolute joint, the joint variable, 8,, is
measured from the x,_, axis. A change in axis orientation, therefore, would
change the reference position for the joint displacement. This implies that the
robot “zero” or reference position is a function of the axis geometry. For example,
if we have two manipulators with slightly different geometries, they will have two
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different reference positions. If we command each robot to go to the configuration
where all axis displacements are 0, each robot end effector will be in a different
pose. Since the goal of calibration is to make two slightly dissimilar manipulators
perform the same, each should have the same reference position. To meet the
goals of calibration, therefore, some extension to the DH formalism to allow
adjustment of the reference position is required. Another property of the DH
model is that the location of each coordinate system is defined by the robot
geometry. For example, the base coordinate system is constrained to lie on the
axis of joint 1. In many robot geometries, this is inside the physical structure of
the robot. Since the location of the robot in the workspace must be known, some
means of accurately locating the base coordinate system must be available. If
there are no physical references on the robot base and the base coordinate system
is located inside the robot structure, location of the robot in the workspace can
be difficult. Again, an extension to the DH formalism can address this problem.
These and other limitations of the DH model are addressed further in Section
2.6.In paragraphs following Section 2.6, extensions to the DH model that address
these problems will be discussed.

Before considering alternate models, however, we wish to examine the effect
of variations in the kinematic parameters on the end effector pose. Although
the specific mathematics required to accomplish this will depend on the model
used, a general approach may be employed. This procedure is illustrated in the
following section.

2.4 LINK KINEMATIC ERROR MODEL

The material presented in this section indicates how small errors about the
nominal manipulator kinematics produce end point position and orientation
changes, and is developed into a form that allows a calibration methodology to
be formulated. Many approaches to the problem have been proposed [2, 3,12,
13,197, but the one given here follows that of Veitschegger and Wu [32]. We
will use a standard DH model to illustrate the approach. Modification of this
procedure for different models is easily accomplished.

Beginning with Equation 2.12 and assuming that all variations about the
nominal kinematics may be accounted for by variations in 6,, «,, r,, and I, we
have the change in a single transformation matrix A, to be

0A O0A 0A 0A

=N, + = "Aa, + =" Ar, + Al (2.16)

44, = 23, da, ar, al,

by differentiating Equation 2.12 we get
—s8, —cb,ca, cbO,sx, —1,s0,

JA 0, —sb,ca, sOsa, 1,6,

- = QA, 217
20, 0 0 0 0 Q @17)

0 0 0 0
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0 -1 0 0
o 1 0 00 2.18)
*lo o 00 '
0 0 00
By representing
0A
"= A 2.19
60" nQo ( )
Q, can be written as
0 —ca, So, 0
Q= A~ QLA cd,, 0 0 lca, (220
o T e —sa, 0 0 I sa, .
0 0 0 0
Similarly,
A _aqQ, 2.21)
or,
A
Zm_ A 2.22
5[,, an ( )
0A
= A 2.23
o, nQq (2.23)
where
[0 0 0 O
0 0 0 s¢
Q. = (2.24)
0 0 0 ca,
[0 0 0 O
[0 0 0 1
Q 00 00 (225)
“loooo '
[0 0 0 O

and
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00 0 O
0= 00 —-10 (226)
01 0 O
00 0 O
Substituting these results back into Equation 2.16 yields
dA, = A, (Q,A0, + Q,Ar, + QAL + Q,Ax,) 227
Following Paul [22] by defining an error matrix dA, such that
dA, = A 0A, (2.28)
we have
0A, = QeA8, + Q,Ar, + QAL + Q,Aax, 2.29)
where from Equations 2.20-2.26
0 —ca,A8, sa,A0, Al,
5A, = ca,AB, 0 —Aa, 1,c0,A8, + sa,Ar, 230)
—sa, A0, Aa, 0 —1,sa0,A6, + co,Ar,
0 0 0 0

This homogeneous transformation may be partitioned into a 3 x 1 displacement
component d, and a 3 x 1 rotational component 8, as follows:

Al
d,=| l,ca,A8, + sa,Ar,

n

| —liso, A, + ca,Ar, |

0 0 | 1
=| lca, |A8,+ | sa, {Ar, +| 0 [Al, (2.31)
| —lusa, | cat, | 0
and
C Aw, ]
8, = | sa, A,
| ca,AG, |
[ 0 1
= | sa, |AG, + | 0 | Aa, (2.32)
| ca, 0
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By defining the following three vectors

k!=[0 Ilca, —I,sa,]7 (2.33)
k2=[0 so, co,]7 2.34)
K=[1 0 0] (2.35)

the translational and rotational errors at A, due to the link parameter errors can
be expressed in the following linear form

d, = k! A6, + K2Ar, + k3Al, (2.36)
3, = k2A6, + k3Aq, 2.37)

2.5 MANIPULATOR KINEMATIC ERROR MODEL

If we apply the analysis in the preceding section to an N link manipulator, we
are able to derive the position and orientation errors at the tool frame due to the
four link kinematic errors for each link of the arm. It is to be expected therefore
that the manipulator kinematic error model will be comprised of 4N unknown
link error parameters. We can express the deviation from the expected end
position Ty by an error matrix dTy where

Ty + dTN = (Al + dAl)(AZ + dAz)"'(AN + dAN)

= f_v[ (A, + dA,) (2.38)

Expanding Equation 2.38 and ignoring second-order products we get after some
manipulation

N
T +dTy=Ty+ Y (A;...A,_1dAA,,; ... Ay) (2.39)
n=1
Substituting 2.28 into 2.39 gives
N
dTy = Zl (Ay...A)0A,(A,41---Ap)
N
= Zl Ty(A,rr---Ay) 10A (AL, ... AY) (2.40)

defining the matrix U, to the product of the A matrices from n to the end of the
manipulator

U, = ﬁ A (2.41)

1=n

we have
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dTy = TNI: i U,,‘+116A,,U,,+1] (242
Since we may write
dTy = TyoTy (2.43)
we obtain
0Ty = il U, L 0A, U, (2.44)
=

Following a different approach, which states that the error in Ty may be
defined as small displacements from Ty, of dxy, dyy, and dzy, and small rotations
Oxy, Oyy, 0zy about the xy, yy, and zy axes respectively, from

0Ty = T(dxy,dyy, dzy)R(x, oxy)R(y, dyy)R(z, Ozy) (2.45)

It may be shown that

0 - 5ZN 5yN de
oz 0 —oxy d
STy=| voOn (2.46)
—0yy  Oxy 0 dzy
0 0 0 0

Paul [22] has shown that for the general matrix expression T~'AT we may write
the corresponding matrix as

0 —0-mxo0) d-{@axmn o (pxm+dn
4-(n x o) 0 —d-(oxa) 6 (pxo)+d-o 247
—0-(axn) &-(oxa) 0 d-(pxa)+d-a

0 0 0 0

where T may be generalized as a combination of four unit vectors, n, 0, a, and p
as shown below.

_{n o a p
T = [0 0 0o 1] (2.48)
The vector A is defined as
d
A= 2.49
[6] (2.49)

From 2.44, 2.46, and utilizing 2.47 we obtain
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N
dxy = Zl 51 d, + (prsy X Mj4y)-8,]

N
dyy = Zl [0f+:-d, + (Pnsy X 0511)8,]

N
dzy = Zl [a5+:-d, + (i) % a,,.)9,]

N (2.50)
Oxy = ;1 (54,°9,)

N
Syy = Zl (07+1°98,)

N
Ozy = Z,l (a%+1°9,)

where n;,;, 05,1, a,,;, and pj,, are the unit vectors comprising the U, matrix

as given by
My Ohyy @5y Phyg
={" 2.51
Un+1 I: 0 0 0 1 ] ( )
0A, = [gn] (2.52)

It may be seen from 2.51 that U, is a function of the nominal kinematics
and joint angles since it is the product of A matrices. However, d,, 8, through
Equations 2.31 and 2.32 are functions of the kinematic error parameters Af,, Aa,,
Al,, Ar,. Expanding the elements of the tool error terms in Equation 2.49 we see
that

N
dxy = Z [y, k) + (Ph+1 X n:+1)'k3]A9n + (4, ~kf)Ar,,
n=1

+ (., k,?)Al,, + [(Ph+1 X nﬁﬂ)'k,?]A%
N

dyy = Zl [(07+4 ki) + (pn+1 X 0:+1)'k3]A9n + (0544 'kf)Ar,,
+ (0:+1'k,?)Al,, + [(@5+y X 0:+1)'k3]A°‘n

N
dzy = Zl [an. k) + (Pt X apyq)- kf]AH,, + (a5, 'kf)A"n

+ (a4 kDAL + [(Pr+1 ¥ a:+1)'k3]Aan

N

Oxy = ;1 [}, - kZ)AB, + (0541 - k7)Ao, ]

(2.53)

N

Oyy = Zl [(07+1 " k2)AG, + (o), -k7)A,]

N
6zy = ) (@1 kDAG, + (a4, k) Aa,]
n=1
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Although computationally complex, the above result may be written as two
linear equations

dy = m; A0 + myAr + m;Al' + m A (2.54)
Sy = m,A8 + m;Ax (2.55)

or by one equation

[d”] - [m‘]AB + [mz] Ar + ["'3] Al + [m“] Ax (2.56)
oy m, 0 0 m,

where dy = [dxy,dyy,dzy]" are the three translational errors at the end of
manipulator, 8y = [6xy,yy,dzy]" are the three rotational errors at the end of
manipulator, and A@, Ar, Al, Aware N x 1 column vectors of the kinematic error
parameters.

Equation 2.56 may be formulated as a conventional Jacobian representation
by

0Ty = Jxdk (2.57)
where 6k is a 4N x 1 column vector of kinematic error parameters. Hence

AO

dy m, m, m; m, Ar
= 2.58
I:BN:l [mz 0 0 my]| Al (2.38)
A

The Jacobian is a six row by 4N column matrix. Note that the column of J¢
associated with A@, that is (m, m,)” may be identified as the joint angle Jacobian
defined by Paul [22].

Equation 2.57 is the equation that relates small variations in the kinematic
parameters, dk, to variations in the end effector pose as given by IT,. The
Jacobian, Ji, is a function of the nominal kinematic parameters as well as the
joint angles so the relationship may vary significantly over the workspace.

2.6 LIMITATIONS OF THE DENAVIT-HARTENBERG METHOD

Although the Denavit—Hartenberg model has been popular for modeling mani-
pulator kinematics, several problems arise when using this model in a calibration
procedure. As described in Section 2.3, the link coordinate frames are located at
the intersection of the joint axis and the common normal. This implies that the
location of these coordinate frames is a function of the manipulator geometry
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and that small variations in this geometry will cause these frames to shift. This
requirement leads to three effects that are undesirable for robot calibration:

* Selection of the reference or base frame is not arbitrary.
* The “zero position” of the manipulator is not arbitrary.

* Constants in the transformations vary by large amounts for revolute joints
with nearly parallel axes.

The purpose of a robot calibration is to improve the mapping between joint
space and task space so that objects in task space may be grasped or manipulated.
This implies that the task space is well defined and that the task space location
of both objects and the manipulator is precisely known. To locate the manipu-
lator, the transformation between the robot base frame and the task space
coordinate system must be accurate. To make this possible, some set of reference
markers must be available so that the robot base frame may be easily related to
the task space coordinate system. This may be accomplished by placing physical
references such as tooling balls, reference planes, or locating pins on the robot
base. To be effective, these references must either define the robot base frame or
their location in the base frame must be known. Since the DH formalism restricts
the location of the base frame to a joint axis, additional transformation pa-
rameters must be included to express the relationship between the joint 1 axis
and the base coordinate system as defined by the reference marks. This seemingly
obvious point is often overlooked when developing a calibration procedure.
Precise knowledge of the kinematic parameters will do little good if the robot
base frame cannot be located accurately in the task space coordinate system. A
mechanism to accomplish this should be included in the calibration model.

As described in Section 2.3, the displacement of a revolute joint is given by the
angle between the common normal and the x axis of the previous link coordinate
system. The position of these joints when at zero displacement, therefore, is with
the x axes of consecutive revolute joints aligned. This implies that the configura-
tion of the manipulator in the zero position is dependent on the robot geometry.
Small changes in the axis alignment will cause variations in the link coordinate
systems and, hence, the zero position. One of the motivations behind mani-
pulator calibration is the desire to have several, slightly different manipulators
perform as though they were identical. If each manipulator has a different
reference position, this goal is not met. Again, an extension to the DH formalism
must be made so that an arbitrarily defined zero position is possible.

The final and most important limitation of the DH formalism is the treatment
of consecutive revolute joints with nearly parallel axes. Many manipulators are
designed to have revolute joints with parallel axes. In this case, there is no unique
common normal and it is suggested that a common normal be chosen so that
the coordinate frame is located in a convenient place. If, however, as part of the
calibration procedure it is determined that the axes are not parallel but inclined
to each other by a small amount, the common normal becomes unique and the
location of the coordinate frame may change significantly. This discontinuous
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and widely varying location of the coordinate frame causes the kinematic param-
eters in the DH model to change rapidly and over a large range. The problem
may be analyzed by considering two consecutive frames F, and F, as shown in
Figure 2.5. Here, frame 2 is slightly misaligned with frame 1 so that the unit vector
u representing the direction of the joint axis is not aligned with z,. Using F, as
a reference frame we may write

O+ d,j+ cu=rk;+a, (2.59)
Since the frames are misaligned, a, denotes the unique common normal hence
a,°k, =0 (2.60)
a,u=0 (2.61)
solving for the offset distance r, we get from Equations 2.59, 2.60, and 2.61

_ O.uu, + O uyu,
uZ + u}

(2.62)

r;

The above equation shows that when u is aligned with z,(u, = u, = 0) the
variation in the offset is discontinuous. Further, it may be shown that as the axes
move from the nonparallel to the parallel situation the location of the common
normal is discontinuous.

Frame 1

Figure 2.5. Joint axis misalignment.
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It should be pointed out that this becomes a problem only in the selection of
a model for parameter identification prior to robot calibration. If the nominal
robot geometry indicates parallel axes we might be tempted to use a conven-
tional Denavit—Hartenberg model and set the offset to zero. If in the process of
calibration it is determined that the joints are misaligned, then r, will be nonzero
and by a large amount. This discontinuous behavior may lead to convergence
problems in the parameter identification routines (see Sections 4.3 and 4.4). If we
assume a value for the offset and the joints turn out to be exactly parallel, then
the offset becomes nonunique and again convergence may be compromised.

2.7 PROPERTIES OF A GOOD MODEL

Before proposing changes to the Denavit—Hartenberg formalism, the properties
that a kinematic model should possess to make it suitable for calibration should
be considered. Everett et al. [8] proposed that kinematic models for calibration
should meet three criteria: completeness, proportionality, and equivalence. These
concepts are described in the following paragraphs.

In classifying models, we will define a complete kinematic model as one that
has the capability of relating the joint displacements to the tool pose for any
manipulator while allowing for the arbitrary placement of the reference frame
and arbitrary assignment of the zero position. Another way of defining complete-
ness is to say that a complete model has enough coefficients to express any
variation of the actual robot structure away from the nominal design. To be
complete, the model must contain the required number of independent kinematic
parameters. This section suggests a formula for computing the required number
of independent parameters for a general manipulator.

Since kinematic identification is the process of finding a kinematic relationship
between joint displacements and tool pose, it is necessary to establish a reference
coordinate system (world frame) and a tool coordinate system (tool frame). The
world frame should be fixed in a position so that measurements can be con-
veniently referenced to it. Typically, researchers locate the world frame on the
fixed link of the manipulator, although it can be located anywhere. The tool frame
should be conveniently fixed relative to the tool (last body in the chain). For both
of these frames, convenience must be defined relative to the user of the manipula-
tor. Requiring the tool frame to be located on a rotation axis should be avoided
because although the axis may be well defined mathematically, it is difficult to
specify or measure a pose relative to such an abstract and illusive feature.

After selecting the world and tool frames, joint coordinate frames are identi-
fied. Although not strictly necessary, it is convenient to use at least one frame for
each joint. By orienting one axis of each joint frame in the direction of the motion,
it is possible to express the joint’s motion with a single unconstrained variable.
This is due to the common assumption that the joints can be represented as lower
pair mechanisms with a single and unique axis of motion. Furthermore this joint
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variable is considered to be known or measurable through a feedback device. As
a matter of convenience, compatibility with the literature, and without loss of
generality, the z axis of each joint frame is assumed to be parallel with the joint
axis of motion. Moreover, the origin of a revolute joint frame lies on the joint
axis of motion.

The number of independent kinematic parameters is equal to the number of
constraint equations required to completely specify the pose of the tool and joint
frames. It is helpful to use simple examples when discussing constraint equations.
Consider Figures 2.6 and 2.7, which depict single joint manipulators. Figure 2.6
shows a prismatic manipulator and Figure 2.7 shows a revolute. Both figures
show arbitrarily located world and tool frames.

For both manipulator types, the orientation of the joint frame’s z axis is
assumed to be constant relative to the world frame. To ensure constant axis
orientation requires two orientation constraint equations. Two additional con-
straints are required for the revolute joint manipulator to ensure the joint frame’s
origin lies on the rotation axis. This is not required for the prismatic joint.

Note that the origins of the joint frames are not completely constrained. Also
note that the x axis of the joint frames need not be explicitly constrained. Because
these constraints are missing one might expect that position feedback devices
must somehow be adjusted to reflect the orientation and origin of the joint axis,
but this is not always the case [17].

To proceed counting constraint equations, consider the tool frame. Recall
the tool and world frames were arbitarily chosen to enable convenient measure-
ment, hence the model must honor the chosen tool frame orientation. Because
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Figure 2.6. Prismatic manipulator.



2.7 PROPERTIES OF A GOOD MODEL 43

2

y‘—(}_ G

Tool

e
>

Y1 it

=
)

World

Figure 2.7. Revolute manipulator.

the orientation of the tool frame relative to the joint frame is a constant and
arbitrary, three orientation constraints must be specified. In addition to the tool’s
orientation, its origin is completely constrained relative to the joint axis. Hence
a total of six constraints are required to specify the tool frame relative to the joint
frame.

In summary, the prismatic manipulator requires 8 constraint equations and
the revolute requires 10 equations. Because the constraint equations can be
represented with a single constant, there are respectively 8 and 10 independent
kinematic parameters specifying the prismatic and revolute manipulators shown
in Figures 2.6 and 2.7.

This analysis of constraints may be extended to serial link manipulators with
multiple joints. The above argument leads to the conclusion that the number of
constraints on a revolute joint indicates that four kinematic parameters are
necessary and the two parameters are necessary for a prismatic joint. Also, six
additional parameters are necessary to ensure independent location of the tool
frame. This leads to the following equation for determining the number of
parameters necessary for completeness.

N=4R+2P+6 (2.63)

where N is the required number of independent parameters, R is the number of
revolute joints, and P is the number of prismatic joints. For a PUMA 560
manipulator, this equation indicates that a complete kinematic model should
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contain 30 independent parameters. A standard DH model of the PUMA 560
contains 18 parameters. If we add six joint offsets so that an arbitrary zero
position is possible, the total comes to 24. The final six parameters are added to
allow arbitrary location of the tool frame. Equation 2.63 indicates that a complete
model for a spherical manipulator such as the Stanford arm should have 28
parameters, which is verified by further analysis. It is important to note that
Equation 2.63 refers to independent parameters. Additional parameters in a
model will not gain completeness if any of the parameters are dependent. This
may be determined by ensuring the the rank of the Jacobian as developed in
Section 2.5 is equal to the number of model parameters.

A second property that a model should possess is proportionality. Proportio-
nality implies that small changes in the robot structure should be reflected by
small changes in the parameters in the kinematic model. As shown in Section
2.6, the DH model can yield widely varying model parameters for very small
deviations in axis alignment for revolute joints with nearly parallel axes. Models
that do not exhibit proportionality tend to produce numerical difficulties during
the identification step. Many investigators have found that it is virtually impos-
sible to determine the DH parameters for nearly parallel axes. This has led to a
number of suggested modifications to the DH procedure which will be described
in the following section.

Model equivalence refers to the ability to transform parameters of one model
into parameters of another model. Any two complete models are necessarily
equivalent. It follows that equivalence prevents one complete model from pro-
ducing greater accuracy than another.

2.8 MODEL REVIEW

There are a number of ways to develop models that exhibit completeness,
proportionality, and equivalence. In this section, we will review models proposed
by a number of researchers. For convenience, we will collect these approaches
into several categories: modifications of the DH method, the zero reference
method, the single joint method, models for closed loop manipulators, and
models for manipulators having joints with higher pairs.

2.81 Modifications of the Denavit-Hartenberg Method

A number of investigators have determined the limitations of the DH model and
have taken steps to modify the modeling procedure. Most of the work has
centered around techniques of modifying the model for consecutive revolute
joints with parallel axes. In this section, we will present a modification to the DH
model that has the properties of completeness, proportionality, and equivalence.
This will be followed by a review of the current literature and a brief description
of the various models that have been proposed.
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2.8.1.1 A Modified Denavit-Hartenberg Model The first modifica-
tion to the DH approach will be to gain proportionality for revolute joints. This
may be accomplished by modifying the standard DH transformation. The follow-
ing development follows the one proposed by Hayati and Mirmirani [12].-
Assume that we have two consecutive revolute joints with axes n and n + 1 as
shown in Figure 2.8. Rather than using the common normal, we will define a
plane that is perpendicular to the joint n axis and that passes through the origin
of the n — 1 coordinate system, O,_, . The intersection of this plane with the joint
n + 1 axis defines the origin of the n coordinate system, point 0,. The line drawn
between point 0,_; and point O, defines the direction of the x axis for the n
coordinate system. The z axis lies along the joint n + 1 axis. Given these defini-
tions, the transformation between the n and n — 1 coordinate axes is written as

T, = R(z,6,)T(r,,0,0)R(x, %, )R(y, ,) (2.64)

where r, is the length of the line between 0,_; and 0, and «, and B, are rotations
about the indicated axes to align the z axis with the joint axis. The variable 6,
is the joint variable. When the series of transformations in Equation 2.64 is
expanded, the following transformation results:

—50,5B,50, + cB,c6, —ca,s0, so,cP,s0, + sB.cl, r.ch,
so,sp,¢0, + cB,sb, co,c,  —so,cf,ch, + sB,s6, r,sh,
T, = (2.65)
—cao,sp, sa, co,cf, 0

0 0 0 1

' Joint n+1
Axis

Joint n
| Axis

Figure 2.8. Nearly parallel revolute axes.
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where sa represents sin «, ca represents cos a, and so on. This transformation may
be used for consecutive revolute joints with nearly parallel axes.

The elimination of reliance on the common normal means that small devia-
tions in axis orientation will produce proportional changes in the parameters for
parallel axes. To continue the discussion of modifications to the DH approach,
it is useful to consider an example case. We will develop a model for the 3 DOF
manipulator shown in Figure 2.9. As discussed earlier, it is important that the
base frame be located in an arbitrary position. To accomplish this, we will define
frame xg, Vg, 25 to be the base frame located in the position shown in Figure 2.9.
Note that this frame is not required in the standard DH procedure and has an
arbitrary location. Frame 0 is located on joint axis 1 as defined by the DH rules.
Since the z axes of the base frame and frame O are nearly aligned, we will use the
transformation for parallel axes given in Equation 2.65 to relate the two frames.
Again, it is not necessary to align the z axes of the B and 0 coordinate systems.

*B

Figure 2.9. Modified DH model for 3 DOF manipulator.
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If these axes are not aligned, the standard DH transformation may be used.
Frames 1 and 2 are located on the appropriate joint axes. The transformations
between frames are standard DH except for the transformation between 2 and
1, which are nearly parallel axes. The final frame to be located is the tool frame,
e. As described in Section 2.7, the position and orientation of this frame must
also be arbitrary. To accomplish this, the location of frame e with respect to frame
2 will be given by the following series of transformations:

Ty = R(z,6;)R(y, B)R(x, ) T(x,dx)T(y, dy)T(z, dz) (2.66)
where 0, is the joint displacement for axis 3, « and B are rotations about the x
and y axes, and dx, dy, and dz are displacements along the indicated coordinate

axes. Multiplication of the transformations indicated in Equation 2.66 results in
the following transformation between frame e and frame 2.

ey —casy + sasPcly  sasby + casPcl; ¢y,

cPso cacls + sasBso —sacl; + casPsh, c
T4 _ ﬂ 3 3 B 3 3 ﬁ 3 24 (267)
—spB sacp cacf C34
0 0 0 1

where

€14 = dx(cBcl;) + dy(—casby + sasPcby) + dz(sasb; + cosfcf;) (2.68)
€24 = dx(cfs0s) + dy(cacl; + sasPsby) + dz(—sucl; + casfsf;) (2.69)
€34 = —dxsf + dysacB + dzcach (2.70)

As shown in the equations, this transformation has five constants and one joint
variable. To summarize, there are five coordinate systems used in the model.
These are the base frame (B), frames attached to each link (0 through 2), and the
end effector frame e. Transformations between each link have been chosen to
ensure that proportionality is maintained and the end effector transformation
has been specified so that there is no reliance on robot geometry for the location
of the end effector system. The transformation between the B and the 0 frames
contains four constant parameters. Each of the next two transformations (0
through 2) contains three constant parameters and one joint variable. The final
transformation (2 to e) consists of five parameters and one joint variable. This
leaves us with a total of 15 constant parameters and 3 joint variables. If we apply
Equation 2.63, we find that a total of 18 parameters is necessary to ensure
completeness. A look back at the model will indicate that, as currently defined,
the zero position of the manipulator is dependent on the robot geometry. If the
orientation of the axes changes, the alignment of the common normals and,
hence, the zero position will shift. This may be addressed by adding a constant
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joint offset to each joint variable. Each joint variable in the various transforma-
tions would be replaced with the following expression

0, = 6 + AG, @.71)

where 6; is the joint variable reported by the robot controller and A, is the
constant offset. Note that this has the effect of including a level 1 calibration in
the kinematic model and brings the number of constant parameters in the model
up 18 as indicated by Equation 2.63. The model is now complete and the remain-
ing steps of the calibration process (measurement, identification, and correction)
may be addressed.

2.8.1.2 Literature Review A number of investigators have proposed
modifications to the DH model that address proportionality or completeness.
Although these various approaches differ in detail, the effects are similar to the
procedure described above. The definition of the “most desirable” approach is
usually a strong function of an individual’s background or personal preference.
The following review of the literature is included for those who may be interested
in alternate model formulations.

One of the first authors to address the robot calibration problem was Wu
[34,35]. In these papers, a calibration model was developed but no effort was
made to use the model in an identification procedure and the limitations of the
model did not become apparent. In later years, other authors such as Ibarra and
Perriera [18], Zhen [36], and Payannet, Aldon, and Liegeois [23] published
calibration models that followed the standard DH formalism. In 1983, works by
Mooring [20] and Hayati [13] pointed out the proportionality problems in-
herent in the standard DH approach. At that time, Hayati [13] proposed a
modification to the DH formalism similar to the one in the example given above
for parallel revolute axes. A number of other authors such as Judd and Knasinski
[19], Puskorius and Feldkamp [24], Sugimoto and Okada [28], and Hollerbach
and Bennett [15,16] subsequently reported the use of similar modified DH
models. While the modified DH model proposed by Hayati for revolute joints
contained the proper number of parameters for completeness (4), other authors
proposed joint models that contained five or even six parameters to describe a
revolute axis. Since the inclusion of additional parameters leads to singularities
in the Jacobian, some of these additional parameters must be specified or elimi-
nated through some numerical procedure before the identification process can
be completed. Examples of models containing such additional parameters are
Hsu and Everett [17], Veitschegger and Wu [31, 32], Chen and Chao [2], Stone,
Sanderson, and Neuman [25-27], Driels and Pathre [6, 7], and Whitney, Lo-
zinski, and Rourke [33]. Vaishnav and Magrab [30] in 1987 proposed a nine
parameter model that allowed for nonorthogonal coordinate systems to be
represented. An excellent and more in-depth survey of kinematic models for
robot calibration has been published by Hollerbach [14].
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When considering the various kinematic models that have been proposed for
calibration, one should carefully consider the number of parameters available in
each model. If identification of robot kinematics is the only goal of the calibration
procedure, the formula for completeness, Equation 2.63, will indicate the proper
number of parameters for the model. Inclusion of fewer parameters may lead to
an incomplete identification and the use of more parameters can lead to numer-
ical difficulties in the identification phase. Of course, the inclusion of nonkine-
matic or nongeometric parameters in the model can lead to more parameters
than indicated by Equation 2.63. One should be careful, however, to be sure that
additional parameters deal solely with the nongeometric properties and are
independent of the kinematic parameters.

2.8.2 Zero-Reference Model

An approach to kinematic modeling that does not rely on the Hartenberg—
Denavit formalism has been proposed for use in manipulator calibration by
Mooring [20]. This procedure is based on Rodrigues equation and consists of
establishing a reference coordinate system that is fixed in the work space and an
end effector coordinate system that is attached to the end effector of the robot.
The orientation of the individual joint axes is determined by locating a unit vector
on each axis that defines the direction of each axis. The location of each of the
axes is determined by defining a point through which the axis passes. The unit
vectors and points are specified in the reference coordinate system.

To further illustrate this approach, we will begin by considering a single
revolute joint. Figure 2.10 shows a link that is constrained to rotate about the
revolute joint. The joint axis is indicated with a dashed line and the reference
coordinate system is also shown in the figure. The unit vector u is defined to lie
along the joint axis so that positive rotation is defined by the direction of u and
the right hand rule. The point p is defined to be any point that lies along the joint
axis. It may be shown that the location of any point r on the link after a rotation
will be given by

- R I-Rp|,
r=Dr—|:0 0 0 | :lr (2.72)

where I is the identity matrix, r' is the location of r before the rotation, and R is
given by

w2vd +cd  uuvd —u,sd  uuvp + u,se
R=|uuvp+usp ulveg+cd uu,vp—ucsé 2.73)
U, 09 — u,sd  uuvé + u.s¢  ulvg + cd

where u,, u,, and u, are the components of u and s¢ implies sin ¢, c¢ implies cos 4,
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Reference
Coordinate
X Y System

Figure 2.10. Zero reference position method.

and vg implies vers ¢ or 1 — cos ¢. In other words, to specify a rotation, one must
specify the unit vector u that defines the axis orientation, the point p that locates
the axis in space, and the angle of rotation, ¢. A more detailed description and
derivation of Equations 2.72 and 2.73 are given by Suh and Radcliffe [29]. It is
important to note that of the three components of u, only two are independent
since the vector is of unit length. Also, since the point p may be any point on the
axis of rotation, it also has only two independent components. In other words,
if two components of p are specified, the third may be determined since it must
satisfy the equation of the line that defines the axis of motion. There are, therefore,
five independent quantities necessary to define the displacement matrix D for a
revolute joint.

To model a prismatic joint, the unit vector u is still used to define the axis
orientation but the location of the axis is not required. Since a prismatic joint
generates pure translation, only the direction of motion is significant. The dis-
placement would, therefore, be given by

1 0 0 su,
0 1 0 su,
r=Dr = r 2.74)
0 0 1 su,
0 0 0 1

where s is the joint displacement. Since wu is still a unit vector, it has only two
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independent values. A total of three independent values, therefore, are required
to define the displacement matrix D for a prismatic axis.

The displacement matrices described above may be used to model a manipula-
tor in the following manner. First, a reference coordinate frame is established.
The location and orientation of this frame is arbitrary. Next, a zero position for
the manipulator is defined. This is simply the position that we wish the robot to
be in when all the joint displacements are zero. It is interesting to note that the
Hartenberg-Denavit procedure does not allow freedom in the selection of the
zero position. The values of u and p are then defined for every joint while the
robot is in the zero position. Finally, a coordinate system is located at any
convenient position on the end effector and the transformation between the end

Joint Axis |
4 and 6

| l Joint Axis 1

?4:Ps¥ Pg

Joint ~
Axis 3
~Joint Axis 2

~

Workspace
Coordinate
System

Figure 2.11. PUMA 560—zero reference position method.
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TABLE 2.1. PUMA 560—Zero Reference Position Parameters

Joint u, u, u, Ds Py P,
1 0 1 0 —381.00 373.38 853.44
2 0 0 -1 —381.00 373.38 704.35
3 0 0 -1 50.85 373.38 704.35
4 0 1 0 30.52 806.38 704.35
5 0 0 -1 30.52 806.38 704.35
6 0 1 0 30.52 806.38 704.35

effector system is defined. This is also done while the robot is in the zero position.
Since the location of the end effector coordinate system is arbitrary, there are six
independent quantities in this transformation.

We have now defined all of the elements of each joint displacement matrix
except the actual joint motions. For any combination of joint displacements, the
transformation from the end effector system to the reference frame will be given
by

'T = D,D,D,D,D;D,T, (2.75)

where D; represents the displacement matrix for the ith joint and T, represents
the transformation between the end effector frame and the reference frame in the
Zero position.

As an example of this method, we will consider the PUMA 560 manipulator
illustrated in Figure 2.11. Note that the reference coordinate system has been
located away from the base of the manipulator in a position that is convenient
for defining objects in the workspace. The choice of position and orientation for
this frame is arbitrary. The robot is shown in the zero position and the values
for the unit vectors w; and points p; are listed in Table 2.1. Note that both the
unit vectors u; and the points p; are defined with respect to the reference co-
ordinate frame. The location of p, must be determined with some measuring
device so that it is known precisely in the reference coordinate system. The
location of the other points p; may be determined from knowledge of the robot
geometry. Given the information in Table 2.1 and a set of joint displacements,
the displacement matrices D; through Dg may be defined for the manipulator.
To complete the pose description, the transformation from the end effector frame
to the reference frame must be defined for the manipulator when it is in the zero
position. As shown in Figure 2.11, this transformation may be written by inspec-
tion and is given by

0 —1 0 3052
0 0 1 86258

T, = (2.76)
—1 0 0 70435

0 0 0 1
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This completes the description of the manipulator model if the manipulator
has no structural error. If we wish to use this model for calibration, however,
the appropriate model parameters must be identified for each joint axis. In the
case of a revolute joint, the components of the unit vector u and the point p must
be defined. As stated earlier, there are four independent values associated with
these vectors. To ensure the property of proportionality, it is important to choose
the proper components of the vectors to be the “unknown” coefficients in the
model. This is easily done since most commercially available robot manipulators
have consecutive joint axes that are parallel or perpendicular. When in the zero
position, these axes nearly line up with coordinate axes. As shown in Figure 2.11,
the axes of a perfect PUMA manipulator are parallel with the Y or Z axes of the
reference frame in the zero position. This fact may be used to select the compo-
nents of the unit vector u to be used in the calibration model. To illustrate this,
we will consider a joint axis that is nearly parallel to the Y coordinate axis as
shown in Figure 2.12. As the joint axis orientation is varied about the nominal
position, the u, and u, components of u vary in proportion to the degree of
misalignment. The u, component, however, shows very little change until the
misalignment is significant. If we choose u, and u, as two of our joint parameters,
the component u, will be given by

u, = /1 —u—u? 277

In a similar manner, we may choose the components of the point p to use in the
model. If the axis is nearly parallel to the Y axis as shown in Figure 2.12,
variations in location of the intersection of the actual joint axis with a plane
perpendicular to the Y axis will be proportional to the variations in axis location.

Nominal Axis

Figure 2.12. Joint axis nearly parallel to Y axis.
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We may choose to fix the p, component to some convenient value and let p, and
p. vary to describe the axis location. Note that setting p, equal to a constant
defines a plane perpendicular to the Y axis.

To illustrate the use of the zero reference approach for calibration, we will
return to the example of the PUMA 560. Table 2.2 shows the definition of the u
and p vectors for calibration. As shown in the table, there are 12 parameters
associated with the u vectors and 12 parameters associated with the points p,
which give a total of 24 parameters. As stated earlier, however, a complete PUMA
model should have 30 parameters. The additional six parameters in this model
are expressed in the joint offsets. There are two ways of incorporating these
parameters. The first is to simply include an offset angle §¢; to each joint
displacement and then treat these six offsets as parameters in the model. In this
case the rotation partition of the displacement matrix would be given by

ulvg +cd'  uuvd —usd uu,vd + u,sé
R =| uu,v¢’ + u,s¢’ wvd' + cf' u,u, v — u, s’ (2.78)

uu,vp —usd wuvd +usg  ulvg +cd

where ¢’ is given by ¢ + 4. With this approach, the relationship between the
end effector and the reference coordinate frame when the robot is in the “zero
position” will be very close to the same value for all of the calibrated robots. The
joint offsets will allow for small rotations of the joints away from the zero position
to compensate for the variations in the robot structure.

A second approach to making the model complete is to allow for variations
in the T, matrix. Recalling that T, is the transformation between the end effector
frame and the reference frame when the robot is in the zero position, there will
be a total of six independent parameters (three rotation and three translation)
necessary to define this matrix. If these parameters are treated as model param-
eters rather than constants, we will again have the required 30 parameters. This
approach will always ensure that the joint displacements are zero in the “zero
position” but the end effector may be in different positions for different manipula-
tors after calibration. For most tasks, this approach is less desirable than the use
of joint offsets.

In summary, the zero reference model is an alternative approach to modeling
that does not rely on the Hartenberg—Denavit formalism. The approach yields
a model] that is complete, proportional, nonsingular for most robot configura-
tions, and may be converted to an equivalent Hartenberg—Denavit model after
calibration if necessary. For more information on this modeling approach, refer
to the work by Mooring and Tang [20, 21].

2.8.3 Single Joint Method

Several investigators [20, 25] have proposed manipulator calibration procedures
that approach the problem by considering the robot one joint at a time. Stone
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[25-27] has used this approach and a unique data acquisition system to calibrate
a series of PUMA 560 robots. With this method, joints 1 through 5 are fixed
throughout a data collection session while joint 6 is studied. The parameters
describing the motion for joint 6 are then determined and stored before moving
to another joint. Since the mechanism is treated one joint at a time, the modeling
process is quite different than the others described in this chapter. Because the
model in this case is so closely related to the identification procedure, the details
of the modeling procedure are given in Chapter 4 along with the description of
the identification procedure.

2.8.4 Manipulators with Closed Loops

In the previous sections of this chapter, we considered only those manipulators
that are made of open kinematic chains. In other words, one may progress from
the base of the manipulator to the end effector by sequentially moving from one
link to a joint and then to another link without retracing any path. In this section,
we wish to consider the modeling of a manipulator with one closed kinematic
loop. An example of such a robot is shown in Figure 2.13. The existence of a
closed-loop kinematic chain in the mechanism adds several new aspects to the
modeling process. The first is the existence of a number of dependent parameters
in the model. The relationship between these parameters is determined by a loop

Figure 2.13. Manipulator with a closed kinematic chain. Photograph courtesy of
GMFanuc Robotics, Auburn Hills, M1
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constraint equation, which exists in addition to the equation relating the end
effector pose to the base frame. Another aspect of closed-loop robots is the
existence of manipulator joints that do not have a prime mover or driving device.
In a typical serial link manipulator, each joint has a motor or some actuator
along with an associated feedback device. Closed loop robots are usually de-
signed so that some of the joints have neither an actuator nor a transducer.
Because these “passive” joints do not require a unique axis of motion, they can
be comprised of higher kinematic pairs such as spherical joints. These aspects
of closed loop robots combine to complicate the modeling process. The following
discussion gives several examples of the generation of models for manipulators
with closed loops.

According to Everett and Lin [9], two types of kinematic equations are
required for a manipulator with a closed loop: (1) the open-loop transformation
T,, which relates the end effector location relative to the world coordinate frame,
and (2) the closed-loop transformation T,, which contains the closed-loop con-
straint equations.

A simple example is shown in Figure 2.14. The driving motors are located at
joints 1 and 5, and the dependent variables are located at joints 2, 3, and 4. The
T, and T, in this case may be expressed as

T, = A, 1AA,, 2.79)
T. = A15A53A5,A45A5, =1 (2.80)

Y

Figure 2.14. A simple closed-loop robot with a 2D constraint.
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Here A, is the homogeneous transformation from the world frame to joint
1, and A, is the homogeneous transformation from joint 1 to joint 2, etc. The
matrix I is the identity matrix.

For each set of joint encoder readings, Equation 2.80 is used to calculate the
dependent variables. These dependent variables are then used to calculate the T,
matrix. For example, to compute T, in Equation 2.79, the value of 8, has to be
calculated. Moreover, it is interesting to see that the transformation matrix A, ,
is used to calculate both T, and T,.

From Equations 2.79 and 2.80, one can see the major difference between an
open-loop robot and a closed-loop robot kinematic transformation. In a closed-
loop transformation, some of the joint variables are dependent. As these de-
pendent variables can be calculated by using the constraint equations, one can
have fewer independent parameters in a closed-loop mechanism than in one with
an open-loop geometry.

As some of the joints in a closed-loop robot do not have a driving device or
a measured angle, a complete kinematic transformation for a closed-loop robot
is more difficult to obtain than that of an open-loop robot. By using the rules
stated in this section and the concept of closed-loop constraint equations, how-
ever, one may pick the independent parameters for a closed-loop robot. The
following four examples are used to demonstrate model development.

2.8.4.1 A 4R Mechanism Figure 2.15 shows the number of parameters
necessary in a 4R mechanism. The double arrowhead in the figure shows the
direction of transformation from one joint to the next joint. The characters 2t
and 2r represent two translational and two orientational parameters, respec-

Figure 2.15. A 4R mechanism.
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tively. Since this is a mechanism with one degree of freedom, joint 1 is assumed
to have the prime mover and associated joint transducer. This is indicated in the
figure by placing a circle around the joint. All joints are revolute joints whose
axes are nominally in the Z, direction.

To transform from the world coodinate to joint 1 and from joint 1 to joint 2
in Figure 2.15, four independent parameters for each transformation are needed.
If the encoder rotates about the “Z,” axis, the following parameters can be used
to transform from joint 1 to joint 2:

R(x, 0, )R(y, 0,,)R(z,6,,)T(x, 1) (2.81)

Similarly, to transform from joint 2 to joint 3, one may also use the following
four parameters to complete the transformation:

R(z,0,.)T(x, L)R(X, 0,)R(,6,,) (2.82)

Joint 2, however, does not have a prime mover and the value of 6,, can be
obtained from Equation 2.80. Only three parameters, therefore, are needed to
define the position and orientation of the joint 3 axis with respect to joint 2.

Similary, to define the relationship between joint 4 and joint 3, only three
parameters are required for the transformation

R(z, 05.)T(x, [3)R(x, 05,)R(y, 03,) (2.83)

since the rotation 65, is given by Equation 2.80.

The final transformation is from joint 4 to joint 1. This is equivalent to
transforming from the last joint to the end effector in an open-loop robot
transformation. Typically six parameters are needed for this transformation. As
the joint 4 displacement can be obtained from the constraint equations, this
removes one independent parameter. To transform from joint 4 to joint I,
therefore, five parameters are needed. From the analysis shown above, to com-
pletely define the motion of a four-bar mechanism starting from the world
coordinate system, 19 parameters are needed.

2.8.4.2 A5R Mechanism Another example is shown in Figure 2.16. This
isa 5R closed-loop mechanism with two driving devices located on joints 1 and
5. Similarly, four parameters are needed to transform from the world coordinate
to joint 1 and from joint 1 to joint 2. To fix the orientational axes of joints 3, 4,
and 5, three parameters are also needed on each transformation. To transform
from joint 5 to joint 1, according to Equation 2.1, six parameters are needed.
This is because joint 5 is also a driving device. Therefore, to define a 5R mecha-
nism starting from the world coordinate system, 23 parameters are needed.
Based on the discussions above, the number of parameters to transform from
one revolute joint to its next revolute joint is four. However, when the joint used
for the transformation is not a driving device, the number of parameters reduces
to three. The SR mechanism needs four more parameters than the 4R mechanism.
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Figure 2.16. A 5R mechanism.

2.8.4.3 An RRRPR Mechanism To find the number of parameters re-
quired to describe a prismatic joint in a closed-loop mechanism, an example of
an RRRPR mechanism is given. This mechanism is illustrated in Figure 2.17.
Again, the driving devices are assumed to be on joints 1 and 5. To transform
from the world coordinate system to joint 3 in Figure 2.17, the same parameters
as those shown in the 5R mechanism can be used. To transform from joint 3 to

Figure 2.17. A closed-loop robot with an RRRPR mechanism.
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joint 4, one can have the following two parameters:
R(Z’ 03Z)R(y’ 03)!) (284)

However, since the value of 85, can be calculated by using the constraint
equations, the number of parameters reduces to one. To transform from joint 4
to joint 5, one may have the following four parameters:

T(z, L)T(y, L,4)R(2, 6.4)R(y, 6,4) (2.85)

However, as the value of T(z,1,,) can be obtained by using the constraint
equations, the number of parameters reduces to three. Similarly, as joint 5 is
measurable, six parameters are needed to transform from joint 5 to joint 1. To
define an RRRPR mechanism starting from the world coordinate system, there-
fore, 21 parameters are needed.

2.8.4.4 An RRSSR Mechanism As spherical joints are frequently used
in 3D mechanisms, we will now consider a mechanism that includes this type of
joint. Unlike a revolute joint, there is no single axis of rotation for a spherical
joint. A spherical joint has to rotate at a unique point that is the center of the
sphere. Based on this idea, three translation parameters are needed to define a
spherical joint.

An RRSSR mechanism is shown in Figure 2.18. The driving devices are
located on joints 1 and 5. To transform from the world coordinate system to
joint 2, the same parameters as the 5R mechanism may be used.

As joints 3 and 4 are spherical joints, according to Denavit and Hartenberg
[5], each spherical joint is equivalent to a combination of three revolute joints
whose axes are mutually perpendicular at a common point of intersection. Figure
2.19 shows the sequence transformations between these two joints. Since the last

Figure 2.18. A closed-loop robot with an RRSSR mechanism.



62 KINEMATIC MODELING FOR ROBOT CALIBRATION

X330 %41
X32 2330 241
033, 04y
Y331 Ya1
)I'_- F 42
Yaz 2,

Figure 2.19. Coordinate transformation between two spherical joints.

coordinate system of joint 3 (X553, Y33, Z53) is the same as the first coordinate
system of joint 4 (X,,, Y,,,Z,,), there are only five dependent variables for each
pair of spherical joints. In a closed-loop constraint, the maximum number of
dependent variables is six. Therefore, the RRSSR mechanism, similar to the SR
mechanism, has two degrees of freedom.

Figure 2.20 shows the transformation from joint 2 to the spherical joint 3. The
first coordinate system of joint 3 (X3, Y5,, Z3,) can be flexibly adjusted such that
each axis can be parallel with that of joint 2. Therefore, the following three

Y31
25,
i 2 lzZ
Y2
922 2
Xy,

lx2

Figure 2.20. Transformation from a revolute joint to a spherical joint.
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X33

Figure 2.21. Transformation between two spherical joints.

parameters can be used to define the transformation:
T(x') le)R(Z’ 022)T(Z9 lZz) (2'86)

Again, since joint 2 is not a driving device, the second parameter can be
determined elsewhere. To transform from joint 3 to joint 4, the third coordinate
system of joint 3 (X33, Y33, Z33) can be adjusted toward the center of joint 4. As
shown in Figure 2.21, only one parameter is needed to make the transformation:

T(z,133,) (2.87)

where I, is the distance between these two joints, and 33 is the third coordinate
system of joint 3.

Figure 2.22 shows the transformation from joint 4 to joint 5. The third
coordinate system of joint 4 can be flexibly adjusted such that each axis is parallel

i

%5
Ys

X5

Ya3

|
B j\

lx43

Figure 2.22. Transformation from a spherical joint to a revolute joint.



64  KINEMATIC MODELING FOR ROBOT CALIBRATION
with joint S. Therefore, only one parameter is needed:
T(x,1435) (2.88)

To transform from joint 5 to joint 1, six parameters are needed. Therefore, an
RRSSR mechanism requires 18 parameters to be complete.

Clearly, the determination of the number of parameters required for com-
pleteness is more difficult for a closed-loop robot than a standard open-chain
mechanism. The examples given above have been included to illustrate an
approach to determining the proper number of kinematic model parameters for
a manipulator with closed-loop chains.

2.8.5 Joints Comprised of Higher Pairs

Although most manipulators are designed with the intention that all of the joints
will be either revolute or prismatic, it is physically impossible to construct a joint
that will perfectly generate this type of motion. For example, most “prismatic”
joints consist of a carriage constrained to move along a bar. Since the bar will
be subject to some slight curvature or irregularities along its surface, the gen-
erated motion will not be purely prismatic. This phenomenon has been rec-
ognized in the area of calibration of coordinate measuring machines. In his
report on software error compensation, Zhang et al. [11] reported the use of a
rigid body model with six degrees of freedom per axis for a coordinate measuring
machine to allow for imperfections in the machine axis. Figure 2.23 is an illustra-
tion of a joint that is intended to be prismatic but is subject to some error. As
illustrated in the figure, the curvature in the bar causes the carriage to deviate
from the desired path. This deviation induces an error in orientation as well as

Z' Actual
joint

location
Actual %
" joint
path ‘ /
d
z /Nominal
/ prismatic
Y axis
/ x

Figure 2.23. Higher order prismatic joint.
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position. Since a prismatic joint will allow for translation only along a straight
line and does not allow for a change in orientation during a displacement, these
errors cannot be accounted for with a simple prismatic joint model. The axis of
the nominal prismatic joint may be varied so as to minimize the effect of these
errors over a given range, but the errors may not be eliminated. To account for
these types of errors, the joint model may be modified so as to represent higher
pair motion. Since most robots have joints that approximate lower pairs, the
modeling process can be simplified. For example, we will consider the joint
illustrated in Figure 2.23. The predominant motion of the carriage is along the
bar. This implies that we may model the total motion as the combination of a
prismatic displacement and a small additional motion to correct for the error.
This may be expressed as

p = 6SST p (2.89)

where S represents the motion of a prismatic joint and 0S may be expressed

0 -5 & d
5, 0 -5 d,
5S = (2.90)
-5, 6. 0 d

where d,, d,, and d, represent small displacements in the indicated directions and
8,, 6,, and &, represent small rotations about the coordinate axes. We shall refer
to 4S as the correction matrix.

Given this formulation, the process of calibration becomes one of determining
the correct values of the correction matrix for each displacement of the joint.
There are several important points to note about this process. First, the values
in the correction matrix will depend on the orientation of the prismatic axis.
Since the correction matrix will account for errors about the prismatic axis, the
orientation of the prismatic axis may be specified to be some nominal value and
omitted from the calibration procedure. If both the correction matrix and the
prismatic axis are included in the calibration, their dependence on each other
may result in numerical difficulties.

A second point to note is that the values in the correction matrix will be
different for every possible displacement of the carriage. Since the shape of the
bar is constant, however, a given displacement will repeatably result in a given
correction matrix. In other words, the correction matrix is a time-indpendent
function of the joint displacement. This implies that while the joint is a higher
pair, it still has only one degree of freedom. To simplify the calibration process,
it is desirable to choose a functional form for the terms in the correction matrix.
Since the joint is intended to be prismatic, it is usually acceptable to assume that
any term, J;, in the correction matrix will be a smooth, continuous, slowly varying
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function of the joint displacement. The number of parameters to be identified,
therefore, depends on the particular function chosen for each element of the
correction matrix. For example if each term is modeled with a quadratic function
such as

6, =Ks*+ K,s + K, (2.91)

then each correction matrix will contain 18 parameters to be determined. The
particular form of the function will be highly dependent on the expected level of
deviation from true prismatic or revolute motion. It should be noted that if
irregularities exist in the axis, the functions in the correction matrix may not be
continuous. This may result when two bars forming the axis are not joined evenly
and a “jump” results at the interface.

Since the number of parameters is dependent on the function chosen for the
terms in the correction matrix, the concepts of completeness and equivalence do
not apply for this type of model. For example, one manipulator may require that
all terms in the correction matrix be approximated with harmonic functions
whereas another may require only a few terms consistent with deflection in
a given direction. Although both may be adequate for their specific situation,
they would not have the same number of parameters and they would not be
equivalent.

2.9 CONCLUSION

In this chapter, we have presented a number of issues that relate to the develop-
ment of a suitable kinematic model for manipulator calibration. The concepts
of completeness, proportionality, and equivalence have been introduced and
demonstrated for several types of models and a number of robot geometries.
Although these concepts can assist in the creation of a highly functional kine-
matic model with no redundant or dependent parameters, there is no guarantee
that such a model is always the most appropriate for a given problem. Ultimately,
the choice of the most appropriate level of model complexity will be a function
of the robot construction, desired precision, and intended use. Typically, the goal
of any modeling effort is to construct the simplest possible model that accurately
reflects the phenomena of interest. For some robot tasks, the “best” model may
be a simple level 1 model that ignores possible variations in the kinematic
structure of the manipulator. If, for example, the manipulator is constructed to
high tolerances and little variation in geometry is expected, the added complexity
of alevel 2 model would be of little benefit. On the other hand, if the manipulator
under study has links that are subject to significant structural deflections, a
complete level 2 model may not provide sufficient accuracy to meet the applica-
tion requirements. In this case, a sophisticated level 3 model may be appropriate
in spite of the significant increase in complexity. It is our belief that the material
in this chapter will, then combined with experience and insight into the require-
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ments of a specific situation, address the modeling requirements of most manipu-
lators and intended applications.
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CHAPTER 3

MEASUREMENT TECHNIQUES FOR
MANIPULATOR CALIBRATION

As described in the previous chapter, the purpose of a kinematic model is to relate
the manipulator joint displacements to the pose of the end effector. This model
will contain a set of coefficients that may describe the geometry of a particular
robot or some nongeometric aspects of the robot motion. Calibration is simply
the process of determining the set of parameters in the model that best describes
the specific robot under study. Before the calibration can be completed, some set
of measurements must be made that determines the actual position or orientation
of some portion of the robot for a given set of joint displacements.

This chapter will describe the basics of measurement for manipulator calibra-
tion. The goal of the measurement process is to accurately determine either the
end effector pose or some subset of the pose for a set of robot joint displacements.
Typically, the measurement process consists of moving the end effector to some
location in the workspace and recording the joint displacements. Next, the
measurement system is used to accurately determine some portion of the pose.
As described in the previous chapter, the robot model may be expressed as

T= f[ A, 3.1)

where T is a homogeneous transformation representing the pose of the end
effector in the base coordinate system as predicted by the model and N is the
number of joints in the robot structure. The actual pose, as determined by the
measurement system, may be expressed as T,, and, in general, will not be exactly
equal to the pose predicted by the manipulator model. In addition, T,, may not
be completely known if the measurement system is not capable of determining
a complete pose. For each pose, the known elements of T,, may be compared to
the elements predicted by the model and expressed in T. This will generate from

70
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one to six independent equations relating the variations in the model parameters
to the difference between the actual and predicted components of the pose. The
solution of these equations for the optimal set of model coefficients is the topic
of Chapter 4.

As stated earlier, the goal of the measurement step is to accurately determine
either the complete end effector pose or some subset of the pose for a particular
set of robot joint angles. The result of the measurement process, therefore, will
be a data set that contains the joint displacements and some portion of the end
effector pose for a number of robot configurations. To describe the various
techniques available for acquiring the required data, this chapter is divided into
three sections. Section 3.1 is a review of the transducers that are most commonly
used for measuring joint displacement. Typically, the transducers that are built
into the robot are used to determine the joint displacements. Since these will be
the devices that are used during the robot operation, little benefit will be derived
by using more precise devices during calibration. It is important, however, to
understand the principles of operation and the limitations of these devices
because these factors have a direct bearing on both the modeling and identifica-
tion steps. Readers who are already familiar with the fundamentals of potentio-
meters, encoders, resolvers, and similar devices may wish to skip this section.
Section 3.2 is a review of the devices used for pose measurement. In some cases,
complete systems are described and in other cases, the principles of system
components are discussed. The purpose of this section is to acquaint the reader
with the basics of measurement technologies used in manipulator calibration.
For example, there are discussions on the fundamentals of laser interferometers,
coordinate measuring machines, theodolites, and a number of other devices.
Those who have experience with these devices may wish to skip this section as
well. In the final section, Section 3.3, measuring methodologies of robot calibra-
tion are presented. The goal here is to describe how various investigators have
used the measurement hardware described above to acquire the data sets that are
necessary for calibration. Measurement approaches are classed by the amount
of pose information given by a single measurement. The relationship between
measured quantities and end effector pose is given and references to those who
have reported using the approach are specified.

As will become clear in following discussions, there is no “best” measurement
system for robot calibration. A system must be chosen that provides the desired
level of accuracy while meeting constraints of cost, size, and ease of use. The
varying size and geometry of robots together with significant differences in their
working environments lead to a wide variety of measurement approaches. The
purpose of this chapter is to provide the basic information necessary to choose
a suitable measurement system for a given robot application.

3.1 JOINT DISPLACEMENT TRANSDUCERS

Although robots are commercially available in a wide variety of sizes and
geometries, the vast majority of designs rely on a fairly small set of joint displace-
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ment transducers. This section begins with a description of potentiometers. Al-
though inexpensive and reliable, these devices have serious shortcomings when
used as joint displacement transducers for robots. The most popular devices by
far are encoders and resolvers. These devices are described in the following
paragraphs. The section concludes with a brief discussion of some of the less
common joint displacement transducers. The purpose of this section is to give a
brief introduction to this technology. Interested readers are referred to texts such
as those by Doebelin [1] or Klafter, Chmielewski, and Negin [2] for more
information.

3.1.1 Potentiometers

The simplest device available for measuring displacement is the potentiometer
or “pot.” A pot consists of a resistive element and a wiper that contacts the
resistive element. Figure 3.1 is a schematic of a pot for measuring linear motion.
As shown in the figure, the resistive element is a coil of resistive wire wrapped
around a nonconducting base. For illustration, we will assume that the total
resistance of the wire wrapped around the base is R. The base is affixed to the
case of the pot, which is usually mounted to some portion of the robot frame. A
voltage, V, is applied across the resistive winding and the wiper contacts the
winding so that the voltage sensed by the wiper is proportional to the position
of the wiper contact point. For example, if the position of the wiper is given by
x as shown in Figure 3.1, the voltage sensed by the wiper V,,, will be

V. =

X
4 32
W= (32

where L is the length of the winding. If the wiper is attached to the moving portion
of the robot joint, then the wiper voltage, V,,, will vary in proportion to the joint

VW
\ .
Resistive Winding
/ (Resistance R)
/ T Base
[ | . -
I Measured
/754/\ Motion

Wiper

Figure 3.1. Schematic of a potentiometer.
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displacement. This device may be reconfigured to measure rotary motion by
attaching the wiper to a rotating shaft and forming the resistive element into an
arc that the wiper may continuously contact.

There are several factors that limit the use of potentiometers for measuring
joint displacement. The primary factor relates to the combination of range and
“resolution” of the device. To illustrate this point, we will consider a revolute
joint. If we assume that the joint rotates through 300, it is not unusual to expect
that the position of the joint be measured with an accuracy on the order of 0.001°,
This implies that we must be able to discriminate at least 300,000 different
voltage levels in the single rotation of the pot. If the pot is constructed with a
wire wrapped around a base as described above, the wiper will be sliding in a
direction that is perpendicular to the axis of the wire and, hence, will continually
be moving from one coil to the next. This will result in discrete changes in voltage
rather than a continuous variation. Typically, wirewound pots are not available
with the required resolution. Pots are available, however, with a thin resistive
film that replaces the wire winding. While these pots theoretically have an infinite
resolution, effects such as electrical noise between the wiper and the film as well
as nonlinearities in the resistance of the film significantly limit the variation in
voltage that can practically be determined. Simply put, a pot does not provide
the required precision when attached directly to the robot joint. A seemingly
obvious solution to this problem would be to place a gear train between the pot
and the joint so that the motion of the pot wiper is much larger than the motion
of the joint. In this case, the shaft of the pot must move through a number of
degrees for each degree of joint motion. This implies that the pot must be
designed to operate through multiple rotations. While pots are commercially
available with spiral windings that allow up to 20 rotations, they still do not
provide the effective resolution that is necessary for a robot joint. A similar
problem exists for linear pots. If a linear axis is to move over a distance of 3 feet,
a pot directly connected to the axis must be 3 feet long. Clearly, this would create
significant design problems. If the pot motion is decreased through a lever or
gearing system, then effective resolution again becomes a problem.

Other problems that are related to the use of potentiometers for measurement
of robot joint displacment involve the analog nature of the devices. Since the
displacement signal is an analog voltage, any variation in this level will be
perceived as joint motion. For example, if electrical noise in the environment is
propagated to the wires carrying the wiper voltage, the controller will sense an
erroneous displacement. Also, a similar problem exists if the reference voltage ¥,
is slightly varied. These and the problems described above have limited the
usefulness of pots as joint displacement transducers to robots with low levels of
precision that would not typically be candidates for calibration.

3.1.2 Encoders

An encoder is a device that may be used to measure linear or angular displace-
ment. The encoder has proven to be extremely popular because it produces a
digital signal that is easily interfaced to a computer. There are three distinct
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classes of encoders; tachometer, incremental, and absolute. Figure 3.2 is an illus-
tration of the tachometer class of encoder. This device consists of a clear glass
or plastic wheel with some number of opaque lines marked radially on the wheel.
On one side of the wheel is a light source that is directed so the light will shine
through the wheel. On the opposite side, a photo detector senses the light coming
through the wheel. As the shaft rotates, the lines on the wheel cause the light to
be alternately transmitted or blocked. The electronics associated with the photo
detector produce a square wave such that the signal is at one level when the light
is transmitted and at a different level when the light is blocked. The rotation of
the wheel may then be measured by simply counting the pulses. The device
illustrated in Figure 3.2 is termed a tachometer encoder because it is typically
used for determining the rotational speed of a shaft that rotates in only one
direction. This limited use is because there is no way to sense a change in direction
of rotation. One cannot infer the direction of rotation by simply observing the
output waveform of the encoder.

The incremental encoder addresses the direction problem by incorporating
two pairs of light sources and detectors as illustrated in Figure 3.3. The first
emitter—detector pair, referred to as the A pair, produces a square wave in the
same manner as the tachometer encoder. The second pair or the B pair is offset
so as to produce a square wave that is 90° out of phase with the wave produced
by the A pair. The waveforms in Figure 3.3 illustrate how the direction of motion
may be inferred from this information. If the A signal goes from low to high and
is then followed by a B transition from low to high, the rotation is in a specific
direction. If, however, the A signal goes from low to high and is followed by a B
transition form high to low, we know that the motion is in the opposite direction.
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Figure 3.3. An incremental encoder.

An electronic circuit may be easily designed to sense these changes and keep a
running count of the total number of pulses since the counting was initiated. The
counter is designed to count up when the wheel rotates in one direction and to
count down when the wheel rotates in the opposite direction.

The smallest amount of rotation that may be measured by an encoder is
determined by the number of lines that are on the wheel. For example, if a wheel
has a total of 360 lines and we choose to count the number of times that A signal
goes high, we will not be able to sense changes in rotation of less than 1°. If,
however, we choose to count each time the A line goes from low to high and
cach time the B line goes from low to high, we will get 720 counts per revolution.
This would yield a resolution of 0.5°. Similarly, we may choose to count high to
low as well as low to high transitions of both the A and B signals. This would
give us a total of 1440 counts per revolution or a resolution of 0.25°. In summary,
an encoder with n lines per revolution may be set up to provide n, 2n, 4n, counts
per revolution,

One major difficulty with the incremental encoder is the initialization of the
counter. When power is first applied to the device, the counter must be initialized
to some value. This impiles that some external means of determining the original
position of the encoder must be established. For example, the shaft may be
rotated to a hard stop, which represents 0° of rotation. The counter may then be
loaded with zero so that all subsequent motions will be referred to an accurate
base. In many applications, however, the determination of the initial count is
difficult and may lead to a significant error if not done to a level of accuracy that
is consistent with the resolution of the encoder.

The problem of initialization is avoided by the absolute encoder. As illustrated
in Figure 3.4, the absolute encoder has a number of tracks and one emitter—
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detector pair on each track. The clear and opaque regions in each track are
designed so that when all of the detectors are read, they produce a code that
indicates the angular orientation of the wheel. For example, the wheel illustrated
in Figure 3.4 has five tracks. If the wheel is in the position shown in the figure,
the output from the emitter—detector pairs will be 01101. If this is treated as a
binary number, it indicates that the wheel is in position 13. It is important to
note that the output is immediate and does not depend on a running count. Also,
the resolution of the device depends on the number of tracks that are on the
wheel. For example, if the wheel has five tracks, only the binary numbers from
00000 to 11111 may be represented. This represents a range of only 32 numbers.
If a resolution of 1000 steps per revolution were required, the encoder would
require at least 10 tracks. Another problem associated with this type of encoder
is that the output code begins to repeat itself after one revolution. If multiple
rotations of the input shaft are desired, an external counter similar to that of the
incremental encoder must be added.

While the devices described above measure rotary displacement, encoders of
all three classes are available to measure linear motion. As illustrated in Figure
3.5, the clear wheel is replaced with a transparent strip. Lines are marked on the
strip in patterns similar to those on the rotary units. Typically the strip is attached
to a fixed base and the sensing head with the emitter—detector pair is attached
to the moving body.

A typical data collection procedure for a manipulator calibration requires
that the position of points on the end effector be accurately determined. If an
encoder is to be used as part of this measurement, it must be a high-resolution
device that is sensitive to the direction of the displacement being measured. These
requirements tend to make the tachometer encoder and the absolute encoder
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Figure 3.5. A linear encoder.

impractical for use in this application. The tachometer encoder cannot sense
the direction changes that are necessary for this type of measurement. Most
absolute encoders do not have the resolution required for the task. For example,
it is not uncommon to require that angular measurements be made with a
resolution of better than 5 arc seconds (0.0014°). This implies that the absolute
encoder would require 259,200 divisions or 18 tracks to have the necessary
resolution. The expense and size of such a device preclude its common use.

The advantages of the incremental encoder for this application are its digital
output, resolution, and relatively low cost. As mentioned earlier, the waveform
generated by the incremental encoder is easily interfaced to a digital computer.
The problems with drift and noise that exist in analog transducers are minimized
in this device. Low cost incremental encoders are available with up to 1000 lines
per revolution. This offers a resolution of 0.36° for 1 revolution. Because the
incremental encoder is not limited to a single revolution, precision gearing may
be used so that the encoder will make a number of revolutions for each turn of
the shaft being measured. Although this approach can significantly improve the
resolution, effects from gear backlash and eccentricity may affect the accuracy of
tbs total system. Encoders with higher resolution are available, but the cost
increase is substantial as the resolution is increased.

3.1.3 Resolvers

A resolver is a device that may be used for measuring displacement of a revolute
joint. The transducer is based on the concept of a rotating transformer that has
two rotor windings and, typicaily, two stator windings. A schematic of this device
is illustrated in Figure 3.6. To measure position, one of the stator windings is
shorted and the other is excited with a constant amplitude ac signal. This
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Figure 3.6. Schematic of a resolver.

excitation signal is typically either 60 or 400 Hz. The rotor coils are designed so
that the excited stator coil induces a different voltage in each coil. If the amplitude
of the excitation voltage is V and the excitation frequency is wg, the voltage in
each rotor coil will be given by

V., = Vsinfsin wgt (3.3)
V., = Vcos8cos mgt (3.4)

where 8 is the angle of the rotor shaft. Clearly, the amplitude of V;, is V' sin § and
the amplitude if V,, is V cos 6. The ratio of the amplitudes may be formed to give
tan 6. Solid-state devices are available to transform the rotor voltages into a
voltage that is proportional to the shaft displacement.

Resolvers have a number of advantages. The primary advantage is that the
devices give an absolute reading of the joint displacement and do not require
the initialization that an incremental encoder does. In other words, the joint
position is known at power up and no “homing sequence” is required. Also,
typical resolutions are better than encoders or pots and, therefore, the device
may be attached directly to the joint axis. Inexpensive electronics packages are
available that take the analog rotor voltage and a 12-bit digital signal corre-
sponding to a desired shaft angle as the input. The output is a 12-bit digital signal
representing the error between desired and actual shaft angle. The combination
of the resolver and the resolver converter is a perfect match for the controller,
which uses the position error to generate an updated desired shaft angle. In
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addition to the advantage cited above, these devices are rugged and can be
configured to measure velocity as well as displacement.

As with all transducers, resolvers have several disadvantages that tend to limit
their use in robotics. The foremost is cost. Typically, a resolver with its asso-
ciated electronics is significantly more expensive than an encoder package with
comparable resolution. Other problems relate to electrical interference created
by the carrier signal and the larger number of wires that must be run to the device.

3.1.4 Less Common 'Devices

Several devices other than the ones mentioned above have been used by commer-
cial robots to measure joint displacement. One of the most interesting is a device
marketed by Temposonics, Inc. using sonic wave propagation. The device, illus-
trated in Figure 3.7, consists of a magnetostrictive wire contained in a protective
tube of nonferrous material. At one end of the tube, the wire is attached to an
electronics package that can induce a current pulse through the wire. A ring
magnet is located around the tube and is attached to the part of the robot whose
displacement is to be measured. When the current pulse passes the magnet, the
magnetostrictive action in the wire creates a stress pulse that propagates back
to the electronics package at the speed of sound in the wire (approx. 110,000
in./sec). The time interval between the initiation of the current pulse and the
arrival of the stress pulse at the electronics package is proportional to the
displacement of the magnet. The speed of sound in the wire is such that the pulse
takes about 9 usec to travel 1 in. A 10-MHz counter may be used, therefore, to
obtain a displacement with a resolution of approximately 0.010 in. This device
was used to obtain joint freeback in the IBM 7565 robot. Although the resolution
is somewhat low, the device has the advantages of being relatively rugged, it does
not have to be initialized, and it is simple to implement in a joint design.

Motion
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Z
]
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Figure 3.7. The Temposonics displacement transducer.



80 MEASUREMENT TECHNIQUES FOR MANIPULATOR CALIBRATION

Another device that has been used on robots requiring extreme precision is
the laser interferometer. Since this device has found wider application in pose
measurement than as a joint feedback device, it is described in more detail in
Section 3.2.2. Similarly, the LVDT has been used as a joint displacement trans-
ducer but it is more commonly used in the workspace. It is described in Section
3.2.6.

3.2 VARIOUS MEASUREMENT TECHNOLOGIES

A number of different techniques have been used to acquire the data necessary
for manipulator calibration. Before discussing these approaches in detail, how-
ever, it is beneficial to review the basic measurement technologies on which these
techniques are based. The following sections describe the fundamental principles
of several measurement systems that are applicable to manipulator calibration.
Although these have been the most popular for calibration, they represent only
a small subset of the many measurement technologies that are currently avail-
able. Textbooks such as the one by Doebelin [1] provide a much more exhaustive
treatment of this field.

3.2.1 Theodolites

A theodolite is simply a telescope that has been instrumented so that the line of
sight is very precisely known. The line of sight is usually defined by two angles.
The first is the angle between the line of sight and the horizontal plane; the second
is the angle between an arbitrarily chosen horizontal line and the plane formed
by the vertical axis and the line of sight. The text by Cooper [3] provides a
detailed description of the construction and operation of modern theodolites. As
described by Cooper [3] and illustrated in Figure 3.8, the theodolite consists of
three parts; the base, the alidade, and the telescope. The base is usually mounted
to a tripod or similar stand. The vertical axis is established by adjusting the base
until it is very nearly horizontal as indicated by a set of bubble levels attached
to the base. The alidade rotates about the vertical axis and is instrumented so
that the rotation may be precisely known. Until recently, this rotation was
measured manually by reading a vernier scale. Although measurements as precise
as +0.5 arc second were possible, correct reading of the vernier was time
consuming and subject to error. Fortunately, modern theodolites are equipped
with digital displays that report the angles to 4- 0.5 arc second. The digital output
reduces the chance for error in making the readings and allows the device to be
directly interfaced to a data acquisition system. The alidade has two vertical
supports or standards which house bearings that form the second axis of rotation
for the telescope. This axis is instrumented to the same level of precision as the
vertical axis.

To use the theodolite, the unit is set up in a fixed position and the vertical
axis is established by leveling the base. The operator then sights through the
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Figure 3.8. A theodolite.

telescope until the target comes into view. The telescope is focused on the target
and aligned until the target point is centered on the cross-hairs in the telescope.
The vertical and horizontal angles that establish the line of sight are then read.
Itis important to note that the theodolite does not provide a distance reading.

3.2.2 Laser Interferometers

The laser interferometer uses light interference principles to precisely measure
the linear displacement or velocity of a body. A simple interferometer is illus-
trated in Figure 3.9. A laser produces a beam of coherent, monochromatic light
that is passed through a beam splitter. Part of the beam is reflected toward a
fixed mirror and the other part of the beam is transmitted through the beam
splitter toward a moving mirror. The light from both the fixed and moving
mirrors is reflected back toward the beam splitter, which is designed to recombine
the beams as illustrated in Figure 3.9. As the moving mirror is displaced, the
recombined beams will constructively and destructively interfere. As a result,
the photodetector will sense an alternating intensity. A complete cycle of inter-
ference (light to dark) represents a mirror displacement of one-half a wavelength
of the light from the laser. Since visible light has a wavelength of approxi-
mately 2.56 x 10~ ? in., the resolution is well within that required for calibration
measurements.

The accuracy of the interferometer will be affected by any influences that alter
the wavelength of light. When light travels through air, the wavelength is affected
by the air pressure, humidity, and temperature. Since these effects are often small,
they may be ignored in many cases. Commercial systems are available, however,
that compensate for these effects.

Figure 3.10 illustrates a modern laser interferometer system [1]. The differ-
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Figure 3.10. A modern laser interferometer. Redrawn with permission from Hewlett
Packard, Palo Alto, CA.

ences between this system and the simple one described above improve the
precision, range, portability, and ease of use. The system illustrated is also
capable of making velocity measurements. The laser in this system is designed
to produce light composed of two basic frequencies, in the range of 5 x 1014 Hz
but separated by 2 MHz. In addition, the light at each frequency is polarized in
adifferent direction. As with the simple system, the beam from the laser is directed
through a beam splitter that transmits part and diverts part of the beam. The
diverted beam or the “reference” beam is then passed through a set of polarizing
filters to separate the two frequencies. The light of both frequencies is then
directed to a photodetector. Since the two frequencies differ by 2 MHz, they will
constructively and destructively interfere so that the photodetector will sense an
intensity variation with a frequency of 2 MHz.
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The light that was transmitted through the beam splitter is termed the “mea-
surement” beam. The measurement beam is directed into a fixed interferometer.
This device consists of a polarizing beam splitter and a cube corner. The polariz-
ing beam splitter isolates the higher frequency and directs it toward the corner
cube. The corner cube directs the light back toward the beam splitter, which is
designed to point this beam back in the direction of the laser. The lower fre-
quency light is passed to another corner cube that is attached to the object to be
measured. This light is also reflected back toward the laser. Both reflected beams
are recombined and directed through a set of polarizers and onto a photo-
detector. If the corner cube attached to the measured object is still, the two
measurement beams will recombine to produce a varying intensity with a fre-
quency of 2 MHz exactly as the reference beams. If, however, the corner cube is
moving, its reflected beam will exhibit a doppler shift in frequency and the
frequency of the intensity variation of the recombined measurement beams will
vary. The frequency variation will be in direct proportion to the velocity of the
corner cube. The outputs from both the reference and measurement photo-
detector are then directed to counters. The difference between the two counts is
proportional to the displacement of the measured body.

There are two primary problems associated with the use of a laser interfero-
meter for robot calibration. The first is the establishment of a reference position.
Asdescribed above, an interferometer will accurately measure displacement from
some point by counting the number of interferences in the reflected light. If the
light beam is interrupted at any time, the measurement must be begun again.
This implies that the robot end effector must be in a known position when the
measurement is begun or some way of calibrating the laser must be developed
so that the beam to the end effector is not affected.

The second problem with interferometers is cost. A typical commercial laser
interferometer with the necessary optics will cost approximately $30,000. This
cost does not include a system to point the beam at the target or an interferometer
calibration system.

3.2.3 Coordinate Measuring Machines

A coordinate measuring machine (CMM) is basically a 3 DOF mechanism with
three orthogonal prismatic axes. These devices are manufactured to ensure
precise motion along the desired axes and they are instrumented to determine
the joint displacement to a high degree of accuracy. A typical CMM is illustrated
in Figure 3.11. Coordinate measuring machines are available in a wide range of
sizes at various levels of precision. At the “low end” of size and performance, the
axis of motion are formed with hardened shafts and linear bearings. Each joint
is instrumented with either a linear encoder or a rotary encoder driven with a
rack and pinion gear arrangement. Such devices typically have a resolution of
0.001 in. and a total accuracy on the order of 0.005 in. A typical low end CMM
isillustrated in Figure 3.12. At the high end of size and performance, CMMs may
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Figure 3.11. A typical coordinate measuring machine (CMM). Photograph courtesy of
Mitutoyo/MTI Corporation, Paramus, NJ.

have highly precise axes that ride on air bearings, laser interferometers for
determination of axis motion, and work volumes of over 1000 ft3. The accuracies
of these machines may be on the order of a few ten-thousandths of an inch.

Typically, coordinate measuring machines are designed for inspection of parts
and assemblies. Most CMMs large enough for robot calibration are too expen-
sive to be justified solely for that purpose. Some low end CMMs, such as
illustrated in Figure 3.12, are suitable for calibration of small assembly robots
like the PUMA 250 and 560.

3.2.4 Time of Flight Devices

A popular means of measuring the distance between two bodies is to have one
body emit a signal that travels at a known rate. A sensor on the second body
receives the signal and the time of travel between emitter and receiver is recorded.
The time of flight together with the known speed of the signal will indicate the
distance traversed. Currently, the most popular signal for this type of measure-
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Figure 3.12. The Mitutoyo CX-D2 coordinate measuring machine. Photograph courtesy
of Mitutoyo/MTI Corporation, Paramus, NJ.

ment is a sonic pulse. At first thought, it would seem desirable to use a pulse of
light for time of flight measurement because the speed is well known and constant.
Unfortunately, light travels much too quickly to make time of flight practical
over the relatively small distances involved in robot calibration. For example, a
light pulse would take only 5.083 x 1078 sec to travel 50 feet. If we wanted to
make this measurement with a resolution of 0.001 in., it would be necessary to
measure time to within 8.47 x 10714 sec. Clearly, this would not be at all practical
for our application.

A popular approach to time of flight measurements is to emit a sound pulse
in air and measure the time required for the pulse to traverse the distance between
the emitter and receiver. The speed of sound in air at 70°F is approximately 1128
ft/sec. At this speed, a sound pulse would require about 7.38 x 107 ® sec to travel
0.001 in. This falls well within the resolution of commonly available electronic
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timers. The main problem with this approach is the variation on the speed of
sound in air. The speed of a sound pulse is a function of temperature, humidity,
and convection currents in the air. For example, the speed of sound increases by
11 ft/sec if the temperature is raised from 70 to 80°F. Since all of these conditions
are dynamic, any measurement system based on time of flight of a sound pulse
in air must continually compensate for these effects. Another difficulty that can
arise with this approach is the effect that obstacles in the measurement space can
have on the sound pulse. An obstacle between the emitter and detector can
significantly affect the perceived time of flight.

3.2.5 Camera-Type Devices

With the advent of low cost computer systems and the development of the charge
coupled device (CCD) camera, vision systems have seen a sharp rise in popularity.
A typical vision system consists of a lens and a light-sensitive array. Light from
the image is focused on the array by the lens. The light-sensitive array consists
of a large number of discrete cells that sense the frequency of the light that strikes
them. These cells are referred to as picture elements or pixels. The frequency
information from each pixel is then digitized and a number is assigned to the
sensed frequency. For example, one cell may see a completely black input and
return a value of 16 while another that sees a very light gray color may return a
value of 2. Using this information from each cell, the image may be reconstructed
and analyzed.

When used as a part of a measurement system, one of the primary considera-
tions is the resolution of the array. For example, assume that an array consists
of 512 rows and 512 columns. If the lens system is focussed so that a 5 ft by 5 ft
workspace is projected on the array, each pixel would be averaging the light from
a 0.117 by 0.117 in. square. Although image processing techniques are available
to estimate the location of known shapes to tolerances smaller than that rep-
resented by one pixel, the utility of the vision system as a measurement tool is
ultimately limited by the resolution. If a resolution of 0.002 in. is required for a
given identification procedure and the vision system to be used has a 512 by 512
array, the measurement volume will be limited to no more than a few inches.

Another camera type measurement system is manufactured by Selspot. A
similar device is also manufactured by Northern Digital, Inc. These systems
consist of a camera with a photosensitive detector that is sensitive to light in the
infrared range. The sensor is capable of accurately determining the location of
the center of a spot of light that has been projected onto its surface. The detector
is an analog rather than digital device so the resolution is theoretically infinite.
The device is also highly linear, which enhances the accuracy of the total system.

These systems operate in the following manner. A number of infrared LEDs
are attached to points to be measured. The system controller then switches each
LED on in sequence and the light from the LED is projected through the lens
onto the photodetector. The X-Y coordinates of the image on the detector are
proportional to the X-Y location of the LED in the field of view. One LED
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may be located in approximately 50 usec so the system can record the trajectory
of 2 number of LEDs. The Selspot that is currently on the market is advertised
to have a repeatability of 0.005%; of the measuring range and a nonlinearity of
0.1% of the measuring range.

3.2.6 Short-Range Devices

Several manipulator calibration procedures have been proposed that are based
on the use of a set of fixtures. These fixtures are located at a number of positions
in the workspace and are designed to establish a local coordinate frame at each
location. The fixtures are accurately placed in the workspace so the relationship
between each local coordinate system and the reference system is known. The
accurate placement of the fixtures is not a trival task and many of the measure-
ment approaches that have been used directly for robot calibration may be
employed for determination of fixture location. This approach is advantageous
if the global measurement system is costly or would create too many obstacles
in the workspace. For example, a laser interferometer system might be used to
very accurately determine the location of the fixtures. The laser system may then
be removed for use elsewhere, thus reducing the total cost of the measurement
system. Each local fixture is instrumented so that small variations within the
local coordinate system may be accurately measured. This allows the use of
short-range sensors that can provide accurate measurements at a significantly
lower cost than a global sensor of equivalent accuracy. The following paragraphs
describe the principle of operation of several short-range position sensors that
have been used in fixtures for robot calibration.

The most popular short range sensor for calibration has been the dial in-
dicator. Dial indicators are available in two types: mechanical and digital. A
mechanical dial indicator is illustrated in Figure 3.13a. This device consists of a
spring loaded rack that may be depressed into the case. The amount of travel is
recorded by the indicator arm, which is connected to the rack through a precision
gear train. These devices are available in a large variety of strokes and may have
resolutions of 0.0001 in. Although they are very inexpensive, mechanical dial
indicators must be read manually and, thererfore, are not suited to an automated
calibration procedure.

A digital dial indicator is illustrated in Figure 3.13b. In this device, a linear
encoder is attached to the rack so that the displacement is measured electroni-
cally. These units are easily interfaced to computer systems that allow the auto-
mation of the measurement process. Digital indicators are available with a
resolution of 0.0001 in. for as little as $250.

Another device for measuring small displacements is the linear-variable differ-
ential transformer or LVDT, which is illustrated in Figure 3.14. The LVDT
consists of a set of coils and a core that is attached to the object that is being
measured. The primary coil is excited with a sinusoidal voltage and the two
identical secondary coils have induced in them a sinusoidal voltage of the same
frequency. The amplitude of the voltage in each coil is a function of the position
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of the core that serves to enhance the coupling between the primary and second-
ary coils. When the secondary coils are arranged as shown in Figure 3.14 and
the core is in the middle, an equal and opposite voltage is induced in each
secondary coil. These cancel each other out and no voltage appears at the
output. When the core is displaced, however, more voltage is induced in the
secondary coil that is in the direction of the displacement. The result is an output
voltage that is very nearly a linear function of the core position.

LVDTs are commercially available in a wide range of sensitivities and strokes.
For example, standard units having strokes from +0.005 to over +3.00 in. are
commonly available in sensitivities as high as 1.5 V/0.001 in. Since the coupling
phenomenon is continuous, the resolution of the LVDT itself is infinitesimal. The
overall measurement resolution, therefore, is a function of the quality of the
electronics used to sense the variations in output voltage.

(a)

Figure 3.13. Dial indicators. Photograph courtesy of Mitutoyo/MTI Corporation,
Paramus, NJ.
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3.3 MEASURING METHODOLOGIES FOR ROBOT
CALIBRATION

In the previous section, several basic measurement technologies were described.
Some of the devices were complete measurement systems and others were compo-
nents from which a system might be built. In this section, we will investigate how
these measurement technologies may be applied specifically to the problem of
data acquisition for manipulator calibration.

A number of different approaches to the measurement problem have been
attempted. Rather than simply listing these various approaches, an attempt will
be made to group them on the basis of the information provided by the measure-
ment system. Every measurement system is designed to provide a specific set of
information for each robot pose. For example, one system might provide the
coordinates of a point on the end effector (three independent values) while
another may yield the complete pose including position and orientation of the
end effector (six independent values). In this work, we will classify each measure-
ment system by the number of independent quantities determined for each robot
pose. Although there will always be some gray areas and overlap, we feel that
this classification will be a valid grouping of the various approaches.

3.3.1 Single Theodolite

The first useful group would be those measurement systems that provide two
independent quantities per pose. The only known measurement system in this
class would be a single theodolite. For each pose, the theodolite measures a
vertical angle and a horizontal angle that establishes a line in space. If the
theodolite has been pointed at a target on the end effector, it is known that the
target lies somewhere along the line. The location of the point along the line,
however, is completely unknown. Whitney, Lozinski, and Rourke [4] used a
single theodolite measurement system to accomplish the calibration of a PUMA
560 manipulator. The theodolite is set up so that the target on the end effector
may be viewed in as large a subset of the workspace as possible. The world
coordinate system, X YZ_, is established at the intersection of the theodolite axes.
As illustrated in Figure 3.15, the theodolite is pointed at the target, which lies at
the center of the tool coordinate system, X YZ,. If the horizontal angle is given
by «, the vertical angle by §, and the distance to the tool point by r, the
transformation from XYZ, to X YZ,, will be given by:

? 7 7 rcos(f)cos(x)

?7 7 ? rcos(f)sin(x) (3.5)
27 rsin(f)

000 1

where the question mark represents elements of the transformation that are not
determined by the measurement system. The variable r has been included in the
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Figure 3.15. The single theodolite approach.

transformation but it is not determined by the theodolite. This implies that while
the ratios of the elements in the last column are known, the absolute value of
each is unknown. This has an interesting effect on the resulting parameter
identification process. All of the unknown angle parameters may be identified
directly. The length parameters, however, may be determined only as ratios with
an arbitrary constant. This mathematical result may be interpreted physically
by imagining the view through the telescope. As the robot is moved from one
pose to the next, the observer would have no way of knowing if he were viewing
a small robot at close range or a very large robot at long range. This lack of a
basic length scale dictates that at least one additional measurement be taken. A
minimum of two points on the manipulator that are a known distance apart
should be viewed through the theodolite and the angles recorded. This will allow
the length scale to be set and the absolute values of the length parameters to be
determined.

The single theodolite approach has several advantages. Theodolites are com-
mon devices and may be purchased or rented at a reasonable cost. The target
does not have to be elaborate. Whitney, Lonzinski, and Rourke [4] used a
0.3-mm-diameter sphere attached to a short post that was mounted on the last
link of the robot. It should be noted that most theodolites are constructed to
sight targets that are a very large distance from the instrument. The telescope
may not be able to focus on targets closer than 10 to 15 ft and the target may
appear to be quite large. This necessitates a large, unobstructed area for data
acquisition and a small target. Whitney reported that it was often time consuming
to find the target and difficult to center the cross-hairs accurately. It was sug-
gested that the passive target be replaced with a light source to improve target
location and centering.

The use of the single theodolite has some distinct disadvantages. The major
drawback is the time required to make readings. Whitney describes the use of
the theodolite as “slow and fatiguing.” As described above, use of the single
theodolite also requires that additional length measurements be made. If not
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made very accurately, these additional measurements can have a significant
impact on the accuracy of the identified parameters.

3.3.2 Point Measurement

A number of measurement schemes have been developed that will determine
three independent coordinates of a point on the end effector. These coordinates
serve to locate the position of a target point in the world coordinate system.
Active instrumentation systems using Cartesian or spherical coordinate systems
as well as triangulation methods have been reported. Passive fixtures have also
been used to locate the target point at predetermined locations in the workspace.

Perhaps the most straightforward approach to point measurement is the use
of a coordinate measuring machine to determine the location of a target on the
robot. The CMM is instrumented with a sensitive touch probe that causes the
coordinates of the probe to be recorded when it touches an object. The target
on the end effector is a uniform sphere. The touch probe is manipulated so that
it touches several points on the surface of the target sphere. The center of the
target sphere may then be determined from the coordinates of the points on the
surface.

The use of a CMM for point measurement is appealing because the CMM is
easy to use, requires only a simple target, and produces data that are easily
interpreted. Unfortunately, most CMMs large enough to calibrate typical in-
dustrial robots are too expensive to justify for robot calibration alone.

In many instances,a CMM or precision measurement facility may be available
but cannot accommodate a robot inside the facility. In this case, it may be
possible to construct a fixture for the robot calibration and use the precision
measurement facility to accurately determine the location of a number of points
on the fixture. Veitschegger and Wu [5] have used such a procedure for calibra-
tion of a PUMA 560. Their method is based on the use of a fixture plate with a
set of precisely positioned holes and an end effector with a pointing device. The
fixture plate and the end effector are illustrated in Figure 3.16. A tool locating
dowel, also illustrated in Figure 3.16, is placed in one of the holes. The pointer
on the end effector is moved until the tip is centered a specific distance above the
top of the tool locating dowel as determined by a feeler gauge. Since the location
of the hole and the height of the tool locating dowel are precisely known, the
coordinates of the tip of the end effector are also known.

If a precision measurement facility is available, a fixture technique such as
the one described by Veitschegger and Wu represents a low cost means of
obtaining the data required for calibration. Use of the fixture, however, can be
quite time consuming if the robot does not have a “free” mode. Also, a precision
fixture for calibrating a large robot may be too large itself to be practical. If the
location of reference points on the fixture cannot be accurately determined or if
the fixture is subject to significant levels of thermal or mechanical deformation,
it will be of little use in the calibration process.

A unique point measurement system based on a spherical coordinate system
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Figure 3.17. Point measurement system developed by Lau, Hocken, and Haight. Re-
printed with permission of authors {6].

has been reported by Lau, Hocken, and Haight [6]. The system, which is illus-
trated in Figure 3.17, consists of a laser interferometer with a steerable beam. As
illustrated in the figure, the beam leaves the laser and travels vertically until it
strikes a mirror. The orientation of the mirror is precisely controlled by rotating
the mirror about the horizontal and vertical axes. The mirror is oriented so that
the beam will be directed toward a reflector mounted on the end effector of the
manipulator. The returning beam is directed back toward the laser and then split
several times. Two of the beam splitters are mounted orthogonally and direct
portions of the returning beam onto photosensitive detectors. If the end effector
begins to move, the alignment of the return beam will be modified. This is sensed
by the photosensitive detectors and the mirror is rotated so that the return beam
regains alignment. In this manner, the system will track the target throughout
the workspace. In addition, the return beam is directed to an interferometer so
that changes in distance from the mirror to the target may be determined very
accurately. Since the mirror angles and the distance to the target are known
precisely, the location of the target may be accurately determined. A version of
this system is commercially available as the Smart 310 system from Leica.

This system offers several advantages. The primary advantage is that the
system is totally automatic. Once the target has been located, the robot may be
moved to any number of poses and the system will follow the motion. This would
facilitate a totally automated calibration procedure. A second advantage is the
precision. The use of the laser interferometer and high-resolution encoders on
the mirror orientation axes gives excellent system accuracy. The disadvantages
of this system are the same as those with any laser interferometer system. The
interferometer simply counts interference patterns as the target moves away from
some reference point. Some initialization procedure must be developed to es-
tablish the reference point. Also, if the beam is interrupted, the count will be
destroyed and the measurement must be restarted.
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Figure 3.18. Triangulation.

A number of point measurement schemes make use of triangulation. Triangu-
lation is based on the determination of the line of sight to a target from several
points. The intersection of theses lines determines the location of the point. This
isillustrated in Figure 3.18. The observer at point A sights the target and records
the horizontal and vertical angles at his location (x, and f,). The observer at
point B records ay and S5 in a similar manner. The world coordinate system,
XYZ,,is established at point A and a unit vector, 1,, is defined as being the unit
vector along the line of sight. A separate coordinate system, X YZg, is defined at
point B and a unit vector along the line of sight at B is defined as n,. Using the
definition of « and B in the figure, the unit vectors will be given by

cos(Ba) cos(aa)

cos(B,) sin(a)
A= . 3.6
" sin(8y) (3

1

and

cos(fg) cos(ag)

_ cos(fg) sin(ag)
s = sin(By) (3.7)

1

where 1, is measured in the X YZ, coordinate system and n, is measured in the
XYZg coordinate system. Since both unit vectors are directed at the same target,
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two equivalent expressions for the location of the target may be written as

raMa = TpNprs (3.8)

where r, and ry are the respective distances from the origin of each coordinate
system to the target point and T, is the transformation from the X YZ; system
to the world system. The problem now is to determine the values of r, and ry
given the measured angles. If Equation 3.8 is expanded and terms rearranged,
the following equation results.

cPacoy  — Ty cPycag — Ty ycPpsog — Ti3sPp Tis
cBasay  — Ty cfycag — Ty, cPpsoag — Tr3sPg [r = To4 (3.9
sPa — T3, cPgeag — Tyycfpsop — Tyashs I,

where sa, represents sin(ay ), ca, represents cos(x, ), and so forth. This equation
may be expressed symbolically as follows.

Cr=v (3.10)

Only three independent values need to be measured to determine the location of
the point. Since we have measured four angles, it is reasonable to expect an
overdetermined set of equations such as in Equation 3.10. We may simply choose
two of the three equations to solve for r, and ry. If the horizontal and vertical
angles were measured perfectly, this would be an acceptable approach. Since any
real measurement system will contain some error, it is desirable to use all three
equations and determine a “best fit” value for r. Using least squares (see Section
4.3), r will be given by

r=(CTO)'C’y (3.11)

To continue to minimize the effect of measurement errors, the target may be
sighted from additional points. in this case, Equation 3.10 may be expanded to
include the additional data. Likewise, Equation 3.11 may be modified to include
the additional measurements.

Having determined r, the pose of the end effector is now given by

7?2 7 rycBuca,

7 7 7 rycPasa, (3.12)
77 7 rshy '
00O 1

where the question marks represent elements of the pose that are not determined
by the measurement system. It is important to note the factors effecting the
accuracy of the solution for r. Certainly if the horizontal or vertical angles are
in error, the result will be incorrect. Of equal importance, however, is the
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relationship between the X YZg and the world system. If the location or orienta-
tion of the X YZ, system is not known precisely, the resulting solution for r will
be in error. This is important since many of the devices used to determine the
horizontal and vertical angles are not capable of measuring distance or the
orientation of one device with respect to another.

Judd and Knasinski [7] conducted a calibration of an Automatix AID-900
robot using triangulation. Two theodolites were used to determine the location
of targets on a specially designed end effector. The process for determining the
relative position and orientation of the theodolites was not discussed in this
paper. Chen and Chao [8] also reported the calibration of a PUMA 760 robot
using triangulation. In this work, three theodolites were used to locate a target
point on the robot end effector. As in the paper by Judd and Knasinski, there
was no mention of how the relative position and orientation of the theodolites
were determined.

Jarvis [9] has reported a three-step procedure for calibration of theodolites
to be used for triangulation. The first step is to sight a target with each theodolite
at a number of locations along a straight line. The target should be moved
precisely along a line and the distance between each point must be known. The
orientation of each theodolite with respect to this line may then be determined.
The second step is to sight a number of arbitrarily located points with both
theodolites simultaneously. Finally, the data taken in the line and point sightings
may be used to compute the matrix T,p, which Jarvis describes as the baseline.

Commercially available systems that are based on triangulation are available.
A typical one is offered by the Selspot company. The system is based on the use
of camera-type devices that are described in Section 3.1. For point measurement,
cameras are set up at two different locations so that each views a significant
portion of the workspace. This is illustrated in Figure 3.19. Each camera returns
readings that are equivalent to the horizontal and vertical angles to the target.
The system also has a calibration fixture and program so that the position and
orientation of each camera with respect to a world coordinate system may be
determined.

Another approach to point measurement, which is similar to triangulation, is
based on the measurement of distance to a target from several points located in
the workspace. This approach is illustrated in Figure 3.20. The procedure begins
by establishing at least three measurement points whose locations in the world
coordinate system, X YZ,, are known precisely. The distance from each of these
points to a target on the robot end effector is then measured. If these distances
are given by r,, 1, and 7, and the locations of the measurement points are given
by r,,, Iy, and 1, the location of the target point will be given by any of the
following three equations

Fpo H M =1, (3.13)

l'pb + rb‘I]b = l't (3.14)
Fpe + N =1, (3.15)
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Figure 3.19. Selspot system. Reprinted with permission of Selcom, Inc., Southfield, MI.
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where n; is a unit vector directed from the ith measurement point toward the
target and r, is a vector from the origin of the world coordinate system to the
target point. In these equations, the unknown values are the directions to the
target, n;, and the location of the target, r,. The vector to the target, r,, may be
eliminated from Equations 3.14, 3.15, and 3.15 as follows:

My — My = rpb - rpa (316)
rTeNe — 'l = l'pb - l'pc (317)

Since the unit vectors, 1,, N, 1., are unknown, these vector equations represent
six scalar equations in nine unknowns. Three additional equations result from
the knowledge that the ns are unit vectors.

n2 + 2+ =1 (3.18)
nex + 13, + Mo, =1 (3.19)
nk +nd +nk=1 (3.20)

These nine scalar equations are nonlinear and are typically solved numerically
to yield values for n,, n,, and 0. The location of the target point, r,, is then given
by any of the Equations 3.13, 3.14, or 3.15. The end effector pose may then be
written as

777
T 7t (321)
77 7 rf.,
000 1

where the question mark represents elements of the pose that are not determined
by the measurement system.

As with the triangulation method, small errors in the measurement can have
a significant effect on the estimated location of the target point. To minimize this
effect, measurements may be made from more than three points in the workspace.
If this is done, an overdetermined set of nonlinear equations results that may be
solved so as to minimize the square of the total error. Such extra measurements
tend to offset the effect of measurement noise on the final solution. Also, the
position of the various measurement points in the world coordinate system must
be accurately known. This is different than the triangulation technique where
both position and orientation were required. The lack of a requirement for rela-
tive orientation of the measurement devices significantly simplifies the calibra-
tion of the measurement system.

A mieasurement system based on the distance approach is commercially
available from Chesapeake Laser Systems. This system, illustrated in Figure 3.21,
consists of a low power, helium—neon laser whose beam is split and directed to
some number of tracking modules. Each beam is instrumented with an interfero-
meter so that the distance to the retroreflector on the target is accurately known.
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Figure 3.21. The CMS-1000 point location system. Reprinted with permission from
product literature for Chesapeake Laser Systems, Inc., laser coordinate measuring system,
CMS-1000, Copyright 1989.

The tracking modules are designed so that the beams are always pointed at the
retroreflector. The manufacturer states that the position of the target may be
determined to an accuracy of 1 pm (0.00004 in.) over a 10-m workspace.

Another measurement system based on the same approach was reported by
Stone, Sanderson, and Neumann [10,11]. In this work, the target consisted of
an acoustic emitter with microphones located at a number of measurement
points throughout the workspace. Time of flight of the acoustic signal was used
to determine the distance from the target to each of the microphones. The authors
reported a system resolution of 0.008 in. Although this is significantly less
resolution than is provided by the Chesapeake system, it should be noted that
the sonic system is much less expensive.

3.3.3 Partial Pose Measurement

Several measurement systems have been developed that will return some in-
formation about the orientation of the end effector as well as the position of a
target point. We have defined these as “partial pose” systems because only one
or two components of the end effector orientation is determined.

The system developed by Lau, Hocken, and Haight [6] for point measurement
was extended to yield orientation information. As illustrated in F igure 3.22, the
retroreflector on the end effector was replaced with a mirror whose orientation
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Figure 3.22. Partial pose system developed by Lau, Hocken, and Haight. Reprinted with
permission of authors [6].

is under servo control. By orienting the mirror so that the beam is always di-
rected back at the laser, two components of end effector orientation may be
determined.

Another partial pose method has been developed by Tang [12]. This approach
was developed in an attempt to simplify the measurement process by creating a
simple fixture arrangement. The fixture proposed by Tang consists of a flat plate
with a grid of accurately located points on the plate. This may be purchased
commercially as an optical table. These tables are extremely flat and have a
number of tapped holes that are accurately located in a grid on the table. An end
effector is designed with a flat surface at some angle to the last axis of the robot.
The end effector also is equipped with a reference point that may be located at
the known locations on the table. When the flat surface on the end effector is
against the table, one component of orientation is known. Also when the refer-
ence point on the end effector is located over a table point, the position of the
end effector is known. These partial poses may then be used to complete the
calibration process.

A point measurement device may be used repeatedly on a fixture to determine
some additional components of pose. This technique was employed by Borm and
Mengq [13] in their calibration of an RM501 robot. The end effector used in this
work was a simpler cylinder and the measurement device was a Sheffield CMM.
The CMM was used to locate four points on the cyclinder face and four points
around the circumference of the cylinder. These data allowed five components
of the end effector pose to be determined with high precision.

3.3.4 Complete Pose Measurement

We know of no active device that will directly measure the complete pose of an
object in space. The complete pose of an end effector may be determined by
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locating at least three points on the end effector whose relative position is known.
For example, assume that an end effector is equipped with three target points
and that the location of these points in the tool coordinate system is given by
Fy1; I3, and r,. If the point measurement system has determined the location of
each point in the world system, r,,, r,,, and r,,, the end effector pose may be
determined. If the unknown transformation from the tool coordinate system to
the world coordinate system is defined as T,,, the following equation may be
written; '

[F1ws F2ws 3] = T[4, 1o, rs ] (3.22)

A solution for T,,, may be obtained by defining two additional points as follows:

Ly = (Tay — 1) X (F3y, — 1y,) + 1y, (3.23)
Ty = (th — Iy X (r3t - rlt) + 1y (3.24)
(3.25)

These points may be added to the equation above to yield the following;

[Fiws 2w oy, Tgy ] = L1} ST 98 OV (3.26)

Since all matrices in the above equation have the same dimension, we may post
multiply to achieve the following result:

T = [rlw, Faws T3ws l-4w] [rlt’ LOTR) C T8 r4t] ! (327)

In the work by Judd and Knasinski [7], a procedure similar to the one above
was used to determine a complete pose. An end effector was designed with three
targets and the location of each target in the world coordinate system was
determined at each pose. This information was then used as described above to
obtain the complete pose information. A similar approach was used by Mooring
and Padavala [ 14] in their calibration of a PUMA 560 robot. A detailed example
of a calibration using this measurement approach is given in the Case Study in
Chapter 6 of this book.

Several fixture systems have been devised that will define complete poses for a
robot. A passive fixturing system has been reported by Hayati and Roston [15].
This system consists of a number of keyed fixtures that are accurately located in
the workspace of a PUMA 250 robot. The end effector is designed so that when
mated with the fixture, the complete pose is known. This procedure works quite
well because the PUMA 250 is a physically small robot and it has a “free” mode
that allows manual insertion of the end effector into the fixtures.

In those instances where manual insertion into a fixture is not possible or the
calibration process is to be automated, a set of active fixtures may be used. An
active fixture is one that makes use of short-range measurement devices to



3.3 MEASURING METHODOLOGIES FOR ROBOT CALIBRATION 103

Reference Coordinate
System

LvVDT LVvDT

Mounting Holes for
Gauge Block

ZEnd Effector
Coordinate System
END /\‘
EFFECTOR FIXTURE

Figure 3.23. Active pose fixture.

determine the location of an end effector in a local coordinate system. The rela-
tionship of each of the fixtures in the world coordinate system must be accurately
determined with another measurement device. Active fixtures are also often
used for robot repeatability studies and various designs have been reported by
[16,17]. A fixture typical of these is illustrated in Figure 3.23. As shown in the
figure, the robot end effector has a set of three spheres that are inserted in an
array of short-range displacement transducers. In this case these transducers are
LVDTs but capacitance probes and dial indicators have also been reported.

A unique and quite clever passive measurement scheme has been reported by
Bennett and Hollerbach [18,19]. In their technique, enough extra joints are
added to the robot structure to make the mechanism a single loop, closed
kinematic chain with more than 1 degree of freedom. This may be accomplished
by adding a link and an additional joint between the end effector and ground on
asingle robot or by rigidly connecting the end effectors of two open chain robots.
The additional degrees of freedom mean that the closed loop is free to take on
an infinite number of configurations as long as the loop closure and joint travel
constraints are not violated. Bennett and Hollerbach demonstrated that the use
of the readings from the joint transducers in such a case is sufficient to identify
alarge percentage of the kinematic structure of the closed chain.
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3.4 CONCLUSION

As indicated by the large number of measurement devices and approaches to
data collection that have been described above, there is no “best” measurement
system for robot calibration. In most cases, the selection of a measurement
scheme is a tradeoff between the accuracy desired and the cost of the system. In
some cases, the cost can be mitigated by borrowing or renting a high accuracy
active system such as a laser interferometer or a CMM and using it to build or
verify a fixturing system that consists of less expensive components. In any event,
the most desirable system will be the one that represents the best compromise
between cost, ease of use, and precision for a given calibration task.
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CHAPTER 4

PARAMETER IDENTIFICATION FOR
ROBOT CALIBRATION

Once a valid manipulator model has been developed and a set of measurement
data has been collected, the next task is to determine the set of model parameters
that causes the poses computed from the model to most closely match the
measured data. This process is referred to as the identification step. The topic of
parameter identification has been studied in depth for a number of years as it
applies to such fields as control theory and dynamic systems modeling. Many of
the standard parameter identification techniques are directly applicable to the
manipulator calibration problem. In this chapter, we will review the applicable
parameter identification methods and demonstrate their use specifically for the
calibration problem.

41 IDENTIFICATION ISSUES
Any system identification problem requifes three basic ingredients:

1. A mathematical model.
2. A set of variables that needs to be estimated.
3. Measured data.

Typically, the variables to be estimated are unknown parameters in the given
mathematical model. It is also usually assumed that the data have some level of
measurement noise. The primary objective of the identification procedure is to
extract information from the observed data while rejecting the noise. Most
identification techniques attempt to determine the variable set that will optimize
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some performance index. The difference in the various procedures comes in the
type of model that is used or in the assumptions that are made about the noise.
Identification techniques are classified in the following manner:

1. Deterministic vs Stochastic—depending on whether or not probabilistic
models for process and measurement noise are utilized.

2. Recursive vs Nonrecursive—depending on whether or not the whole set of
observed data is saved and processed in its entirety, or used sequentially,
thus generating a sequence of estimates that is based on a growing set of
data. In a recursive estimation, at every step the estimate is based on the
optimal estimate at the previous step (representing all the past data) and
the new set of measurements only.

3. Linear vs Nonlinear—depending on the type of mathematical model that
is used.

As described in Chapter 1, the process of manipulator calibration consists of
the modeling, measurement, identification, and correction steps. Modeling refers
to the choice of a functional relationship between the robot parameters and the
resulting pose of the end effector as described in Chapter 2. The model selected
should account for all the factors considered to be significant in contributing to
robot accuracy. Since this chapter is concerned with identification rather than
modeling, we make use of the standard Denavit-Hartenberg (DH) notation [23]
in most of the following derivations and simulation examples. Many of the
conclusions drawn using this notation apply equally well to other kinematic
models.

Physical data are then collected from measurements done on the robot that
needs to be calibrated. This process is described in Chapter 3. These data contain
information relating the input of the model (the readings of the joint transducers)
to the output of the model (the robot pose). The mathematical process of using
the data collected to identify the coefficients of the model is the third step in
calibration. An important consideration during identification is the expected
error in the identified coefficients because of noise in the measurement process.

Examination of the literature on robot calibration shows that a variety of
numerical methods have been used to identify geometric and nongeometric
parameters. The use of these techniques is sometimes not as straightforward as
one might think, and some care is required to frame the problem in such a way
as to make the identification fast and accurate. In this chapter we examine,
through theoretical derivation and simulation examples, those factors that need
to be considered in identifying the kinematic parameters of a robot manipulator.
Such factors include the type of identification algorithm used, the initial estimate
of the required parameters, the effect of measurement accuracy and noise, en-
coder resolution and noise, the number of poses measured, the selection of the
measurement configurations, and the range of motion of the robot joints during
the observations. Understanding of all these factors enhances the design and
planning of robot calibration systems.
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It will be helpful at this point to consider two similar robots, A and B. The
identification problem is to estimate the model of robot B given the model of
robot A and a set of measurements made on robot B. Physically robots A and
B may be the same machine where robot A model is the perfect or nominal model,
and robot B model is the actual model. On the other hand, robots A and B may
sometimes be two separate machines that are nominally the same but practically
dissimilar due to machining and assembly tolerances. In the latter case, it is
assumed that robot A is the robot for which the application program has been
programmed. Robot B replaces robot A in running the desired application.

There are two philosophies in relating the actual model, robot B, to the
nominal, robot A. One is parametric in nature and the other is geometric. As is
well known, the construction of the robot kinematic model, regardless of model-
ing convention, always starts by specifying the robot joint axis lines in an
arbitrary robot configuration. Link parameters such as common normals and
twist angles are then determined from analysis of the relative location of pairs of
adjacent joint axes. This is the idea behind the geometric approach.

The parametric identification approach, on the other hand, is to assume
additive errors in the robot link parameters. The identification problem is then
that of finding the vector of the kinematic parameter errors. This class of tech-
niques breaks into two subclasses, based on whether or not one chooses to
linearize the actual manipulator kinematic transformations. By expanding the
product of homogeneous transformations of the actual robot, ignoring second-
order products of error parameters, one obtains the identification Jacobian, or
the linearized error model as was shown in Chapter 2. Such error models are the
basis for various linear least-squares techniques discussed more fully in Section
43.

The second approach to find the kinematic parameter errors is by fitting a
nonlinear regression model. Such nonlinear least-squares techniques are the
subject of Section 4.4.

The geometric identification philosophy, mentioned above, starts with the
identification of the joint axes themselves; namely, identification of the 3D line
equations that constitute the set of all robot joint axes at a given robot configura-
tion. From the identified axes, the actual kinematic model may be constructed
according to whatever modeling convention. For instance, one may extract the
actual DH link parameters directly from the identified joint axes. Section 4.6
covers in detail the techniques for estimating the robot joint axes. This section
also includes a description of extraction of the kinematic parameters from the
identified joint axes.

There are several practical questions that are crucial for the identification
phase in robot calibration:

* What is the relationship between the parameter estimation error and the
accuracy of the calibration sensor? Given a required robot accuracy, can
minimum requirements for the calibration equipment be specified?
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* Can one infinitely improve on the calibration accuracy by taking more and
more measurements? Obviously not, so the question is restated as follows:
What is the relationship between the lower bound on the calibration error
and the robot repeatability measures?

How many measurements need to be taken to achieve a prespecified identifi-
cation accuracy? This question is of crucial importance in those cases in
which each calibration measurement is done by creating an interaction
between a robot tool and a fixed calibration fixture located in the robot
workspace. To avoid excessive fixturing costs, it is important to determine
the smallest number of measurements that will result in an accurate
calibration.

Having different identification algorithms that vary in their modeling re-
quirements, does additional modeling beyond kinematic modeling, such as
probabilistic characterization of measurement noise and unknown robot
parameters, really promise a significant improvement of the calibration
accuracy?

While linear least-squares and nonlinear least-squares algorithms are com-
monly used as simple practical ways of estimating the unknown parameters from
the measured data, one needs to resort to Estimation Theory and to analysis
tools such as Kalman filters for some useful formulas that provide relationships
between estimation error and parameters such as measurement noise covariance
or the number of measurements taken. Such analysis tools can then provide
better insight as to what is the best way of working with the “practical” algo-
rithmic methods.

It is important to stress that the parametric and geometric identification
approaches are not completely disjoint. For instance, the identification of the
robot joint axes line equations alone will not suffice to determine the joint
variable offsets. Furthermore, the identification of joint axes can be done only
for axes about which an actual motion (either rotary or linear) can be performed
during the measurement phase. As such the robot base and tool transformations
parameters need to be found parametrically. The last section in this chapter,
Section 4.7, is devoted to base and tool parameter identification issues.

42 MATHEMATICAL FORMULATION FOR
IDENTIFICATION OF ROBOT KINEMATICS

The forward kinematic model of a robot manipulator describes the position and
orientation of the tool frame attached to the end of the manipulator in terms of
the base frame. Let the base link fixed to the ground be numbered 0. The tool
frame at the most distal link is numbered n. Each link i has a coordinate frame
0.z, attached to it. The matrix Al is a homogeneous transformation re-
presenting the position and orientation of the frame i relative to frame i — 1.
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Thus, using the DH notation:
Al = A (p) pi=[0irlal" 4.1)

where p; is the parameter vector for joint i.

The kinematic equation of the robot manipulator is obtained by the consecu-
tive homogeneous transformations from the last frame back to the base frame.
Thus

TO = TOM) = A%AL AT = [T (AF) @2)
i=1

where k = [p, p, -** p,]17 is the parameter vector for the manipulator.

Let 8p; = [06; or; 81; 5a;]T where 5p; is the link parameter error vector. If joint
iis revolute, then 40, is the encoder offset at that joint. If joint i is prismatic, then
dr, is the encoder offset at that joint. The exact link transformation B{™! is

Bi' = A"l +dA,  dA, = dAp) (4.3)

The exact manipulator transformation Ty , is

Tp. =[] B 4.4)
i=1
The additive error transformation, dT, is defined as
dT=Tg, - T? 4.5)

Let the vector q be the vector of joint variables (6; or r;) and 6k = [p, op, ** op,]”
be the manipulator parameter error vector.

Let dT = TP AT. Here AT is the transformation representing change in ma-
nipulator transformation T? expressed in coordinate frame n. The manipulator
transformation error AT is a nonlinear function of the manipulator parameter
error 0k. Thus AT = AT(q, k). For a more rigorous treatment of differential
transformations and their relationship to the calibration problem, see Section 4.7.

The robot identification problem addresses the issue of determining Jk from
measurements containing information about AT. Expanding Equation 4.4 and
ignoring second-order products, we can obtain the identification Jacobian relat-
ing the change in manipulator transformation to the parameter error vector as

0T=Jok j=12,....m 4.6)
where 0T is the differential translation and rotation vector (discussed in Chapter

2) and m is the number of observations. The number of observations is chosen
to be large enough so as to overcome the effects of noise and uncertainty.
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Equation 4.6 represents an overdetermined linear system that may be “solved”
using the least-squares approach of the pseudoinverse (normal equations) as

ok = [(JTI)"IT]6T 4.7

where J =[J, J,---J,]7 and 6T = [6T, 8T, --- 6T, ]1". Equation 4.7 may be
applied iteratively and will converge if the kinematic errors are small enough.
This approach to identification will be referred to as the linear least-squares
method and is described in Section 4.3.

The second approach is to view the problem as one of fitting a nonlinear
regression model. The form of the nonlinear model for the exact manipulator
transformation from Equation 4.4 is

x;=fg,k) j=12...m (4.8)

where x is the exact manipulator end-effector pose corresponding to BY, and m
is the number of observations. The residuals for such a model are

e(0k) =2 —f(g,k) j=1,2...,m 49)

where z; is the vector representing the measured pose of the robot at position j.
The least squares estimate of k is the value of k that minimizes the function

L=Y eTe 4.10)
J 7

Such an approach to identification will be referred to as the nonlinear least-
squares method and is discussed in Section 4.4

The vector formulation in Equation 4.8 of the robot kinematic model is helpful
in mathematically formulating some of the research issues that correspond to the
calibration identification phase.

The first such issue is the relationship between the vector of joint variables q;
and the vector of joint position transducer readings n; at measurement position
j-Rewriting Equation 4.8 in terms of the joint readings n; can be done as follows:

x; = f(n;,n,2) 4.11)

where n; is the n-vector of joint tranducer readings in the case of an n degree of
freedom manipulator, p is the vector of coefficients in the relationships between
the joint transducers and the actual joint displacements, and a is the vector of
coefficients in the kinematic model that is being used. Specializing Equation 4.11
to each of the robots A and B mentioned earlier provides:

Xs = (N4, R4,84) (4.12)
and
xp = f(np, Bp, 2p) 4.13)
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The given model of robot A provides for the functional structure f(-) that is
assumed to be the same in robot B as well. The identification problem is thus
reduced to a parameter identification problem. Specifically, the model of robot
A provides for the nominal values of the kinematic parameters

Ba = Ko 4.14)

and
aA = 20 (4. 1 5)

The vectors pg and ay are unknown. Estimates fi; and 4, are to be constructed
based on a set of measurement data collected from robot B. That is, the end
effector of robot B is placed at m locations, [xg(1),...,xg(m)], within the robot
workspace. For each of the m robot configurations, the relationship between the
workspace position and the joint displacement transducers will be given by

xB(j) = f[ﬂB(])’ g, aB] ] = 1, s, m (416)

End point sensing methods are used to determine some of the elements of each
vector Xg(j),j = 1,...,m. Also ateach such configuration the vector py( j)is read.
Let the total number of unknown parameters be denoted by N,;:

N, = dim(pg) + dim(ap) 4.17)

If there is no redundancy in the sets of parameters p and a then N, is a necessary
but not sufficient lower bound on the minimum number of scalar algebraic
equations that need to be specified by the measurements. Neither py nor ag is
really constant. Both may vary to properly model the effect of nongeometric
terms. Many model based parameter identification methods, though, simply
ignore such variations and treat the unknowns as constants.

Some calibration measurement techniques are such that at each robot con-
figuration the entire 6-vector xg(j) is measured or can be calculated from mea-
sured entities. On the other hand certain measurement techniques provide only
for a subset of the full cartesian position vector. In the latter case, Equation 4.16
needs to be modified as follows: Let the vector yg( ) represent those elements of
xg(j) that are either directly measurable by the particular measurement tech-
nique that is being used, or can be determined from the constraint equations
imposed by the measurement action. Then

ye() = f,[ne(i)ps.35]  j=1....,m (4.18)

where f () represents the appropriate subset of kinematic equations.
In practice the vector yg(j) cannot be measured without error. The measure-
ment noise v(j) obviously depends on the accuracy and resolution of the end
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point sensors and fabrication tolerances of the calibration fixtures

where yg ,(j) is the position that is actually read by the end-point sensors, or
calculated from the end-point sensing data. In the latter, if y; ,(j) is found
through arithmetic manipulations, numerical errors of the processing method
also contribute to v( j).

The reading of the joint transducer mg(j) may also include errors. The most
obvious errors are due to quantization noise inherent to any digital conversion
of analog data. Other types of errors may be modeled as noise to “mask”
nonlinearities or fluctuations in the relationship between the output of the joint
sensor and the actual joint displacement. To elaborate on this point, recall #; the
signal coming from a given joint position transducer, and the actual joint dis-
placement g;. Ideally the relationship between gq; and #; is linear as follows:

q; = kiyn; + kip (4.20)
In such a case one denotes
;= (kilakiz)T 4.21)

The vector p is the concatenation of all such pairs ;. The physical significance
of this vector depends on the particular types of transducer or drive systems and
relative location of the transducer with respect to the joint axis of motion. For
example, if an incremental encoder is being used, k;; will represent the encoder
gain including any gain added by gearing of the encoder shaft to the joint. The
constant k;, represents the displacement of the joint when the encoder counter
is set to zero.

In cases involving high precision it may become necessary to develop a more
sophisticated model than the one in Equation 4.20. Nonlinear effects such as gear
backlash or transducer nonlinearities may be included in the model. For example,
Whitney et al. [31] in their experiments with a Puma 560 robot detected a
harmonic variation superimposed on the linear relationship. This effect, which
was mostly attributed to gear eccentricity, was empirically modeled as

qi = ki + kip + ki sin(ky n; + kiy) 4.22)

where the constants k;; and k;, described the magnitude of the harmonic varia-
tion and the phase shift. In some cases the design of the joint and type of
transducer will dictate the form of the model used. In many instances, however,
the particular form of the nonlinearities must be deduced from experimental data.
Alternatively, one may choose to model any additive nonlinear term such as the
one appearing in Equation 4.22 as an additive noise {; that “masks” the non-
linearities in the drive model.
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The total measurement data Q consists of m pairs of vectors as follows:

Q = {[yg,m(1), Me(M)1...., [¥,m(m), ng(m)1} (4.23)

The parameter identification algorithm maps @ and the a priori data (ie.,
nominal values of kinematic parameters and possibly probabilistic data regard-
ing the measurement noise and the unknown parameters) into a unique estimate
of the vectors pg and ay.

4.3 LINEAR LEAST-SQUARES PARAMETER ESTIMATION

This section is an introduction to standard least-squares estimation, minimum
variance estimation, and Kalman filters as they apply to the problem of estimat-
ing the errors in the robot kinematic parameters. The emphasis is not so much
on the algorithmic side but more on estimation error analysis. We will begin by
casting the robot calibration equations in a framework more compatible with
these estimation techniques.

Referring to the vector formulation of the robot kinematics given in Equation
4.11, let X be defined as the vector of changes in the kinematic parameters
between robot A and robot B:

X = (ApT,Aa™)T 4.29)

where
Aa=az;—a, 4.25)
Ap =pg —p, (4.26)

Robot A is the nominal robot and robot B is the actual robot.

The identification of the kinematic model of robot B is the problem of
estimating the vector X based on the collected observations.

The convergence of many linear identification algorithms may depend on the
“smallness” of X in a certain sense.

The small perturbation requirement (i.e., small |X]||) may be necessary to
establish a linearized measurement equation. That is, an equation in which the
vector that depends on observed data is a linear function of the “signal” vector
of unknowns X as was shown in the modeling chapter.

To find the relationship between a vector of small perturbations X and the
measurements, the following residual or “world coordinate error vector” e(j) is
defined:

e(]) = fy [nB(]), | J:D aB] - fy [113(]), By, aA] (427)

where f,(-) is as in Equation 4.18. The vector e(j) is the difference between x(j)
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and x ,(j) (the robot pose vectors), for the same readings of the joint transducers.
By neglecting higher order powers of the components of X and cross-products
of elements of X, it may be shown that e(j) relates linearly to X:

e(j) ~ H(j)X (4.28)

where the matrix H(j) depends on the particular robot configuration as de-
termined by the vector of joint readings ng(j).
Combining Equations 4.19, 4.27, and 4.28 yields

H()X = yB,m(j) - fy["B(j)’ By 2] + v5(J) (4.29)

A generalized “measurement vector” z( j) is now defined as follows:

2(j) = Yp,m(J) — fy[nB(j)’ By ayl (4.30)

where z(j) is the computed difference between the observation vector yg (),
measured using end point sensors, and a computed observation vector using the
nominal kinematic model and the measured joint positions. Combining Equa-
tions 4.29 and 4.30 results in

2 )=H(HX—-v(j) Jj=1...m (4.31)

This linearized measurement equation is the starting point to a variety of linear
identification techniques including the least-squares estimation X of X and
minimum-variance estimate of X.

4.3.1 Standard Linear Least-Squares Estimation

The linearized error model is the basis for direct linear identification methods of
the errors in the kinematic parameters. Again, let the vector X denote the
unknown errors in the robot kinematic parameters. During the measurement
phase of calibration, the robot is brought to m different configurations. In each
measurement configuration, a measurement vector z( j) is determined. The vector
2(j) is the difference between the measured end position and the end point
position as calculated from the nominal robot kinematic model. At each measure-
ment pose an unavoidable measurement error vector v(j) exists. The linearized
measurement equation can be expressed as follows:

() =H(HX +v() j=1....m 4.32)
where the matrix H( j) is defined from the robot nominal kinematic model at each

measurement configuration j,j = 1,..., m. The dimension of z(j) is 6 or less and
will be denoted by .
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In the context of recursive estimation, Equation 4.32 may be viewed as a
“discrete-time” measurement equation. The time index j represents of course a
completely arbitrary ordering of the robot measurement configurations, j =
L,..., m. Sometimes it may be convenient to assume that J = 0 corresponds to
the robot home position. As the matrix H( ) changes from one measurement
configuration to another, Equation 4.32 is essentially a “time-varying” measure-
ment equation. However, unlike standard time-varying system models, here the
time index j does not appear explicitly in the elements of the matrix H(-). Instead,
the numerical values of H(-) are known at every value of J-

A batch-processing strategy is to concatenate all measurements z(j) into a
single measurement vector Z:

z(1)
Z=| : 4.33)

z(m)

The m equations given in Equation 4.32 may now be written as

Z=HX+V (4.34)
where
H(1)
H= : (4.35)
H(m)
and
v(1)
V= : (4.36)
v(m)

When solving a set of linear algebraic equations in which the free terms in
each equation depend on measured data that may contain error, it makes sense
to take enough measured data so that the number of equations be greater than
the number of unknowns. This is done to reduce the influence of errors on the
computation results. Thus, X, the vector of unknowns is n-dimensional. Z,
the vector of measured data is p-dimensional where p = ml. It is assumed that
p = n. In many practical applications p > n is common. Also note that V is
p-dimensional as well.

In the standard least-squares method, no stochastic modeling is done. In other
words, the noise vector V is treated as an unknown variable.
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The goal is to find an estimate X of the unknown X. In particular one tries to
find X that minimizes the sum of squares of the elements of the errors vector
Z-HX.

For that purpose a scalar cost function J is created:

J =(Z — HX)"(Z — HX) (4.37)

This performance criterion is quadratic in the elements of X. The minimum value
of J is obtained when

aJ
—=0 4.38
< (4.38)

together with the condition that at the value X that satisfies Equation 4.38, the
Hessian matrix of J is positive semidefinite:

2
% >0 (4.39)

To differentiate J, the following useful matrix derivative formulas are used:

F

= (xTAy) = Ay (4.40)
a T T.

5 0TAX) = ATy (4.41)
%(fox) =(A + AT)x (4.42)

where A is any square matrix and x and y are vectors of appropriate dimensions.
Differentiating Equation 4.37 and substituting into the condition given in
Equation 4.38 yields

H'HX = H'Z (4.43)

It can be shown that under Equation 4.43, the second derivative of J with respect
to X is positive semidefinite. Thus, Equation 4.43 indeed defines a minimum.
When the matrix H"H is nonsingular, the least-squares estimate is

X =HH)'H'Z (4.44)
The performance criterion in Equation 4.37 gives equal weighting to all the

elements of the error vector. In robotic applications there are particular kine-
matic errors that may be more important than others. For instance, it was
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demonstrated in [32] that errors in the rotational  and « DH parameters
dominated errors in the translational parameters in their effect on the overall
robot accuracy. To provide for such unequally weighted estimation the perfor-
mance measure J may be modified as follows:

J = (Z — HX)"W(Z — HX) (4.45)

where the weighting matrix W is taken to be symmetric and positive definite. The
minimizing solution now satisfies the equation

H'WHX = HTWZ (4.46)

Again, a condition of nonzero determinant is posed on the matrix H'WH, and
then the least-squares estimator is

X = (H"WH)'H'WZ (4.47)

The estimator coefficients depend only on H, the deterministic part of the
measurement model and on the weighting matrix W.

The estimator has been derived using deterministic reasoning only. It is of
interest though to study some of the probabilistic properties of X in Equation
444 or 4.47.

Let e denote the estimation error vector:

~

e=X-X (4.48)
By Equations 4.34 and 4.47:
e=X— (H'WH)'"H"W(HX + V) = —(H"WH) 'H'WV 4.49)
The expected value of the error E(e) is thus
E(e) = —(H"WH) 'HTWE(V) (4.50)

If all we know about the measurement noise V is that it is a zero-mean random
vector, then the estimation error using a linear least-squares estimator is also
zero mean. An estimator with such property is called an “unbiased” estimator.

Proceeding one further step, it is assumed that the measurement noise in
addition to having a zero mean also has the following noise covariance matrix:

Var(V) =X, = E{(V — E(V))(V — E(V))T} = E(VVT) 4.51)

where the matrix £, is symmetric and positive definite. Var(V) describes the noise
“intensity.” If absolutely no information is known about the measurement error
size,and the error elements may be arbitrarily large, then the following is taken
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=0 4.52)

As demonstrated in [20], the estimation error covariance X,
Var(e) = £, = E(ee”) 4.53)

can now be expressed in terms of the measurement noise covariance, using
Equation 4.48, as follows:

X, = E{(H"WH) 'H"WVV'WTHHTWTH)™}
= (HTWH)'H'WE, WH(H'WH) (4.54)

Finally, note that singular cases, either H'H or H'WH being singular ma-
trices, indicate an ill-conditioned measurement model as given by Equation 4.34.
This is the case in which some of the linear algebraic equations in the set of
measurement equations are linearly dependent on other equations. The measure-
ment model should then be modified by removing all such redundant equations.

4.3.2 Linear Minimum Variance Estimation

In the previous section the mean and variance of the least-squares estimation
error have been studied under the assumption that limited probabilistic informa-
tion was made available about the measurement noise V, namely the first two
moments of V. A question may now be asked as to whether the least-squares
estimator is optimal also in the sense of giving minimum error variance. In
general the answer to this question is no.

In this section it is assumed that the first- and second-order moments of the
measurement noise V and the unknown vector X are all given as follows:

E(X) = p, (4.55)
Var(X) =X, 4.56)
E(V)=0 4.57)
Var(V) =X, (4.58)

Where the covariance matrices X, and X, are both symmetric and positive
definite. It is further assumed that V and X are uncorrelated.

An estimator of a particular structure is of interest. That is an estimator in
which the measurement vector Z is processed linearly. Such a linear estimator
has the following structure:

X=b+AZ (4.59)

The objective is to select an n-vector b and a n x p matrix A to minimize the
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estimation error variance. It should be noted though that such an optimal linear
estimator is not necessarily the optimal minimum variance estimator. In general,
there may exist a nonlinear estimator X= f(Z) that provides an even smaller
€rror variance.

As it turns out, the design parameters b and A provide more design parameters
than are required for the optimization problem. Thus, one can afford imposing
additional requirements on the estimator. Namely, the estimator should also be
unbiased in the following sense:

EX) = E(X) (4.60)
Therefore, using Equation 4.55, 4.59, an 4.34.
b+ AHp, = p, 4.61)
Thus
X =p, + A(Z — Hp) (4.62)

This structure guarantees that the estimation error is zero mean. The matrix A
needs to be selected to minimize the error variance. As the error variance is a
matrix and since the performance measure should be a scalar, a common ap-
proach is to minimize the sum of the variances of each component of the error
vector. This is the sum of main diagonal terms of the error covariance matrix
known as the trace of the error covariance matrix:

J = tr{Var(X — X)} = tr(L,) (4.63)
J needs to be minimized by searching over all n x p matrices A:

Joptimal = mln tr{E[(X —Rx— A(Z - Hux))(x — B — A(Z - H"x))T:I} (4'64)
A‘

Denoting by A* the optimal A that minimizes J of Equation 4.63 the result, using
standard calculus of variations as given in [20] is

A* =X HTHZ H" + Z)! (4.65)
yielding the linear minimum variance estimator
X =p, + S, HIHZ H” + £)"4(Z — Hp,) (4.66)

It is noticed that in the estimator formula (Equation 4.66) the matrix that needs
to be inverted is of size p X p where p is the dimension of the measurement vector
Z. Equation 4.66 may be simplified in the sense that the matrix to be inverted
will be of size n x n instead of p x p where n is the dimension of the unknown
vector X.
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This involves the well known matrix inversion identity [20] as follows.
Let P and R be nonsingular matrices of size n x nand p x p, repectively, and
Hbe a p x n matrix. Then

(H'R™'H + P™!)"! = P — PH'(HPH” + R)"‘HP (4.67)

As an application of this identity let

P-%. R=I, (4.68)
Then Equation 4.66 may be written as:
X =HTL'H + Z7) 7 YHTEIZ + £0,) (4.69)

which is easier to implement than Equation 4.66 since in practice n « p. Further-
more, the effects of complete ignorance of probabilistic models may be easily
incorporated into Equation 4.69. If the variance of X is arbitrarily large, that can
be modeled by setting

r1=0

X

Similarly, if the measurement noise is arbitrarily large, one should substitute

rt=0
into Equation 4.69. In other words, if the measurements are so noisy that the
signal cannot be recognized, the minimum-variance estimation strategy would
be simply to take

X=p,
It is now a straightforward exercise to compute the estimation error covariance
of X of Equation 4.69. The important result is

T, = (H'EL'H + T (4.70)

Equation 4.70 relates the estimation error to the intensity of the measurement
noise V and to the amount of uncertainty in the unknown vector X.

At this point it is of interest to compare the least-squares estimator to the
linear minimum variance estimator. Since the least-squares estimator is also a
linear estimator, its performance in terms of error variance is in general inferior
compared to the optimal estimator derived in this section.

By comparing Equations 4.54 and 4.70, it is observed that the least-squares
estimator can be made a minimum variance estimator if one chooses the weight-
ing matrix W to be

wW=zx11 4.71)
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In other words, a possible strategy for least-squares estimation is to give weight-
ing according to the noise intensity of every measurement configuration. The
“noisier” the measurement, the smaller is its effect on the estimation.

So far, it has been assumed that the probability distribution functions of the
random vectors V and X are not fully known. Estimators have been developed
in cases where the first two moments of these distributions have been given. A
common approach to stochastic modeling of many physical systems is to assume
that each of the random vectors V and X is Gaussian. As is well known, the
Gaussian probability distribution function is fully characterized in terms of its
first two moments. Therefore, the previously developed estimators may be shown
to be optimal with respect to some additional performance criteria under the
assumption of Gaussian measurement noise and Gaussian unknown vector X.

For instance, a “maximum-likelihood estimation” philosophy is to choose X
such that it maximizes the probability of measurements Z that actually occurred.
Assuming that no information is available about X and that V is zero mean,
Gaussian with covariance matrix R, the conditional probability density of Z,
given X, is:

P(ZIX) expl—2(Z — HX)"R™Y(Z — HX)] (4.72)

1
~ CnR|

where p is the dimension of Z. Choosing a vector X that maximizes p(Z|X) is
now equivalent to minimizing the cost function

J =(Z — HX)"R™YZ — HX) 4.73)

Thus, the standard least squares estimator for a weighting matrix W = R™! is
also the optimal maximum likelihood estimator under the further assumption of
a Gaussian measurement noise.

One may also show that under the assumptions of Gaussian V and X, the
linear minimum-variance estimator for the linear measurement model is also the
optimal minimum-variance estimator among all possible nonlinear estimators.

433 vLinear Least-Squares—Practical Considerations

The International Mathematical and Statistical Library (IMSL) [14] contains a
routine LSQRR that solves a linear least-squares problem with iterative refine-
ment. This routine is also available in a double precision version, DLSQRR.
Given a linear system of equations of the form b = Ax where x is n x 1, b is
m x 1, Ais m x n, and m is greater than n, the routine computes x from A and
b using a least-squares fit similar to that in Equation 4.44. The IMSL routines
are powerful, well debugged, and easy to use. There are some programming
details that need explanation, however, and these are discussed in the following
sections. The argument TOL in the call to LSQRR is used to determine the subset
of columns of A to be included in the solution. One wishes, of course, to use all
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Initialize Link Parameters

Compute Observation Errors

[

Compute Jacobian Matrix

Modify Link Parameters I
Solve Linear Least Squares
IMSL routine LSQRR
No [
'————-{ Check Convergence l
Yes

Figure 4.1. Flowchart for linear least squares.

columns of the identification Jacobian, hence, TOL is set to zero. Note that it
may be necessary to scale the rows and columns of the A matrix as explained in
the IMSL documentation. In particular, as the elments of b are subject to random
errors, the equations should be scaled so that the variance in b, i =1, ..., mis
constant. Thus, six degree of freedom pose measurement for calibration would
imply that the rows of the Jacobian corresponding to position error and the rows
corresponding to orientation would be scaled differently, depending on the units
used.

The flow chart for the linear least-squares method is shown in Figure 4.1. The
parameter k as defined in Equation 4.2 is initially set to the nominal manipulator
link parameter values. Using k and the vector of joint variables, gq, for each
observation, the predicted manipulator transformation, T,, is calculated. The
observation errors are calculated from the predicted and measured end effector
pose. The elements of the Jacobian matrix are calculated next. The linear least-
squares routine LSQRR is then invoked to compute the parameter error vec-
tor, 5k from J and ST as defined in Equation 4.6. Since the calculation of the
identification Jacobian assumes linear approximations, the parameter errors are
added back to the parameter vector as

Kpew = Koig + 0k 4.74)

and the linear least-squares procedure is repeated. To check for a stopping
criterion, the sum of squares of the identified parameter errors is computed at
the end of each iteration. If the identification is unsuccessful, this sum diverges
to larger and larger values. It should be noted that neither convergence nor
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divergence is necessarily “monotonic.” The LSQRR routine returns the residual
vector (b — Ax) in the argument RES, and the scalar containing the estimated
basis of the coefficient matrix A in the argument KBASIS. KBASIS is thus also
the rank of the Jacobian and its value is an indication of model singularity when
it is less the number of parameters to be identified.

The reader is referred to the simulation example in Section 4.5 that illustrates
actual results of running the least squares routine described above.

4.3.4 Kalman Filtering

The estimation techniques that have been discussed so far are all “batch pro-
cessing” algorithms. In other words, all the data are first collected and then the
processing is done on the entire set of measurements simultaneously. An alterna-
tive approach is recursive estimation. In a recursive estimator the measurements
come sequentially and there is no need to store past measurements for the
purpose of computing present estimates. Whereas in batch estimation the size of
the measurement vector must be larger than the size of the estimated vector, one
typically experiences the opposite in recursive estimation.

In this section, the key properties of the discrete time Kalman filter as applied
to robot calibration are discussed. The derivation of the various filter formulas
follow those given in reference [8,20]. The Kalman filtering problem is the
problem of finding an optimal state estimation in a linear Gaussian time varying
dynamic system. In other words, rather than assuming a fixed unknown vector
X, a vector that evolves in time according to a linear difference equation is
assumed as follows

X, = Aoy Xy + Wy (4.75)

where X, is an n-vector called the “state vector.” The state at time ¢ = 1, is
denoted by X,. A,_, is an n x n matrix whose elements may in general depend
on the time index k. The vector w, is a zero mean white noise sequence of
covariance Q. It is assumed that initially, at ¢ = 0, the state X, is a Gaussian
random vector that is independent of any of the vectors w, k=012, ....
Equation 4.75 is convenient whenever one wants to model imperfect joints. The
vector X of kinematic parameter errors may in practice fluctuate randomly as
the robot joint axes “wobble.”

The measurement vector at time ¢ = t,, denoted as Z,, is assumed to be a
linear combination of the state variables at that time, corrupted by a measure-
ment noise. The measurement model is as follows:

Zk = Hka + Vk (4.76)

where the dimension of Z, is I (typically I < n). H,isan! x n time-varying matrix
and V, denotes a zero mean white noise sequence of covariance R,. It is assumed
that the measurement noise sequence V, is statistically independent of both the
process noise sequence w, and the initial state X,,.
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The objective is to find a recursive state estimate X, that is a linear combina-
tion of the present measurement Z, and the previous state estimate that depends
on all the past measurements Z,, Z,, ..., Z,_,. In addition, ﬁk, needs to be
optimal in a certain sense.

For simplicity let the performance objective be the minimum-variance of
the estimation error. In other words, X, will be derived here to be the linear
minimum-variance estimator. What will not be shown here is that under the as-
sumptions that both the process X, is linear and Gaussian and the measurement
noise V, is Gaussian, the same X, may be shown to be optimal with respect to
many other performance criteria as well including nonlinear minimum-variance
estimation, maximum likelihood estimation, and more.

To mathematically quantify the recursiveness requirement, the following no-
tation will be used. The term ﬁk(—) represents the estimate of the system state
at time t, without taking into account the measurement Z,. The term X, (+)
represents the updated version of ik(—) using the measurement Z,. An estimate
of the following functional structure is then sought:

X.(+) = CXi(—) + K, Z, (4.77)

where the time-varying matrices C, and K, are as yet unspecified. For simplicity,
we will set

X, =X, (+) (4.78)

To understand the reason why X, is not taken to be the linear combination of
XH and Z,, note that the measurements Z,, Z,, ..., Z, come only at discrete
times 0, ¢;, t;, ..., &. Since no information is coming in between sampling
instances, the relationship between )A(k( —)and Xk_l is determined by the way the
state propagates between t,_, and t, according to Equation 4.75 without taking
into account the process noise.

Xk('—) = Ak—lik—l = Ak—lxk—l("') (4-79)

Obviously, ﬁk( —) represents the most updated state estimate up to the moment
t, when a new measurement is about to be added.
Requiring that the estimator be unbiased for every k, that is

Ee)=EX,—X,)=0 (4.80)

imposes additional restrictions on the choice of the matrices C, and K, of
Equation 4.77. To simplify, we make the following definitions:

e, =X, — Xk (4.81)
e(—) =X, — X,(-) (4.82)

Obviously, if E(e,) = O for any k, then E[e,(—)] = 0 also. Now, by substituting
Equations 4.76 and 4.77 into e, one gets
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e =1—-C, — KH)X; + Cee,(—) - K, V, (4.83)
Then the requirement that the estimator be unbiased implies that
G =1-KH, (4.84)
The unbiased estimator takes the form
X, = Xu(—) + K [Z, — H X (—)] (4.85)
and the estimation error is
¢, = (I - KH)e,(—) + K.V, (4.86)
Examining closely expressions 4.79 and 4.85 one notices that any arbitrary
estimator using an arbitrary gain matrix K, has the simple block diagram shown

in Figure 4.2. The estimator consists of an internal model that duplicates the
known model of the process and measurements A,, H,. The vector v,

v, 2Z - HX,(-) 4.87)
Measurement
noise
Process State v,
noise vector /L

+
w, + X, 4
k-1 7\ Process K K

H, —_) Measurement
+
A, Delay . State
X, estimate

N e ]
| —»O J Innovations I
! g process |
I + |
| ’ |
| ~ Ak-l Delay C)ﬁ Kk —— |
| X (-) A |
| |
‘ |
I |
I H, |
' |
' |
| |
] 1
L e _l

State estimator

Figure 4.2. Block diagram of a recursive linear state estimator.
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is known as the “innovations process.” It contains the “fresh” new information
that comes at each time k to the estimator. The Kalman filter is a linear estimator,
as above, in which the gain K,, that multiplies the innovations process before
feeding it back to form the new state estimate, is chosen in an optimal manner.
That is, the gain K, is selected to minimize the variance of the estimation error
¢, as expressed by Equation 4.86. The derivation of the optimal gain K, will be
shown next, but before that, a few words to explain the terminology “filter.” In
the context of estimation theory, the word “filtering” corresponds to finding an
estimation of X, at time f,, given the measurements information up to and
including the time #,. This is in contrast to

1. “Smoothing,” where X, _; for the integer j > 0 is estimated based on the
information up to time ¢,.

2. “Prediction,” where X, ; for j > 0 is estimated based on the information
up to time ¢,.

Coming back to Equation 4.86, the error covariance P,
P, = E(e.e]) (4.88)

can be now computed as a function of the arbitrary n x I gain matrix K, where
lis the dimension of Z, and n is the dimension of X,:

P, = (I - K,H)P(—)T — K,;Hy)" + KR, K] (4.89)

where
P, (=) = E[e.(—)e(—)"] (4.90)
and R, is the measurement noise covariance. In the derivation of Equation 4.89
the assumption was that the error e,(—) is independent of V,. K, is chosen to
minimize the following performance criterion
J = tr(Py) 4.91)
for reasons similar to those explained in Section 4.3.2.

For such computation the following matrix identity is needed. Let A and B
be two matrices where B is symmetric. Then

9 [tr(ABAT)] = 2AB 4.92)
0A
Thus, from Equation 4.88 and 4.91 one computes

0
5k Lr®1 =0 (4.93)
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which gives the optimal gain matrix
K, op = P(—)H{[H,P,(—)H{ + R, ]! 4.94)

Indeed, one can verify through the Hessian matrix of J, that this is a minimizing

solution. The only missing link in determining the complete equation of evolution

of the optimal error covariance P, is the relationship between P,_; and P,(—).
A simple manipulation of Equations 4.75, 4.79, and 4.82 yields

el—) = Ay 11 + Wy (4.95)
Using the assumption that e, and w, are independent, one obtains
P(—) = A, Pk—lAkT—l + Qi1 (4.96)

where Q, is the covariance of the process noise.
Substitution of the optimal gain K, ,,, of Equation 4.94 into 4.89 yields the
simple updating law:

Py = ([ = Ky op Hi)Pi(—) (4.97)

Equations 4.94, 4.96 and 4.97 provide the algorithm for both updating of the
estimation error covariance matrix P, and determination of the optimal gain
matrix K, at every step.

To start the Kalman filtering algorithm, recall that the initial vector X, is
Gaussian with mean p, and covariance P,. Then

X, = E(X,) = n, (4.98)
P, = E[(X, — Xo)(Xo — Xo)™1 = E[(Xo — p )Xo — 1)"]  (4.99)

Using Equation 4.96, P,(—) is calculated from P,. Then, using Equation 4.94,
K, .o is calculated and finally, from Equation 4.97, P, is found, and so on.

It is important to note that the evolution of the error covariance matrix Py,
representing the performance of the Kalman filter, is independent of the mea-
sured data Z,, k = 0, 1, 2, ... . The vector P, does depend on the dynamic model
parameters and on the parameters of the probabilistic model of X, V,, and w,.

It is feasible, if so desired, to solve “off-line” for the matrices P, and K,, for
arbitrarily many values of k, trading a great deal of real-time computations for
a much increased memory requirement.

Specializing the Kalman filtering equations to the problem of identifying a
fixed Gaussian vector X is straightforward. The state Equation 4.75 for a constant
process X becomes

X, = X,_, (4.100)
X, = X (4.101)
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In other words, the standard identification problem is characterized by A, =1
and by having no process noise.

The measurement model given in Equation 4.76 for the identification problem
remains unchanged. Note that the measurement equation is time varying as the
matrix H; needs not be the same from one value of k to another.

Many of the filtering equations now become very simple. For instance

X (=) =X,_, (4.102)
P(—)=P, (4.103)

The resulting recursive identification equations of a Gaussian vector X having
mean p, and covariance P, are as follows:

X, =Xy + P HI[H,P,_ H] + R,]7'[Z, - H,X,_,] (4.104)
X, =n, (4.105)

where p,, is typically zero.
P, =P, — P, H{[HP_ H + R HP,_, (4.106)

Equation 4.106 shows the evolution of the estimation error covariance. Since it
is independent of any real-time data, it can be solved or analyzed a priori to
provide the full characterization of the filter performance features such as the
steady-state error covariance and the speed of convergence to steady state
conditions.

Characterizing an equilibrium solution to Equation 4.106 as follows:

lim P,_, = lim P, =P, (4.107)

k—=>o k=
then an obvious steady-state solution P, of Equation 4.106 is

P,=0 (4.108)
indicating that as the sequence of measurements Z, grows longer, the estimation
accuracy gets better and better, if only the matrices H, are such that P, converges
to zero. The second term on the right-hand side of Equation 4.106 is the one that
determines the updating of P,. Intuitively, the larger the intensity of the measure-
ment noise, (i.., the elements of the matrix R,) the slower is the convergence of
P, to a steady state solution.

The property of zero steady-state error covariance is entirely attributed to the
lack of process noise in Equation 4.100. Equations 4.94, 4.96, and 4.97 in general
produce under certain controllability and observability assumptions of the
model, a nonzero steady-state error covariance P,,.
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For exampile, let the process equation be

X =Xy + Wiy
X, =X (4.109)
Here a vector X, is nominally fixed but its value is subject to random fluctuations

modeled by a white noise sequence w, (zero mean and covariance Q,). It can
be shown that for this case the filtering equations are

X, = Xy + KiZ, — HiX, ) (4.110)
K, = (Poy + Q) )H{[H(P,_, + Q) )H{ + R, ]! (4.111)
P=P._; +Q, —KHP._, +Q,) (4.112)

Considering for a moment a time-invariant case Q, = Q, R, = R, and H, = H,
then a steady state solution P, of Equation 4.112 satisfies the algebraic equation:

P, + QH'[H(P, + QH" + R]T'H(P, + Q) =Q (4.113)

In the time-varying case, a constant steady-state solution P, may not exist at all.

The initial error covariance matrix P, reflects the a priori knowledge regarding
the expected axis misalignment at every robot joint. One may take worst case
values based on models of the tolerances in the robot axes of motion. If such
models are not easily available, one may take an arbitrary positive definite and
symmetric initial matrix P,. Under proper operation of the filter and after
sufficiently many measurements, the value of P,, the error covariance, converges
to a steady-state matrix P . In the case of fixed unknown state X, as was just
shown, P = 0. Thus, after sufficiently many measurements the filter’s estimate
is stabilized as less and less weighting is given to new measurements. Of course,
at that stage there is no sense in taking more measurements. The speed of
convergence to such steady state may be found by off-line analysis of the data-
independent Riccati Equation 4.106. In particular, the sufficient number of
measurements depends on the initial uncertainity Py, the particular robot con-
figurations H, and the measurement noise covariances R,. '

In the case of arbitrary assignment of P, a reasonable assumption is that axis
misalignments in different robot joints are independent of each other. The errors
in the kinematic parameters within each link, however, are generally highly
dependent. Thus, rather than taking P, to be a diagonal matrix, a block diagonal
structure better reflects reality here.

Mathematically, the maximum number of measurements, M, is determined
from the inequality

IP() =Pl <0, V=M (4.114)

where the number é > 0 denotes a prespecified desired proximity to filter steady
state.
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As was previously shown, P = 0 due to the lack of “process noise.” In other
words under the assumption that the only imperfection of the robot joints is the
constant vector X of kinematic parameter changes, the calibration can be done
infinitely accurately regardless of the measurement noise if only a large enough
set of measurements is taken.

Practically though, the robot accuracy cannot become better than the robot
repeatability. Possible sources of nonzero repeatability are joint clearance effects,
gear backlash, joint position transducer noise, and imperfect feedback and feed-
forward control actions. These may be modeled via introduction of process noise
terms to the X, equation as was shown in Equation 4.109. This results in
convergence to a nonzero steady-state error covariance P, or, in other words, -
there will exist a nonzero lower bound on the calibration error. P, is a solution
of the algebraic Riccati Equation 4.113. P, depends on both the process and
measurement noise and may provide a useful clue regarding the interdependence
of calibration accuracy, measurement noise, and robot repeatability. It should
be noted that due to the time-varying nature of the system, a constant matrix P,
may not exist, but one may find lower and upper bounds on the norm of P, as
k— oo.

As measurements Z(j) are taken at arbitrary robot configurations and what
appears to be an arbitrary ordering, interesting questions may be raised, such as

1. Are there robot measurement configurations H(j) that do not contribute
useful information for the identification process?

2. Are there preferred measurement configurations H( j) that will provide the
fastest convergence of the identification algorithm?

3. How much “excitation” of the robot joints is needed for proper identifica-
tion? In other words, when the robot is moved from one measurement
configuration to another, do we need to move all the joints, or will it do to
move one joint at a time?

4. What is the minimum numer M of measurements for a given predefined
sequence of specific configurations H(1), H(2), ... ? Can lower or upper
bounds on such a number be derived when a desired final value P(n) of the
error covariance matrix P is given?

Finally, an important comment should be made regarding the practical opera-
tion of Kalman filters. The entire previous analysis was based on an assumption
of no modeling errors. In practice, the matrices A,, H,, Q;, R, and P, and the
vector g, may not be known precisely. Such modeling errors may even cause
filter instability. The following property of Kalman filters, that may be easily
verified, is helpful. When no modeling errors are present, the innovations process
v, (Equation 4.87) is a white noise sequence (i.e., v, is zero mean Gaussian and
the samples {..., Vi1, Vi, V41, .- } are uncorrelated). By statistically testing the
process v, for zero mean and uncorrelated samples one may reveal the presence
of modeling errors. One can then better tune the filter internal model to match
the actual model of the physical system.
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4.4 NONLINEAR LEAST-SQUARES ESTIMATION

The identification of the kinematic parameter errors using linear least-squares
techniques requires obtaining a linearized error model where the unknown errors
are related to the measurement error through the identification Jacobian. A
“small perturbation” requirement is crucial to guarantee convergence of the
least-squares algorithm whenever it is done iteratively. The following questions
then arise:

1. Can the identification be accomplished without the use of the identification
Jacobian, using only the nonlinear kinematic model?

2. Viewing the search for the kinematic parameter errors as a standard
unconstrained nonlinear optimization problem, can the identification Ja-
cobian, as well as higher order derivatives of the nonlinear kinematic
functions, be used in a manner that improves on the speed of convergence
and the quality of the identification?

3. What can be done to improve on the convergence properties of the identifi-
cation algorithm in cases where the kinematic parameter errors are not
necessarily small?

This section attempts to provide answers to these questions. Section 4.4.1 is
a discussion of direct search methods that indeed have minimal modeling require-
ments, but may be much slower as compared to more sophisticated methods.

The final section, Section 4.4.2, focuses on gradient methods, where again
the identification Jacobian is used, but in a manner that differs from that of the
linear least-squares algorithm. Some of the more popular methods such as the
Levenberg-Marquardt algorithm are introduced. The section touches on the
basicideas behind small as well as large residual optimization methods as applied
to the calibration problem.

4.41 Direct Search Methods
The vector form of the robot kinematic model (Equation 4.8) may be written as
x;=f(qp,k) j=12...,m (4.115)

where x; is the measured pose vector at the measurement configuration j and q;
are the corresponding joint variables.

k =k, + ok (4.116)
qj = qu + 6q (4.117)

where k, is the nominal set of kinematic parameters and ok is the unknown vector
of kinematic parameter errors, not including the joint offsets. The vector q;,
contains the nominal joint commands where dq is the vector of joint offsets.
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The number of measurement configurations, m, needs to be large enough so
that

dimx,, = dim(x7,...,xT) = 6m > dim(q) + dim(k) = K (4.118)

where the 6m vector x,, is the aggregation of the measured pose vectors.

f(ql ’ k)
Xag = ag(qlﬁ""qm,k) = (4.119)
f(q., k)
For an N degree of freedom manipulator and a DH modeling convention, we
have that K = 4N.

The optimization problem is to select 5k and dq to minimize a cost function
L defined as

L=|x,y — £,4(q; + 69,...,q, + g,k + Sk},
= [xag - fag(ql + 6q9 ey + 5q’k + 5k]T[xag - fag(ql + 5‘1, s Qpy
+ dq,k + 0k)]

= e (0k,g)e,.(0k,,) (4.120)
where e,, is an aggregated pose error vector and dk,, = (6q",0k™)" combines
together all the kinematic error parameters.

If no derivatives of f(-) with respect to q or k are available, the optimization
of L may be accomplished through direct search varying the components of dk,,
one at a time and solving the forward kinematics repeatedly.

A search algorithm based on the “Golden Section” method [18] is carried out
as follows:

Step 1: Define 6k,, = (J;,...,0¢)" and let the initial value k{2 be zero.
Step 2: Conduct a line search varying the first component of dk,,. Let

5k§1g) = (5190’-"50)T (4.121)
Decide on a search interval for the scalar variable 6, as given by
O1min < 01 < 01 max 4.122)

The interval {0, 1min> 91 max] 18 then scanned using the golden section method as
follows:

+ The initial width of uncertainty, d,, is

dy =0, max 51 min (4.123)
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* Let d, be the width of uncertainty at the second step.

d, = 1 +2 \/gdl (4.124)
+ Evalute L at
01A = 01 max — 42 (4.125)
and at
015 = 61 min + 42 (4.126)

o If L(8,4) < L(d;5), then form an interval of uncertainty [0 min,d1p]- If
L(8,,) > L{5,p), then form an interval of uncertainty [, 6, max]- In other
words, the new interval of uncertainty of width d, contains the point that
has the smallest value of L.

* Let
d; = 2 d 4.127)
14 ﬁ z '
+ Evaluate L at the symmetric points that are spaced d, from the boundaries
of the interval of uncertainty as in the previous steps.

The process repeats itself with smaller and smaller intervals of uncertainty.
The iterations may be stopped when a convenient termination condition has
been reached. We now denote 5¥ as the optimal J, value, obtained in the search
described above.

Step 3: Now vary the second variable, J,, in the same manner while keeping
the previously obtained éf value.

5k@ = (8%,55,...,0) © (4.128)

and repeat the golden section search with respect to J,.
Step 4: Proceed, varying the variables one by one, in the following order

ok = (8%, . 0%4,0,,0,...,0) (4.129)
Finally, after optimizing the last variable, denoted here as d¢, we will have
ok = (5F,...,0%) (4.130)

Repeat the whole process cyclically optimizing again for ,

(O%*,0%,...,08y) — (5F*,0%%,...,65) —» (4.131)

and so on.
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Various search routines differ from one another in the manner in which the
sequence of line search problems are ordered. Convergence of all direct search
algorithms is naturally very slow. With a direct search, however, no Jacobians
need to be calculated.

44.2 Gradient Methods

In most practical calibration problems, the constraints on the kinematic param-
eter errors can be ignored. Thus the parameter estimation may be treated as
an unconstrained nonlinear optimization problem. Let ok,, = (3,..., ). The
problem is the minimization of L(d,,...,dx) as defined in Equation 4.120. The
quadratic structure of L vastly simplifies the solutions as will be seen later in this
section.

Most nonlinear least-square methods are iterative. Let (dk,;); denote the
estimate of the optimal solution at the beginning of the jth iteration. The jth
iteration consists, in general, of the computation of a search vector p; from which
the new estimate (dk,,);, is obtained according to

(0Kkop)i+1 = (OK,,); + o;p; (4.132)

where o; is a scalar obtained by means that vary from one optimization method
to another. The methods of selecting the search direction vary in different
optimization techniques.

A basic requirement of any iterative search is that the performance measure
improves from one iteration to the next:

L[(3k,);1] < LL(3k,g);] (4.133)
which requires when expanding L[ (k,,);,, ] into a Taylor series, that
ngpj <0 4.134)

where g; is the gradient of L evaluated at k,, = (0k,g);. Every vector p; that
satisfies Equation 4.134 provides what is called a descent direction. Obviously,
for small values of a;, the greatest reduction in the performance function value
is obtained in the direction opposite to that of the gradient g;.

pf = —g; (4.135)

Such a search vector is said to have a steepest descent direction.

For an arbitrary choice of search vector p;, not necessarily along the direction
of steepest descent, and a given value of (3k,,);, the coefficient «; may be optimized
to minimize L[(5k,;); + o;p;]. The result of such an optimization is that at
o4 =of.

glup;=0 (4.136)
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The vector g;,, is defined as
gj+1 = VLL(dk,,); + ofp;] 4.137)

In other words, theoretically one should move along the search vector to the
point where the new gradient vector becomes orthogonal to the search vector.
This strategy of choosing a;is computationally intensive and, therefore, not often
implemented in practice.

At this point it is important to review the necessary and sufficient conditions
for a minimum.

If a point (Jk,,)* is a minimum, then

gl(dk,)*1 =0 (4.138)

At such a point, a sufficient condition for minimum is that the Hessian matrix,
G, is positive definite.

G[(ok,)*] = VZL(5kag)!wk‘g). >0 4.139)
The first two terms in the Taylor series expansion of g[(dk,,); + p;] are

8[(0kog)j+1] = 8L(OK,,); + p;] ~ 8[(0k,,);] + GL(dk,,);lp;  (4.140)

The right-hand side of Equation 4.140 is exact if L[(dk,,);] is quadratic in the
components of (Jk,,); = (d;,...,dx). In such a case, by choosing

pj = G_l[(akag)j]g[(ékag)j] (4'141)

an optimum g*[(dk,,);+, ] is obtained in only one iteration. If L(-) is nonqua-
dratic in (é,,...,d¢), more iterations are needed. The updating strategy as pre-
sented in Equations 4.140 and 4.141 constitute Newton’s method. If the Hessian
matrix, G(+),is known, the most practical way of evaluating p; (rather than matrix
inversion as in Equation 4.141) is to solve the following set of linear algebraic
equations:

GL(0k,);1p; = —8L(dk,g);] (4.142)

using available routines.

Returning now to the particular performance measure L chosen for the robot
calibration problem (Equation 4.120), its particular sum of squares structure
provides useful relationships between the Hessian matrix and the identification
Jacobian matrix.

Considering the robot kinematics (Equations 4.115), let J; denote the identifi-
cation Jacobian at configuration q;. That is
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y. | ek gk ofigk) gk
a oq, 7 dqy T Ok, "7 Okg_y

_ | of(g.k)  Of(q.k)
|8, T 6

g=q;+3q, k=ko+5k

(4.143)

g=q;+0q, k=ko+5k

Aggregating all measurement configurations,j = 1,...,m, let J be the aggregated
identification Jacobian corresponding to measurement configurationsq, ..., q,,.

J=1|: (4.144)

To obtain an expression for the gradient vector of
L(0k,,) = e1,(dk,,)e, (0k,,) (4.145)
note that the first partial derivative with respect to §;,j = 1, ..., K, is given by

oL(ok,)  om X, — L,.(5k,.)];
B= T =2 5 T — £, 0k, P T EI)
J

J

Using the definition of J in Equations 4.143 and 4.144, the gradient vector can
be written as

g(ok,,) = —2J7¢,, 4.147)
where both J and e,, depend on Jk,,.

Differentiating Equation 4.146 with respect to J, gives the kj element of the
Hessian matrix

_ 6(eag)l a(eag) az(eag)z
(G)"J 2 Z [ a&k 66 ( ag)x 65 :I (4'148)

J

Denoting by T; the Hessian matrix of (e,,);, the ith column of e,
Ti(0k,g) = V*[(e,5):] (4.149)
then the complete Hessian matrix of L(dk,,) can be written as

G=2J"J+28 (4.150)

where G, J, and S all depend on Jk,,. The matrix S is defined as
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6m
S=Y (eT: (4.151)
i=1

Equations 4.150 and 4.151 display the structure of the derivatives of the sum of
squares performance function. Substitution of the gradient expression in Equa-
tion 4.147 and the Hessian matrix given in Equation 4.150 into Newton’s algo-
rithm at the jth iteration for finding Jk,, results in the following equation for the
search vector p;

J9'JO 4 SV)p, = JI"ed) (4.152)

where e{ is the aggregated pose vector at the jth identification iteration and Jo
and SY depend on Jk,, of the jth iteration. The updated estimate is

(0Kag)ir1 = (Okyg); + p; (4.153)

The computation of S[(k,,);] involves the specification and evaluation of
3mK (K + 1) second derivative terms. The remainder of the Hessian matrix,
however, is expressed in terms of first derivatives only. This observation gives
rise to two broad classes of special algorithms for nonlinear least-squares param-
eter estimation. Those that ignore the term S[ (0K ,,);] are useful for small residual
cases. These are the cases where ||k, || is small. The other class, applicable to
larger residual cases, involves the approximation of S[(k,;);] in some way.

By neglecting the term S[(k,,);] in the Newton equation, (Equation 4.152), the
identification algorithm reduces to the familiar iterative linear least-squares
algorithm, also referred to as the Gauss—Newton method

IT[(Ok,g); 1T [(OK,g);Tp; = IT(0k,g); 1€ (4.154)

combined with the estimate updating equation, Equation 4.153.

Even if JT[(0k,;);1I[(0k,,);] is nonsingular, Equation 4.154 does not nec-
essarily guarantee that p; is a descent direction since the scalar coefficient o,
which is assumed to be 1 in Equation 4.153, might be too large a step along the
search vector.

The Gauss—Newton algorithm breaks down at the singularities of the identifi-
cation Jacobian and converges very slowly near such singularities. On the other
hand, the Gauss—Newton method tends to Newton’s method, the closer the
estimate is to the correct set of kinematic parameter errors. In other words, if
e,,(0k,;) — 0 as 0k, — okZ, then S(dk,;) gets smaller and smaller. As is well
known [24], Newton’s method exhibits a second-order rate of convergence. That
is, M = 2isthelargest value of M for which the following convergence ratio exists

. [1(OKag)j+1 — Okl
R = lim 28 28
T jow 10K,g); — OkE M

4.155)
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Rapid convergence rates are associated with large values of M and small values
of R.

The Levenberg—Marquardt (LM) method was introduced as an improvement
to the Gauss—Newton method. The technique is designed to overcome problems
related to singularity of the matrix J*J, while maintaining the Gauss—Newton
convergence properties near the optimal solution. The idea is to modify Equation
4.154 by adding a time varying nonnegative scalar coefficient, y;, as follows

[I7L(0k,,);1IL(0K,g);] + wK1p; = JT[(Sk,,); e (4.156)

where T is the K x K identity matrix. For a sufficiently large value of y;, the
matrix J*J + 1 is positive definite, and p; can be made a descent direction. As
the solution approaches the optimum, ok,, — k¥, the scalar y; is adjusted to
have smaller and smaller values so that the method acquires the asymptotic rate
of convergence of the Gauss—Newton method.

There are many possible strategies for selecting y; at each iteration. Two
methods are described next. One should observe that as u; — co, the effect of the
w1 term increasingly dominates that of J7J so that p; — ;' JT[(dK,,);]e,,, which
represents an infinitesimal step in the steepest descent direction.

Method 1 (Levenberg [17]): The variable y; is chosen through linear search to
minimize L[(0k,,); + p;], for p; given by Equation 4.156. Everything else is held
constant. Thus, by choosing a sufficiently large value for y;, the optimization
method can be globally convergent.

Note that for every new value of y;, the system of linear equations for p; (Equa-
tion 4.156), has to be resolved. This makes the method somewhat impractical.

Method 2 (Marquardt [19]): The variable y; is initially set to some positive value
(say, u; = 0.01), and a factor v > 1 (say, v = 10) is established. The factor, v, is
used to increase or decrease y;. At the beginning of each iteration, y; is reduced
by the factor v in an attempt to push the algorithm closer to the Gauss—Newton
method. At each iteration, the cost function is evaluated and compared against
the cost function value at the previous iteration. If, for the chosen value of y;, no
reduction in the cost function is achieved, the value of y; is increased by the factor
v. If this still fails to give a reduction in the performance function value, the new
y; is repeatedly increased by the factor v until a reduction is obtained. More
systematic methods for selection of y; and v are described in the text by Scales
[24].

In the case where no derivative information is available, one may still apply
the Gauss—Newton or LM strategies by replacing the identification Jacobian
matrix, J, with a finite difference approximation. Alternately, one may search
using Newton’s method for a matrix that approximates the identification Jaco-
bian. For more details on this so called quasi-Newton method, the reader is again
referred to Scales [24].
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The LM algorithm may work surprisingly well even for large residual prob-
lems although in such cases the rate of convergence may be quite slow. Improve-
ments through finite difference or quasi-Newton approximations of the matrix
S(dk,,); of Equation 4.152 have been suggested in the literature. The details of
these approaches are outside the scope of this text. Interested readers are referred
to Scales [24].

4.5 OBSERVATION STRATEGY FOR ROBOT KINEMATIC
IDENTIFICATION

Observation strategy for calibration refers to the selection of robot configura-
tions and the number of observations to be made during the calibration experi-
ment. The selection of measurement configurations during robot calibration
plays an important role in determining the accuracy and speed of convergence
of the least-squares identification algorithms. The kinematic parameter errors
are not all equally observable. The “visibility” of each unknown parameter varies
from one robot configuration to another. There may even be configurations in
which some of the kinematic parameters are not observable at all.

Paying close attention to the observability issue and planning the measure-
ment strategy accordingly may save on the total number of different robot
configurations that are needed to be attained to obtain an accurate identification.
It is further argued [4,21] that there exist robot configurations at which the
impact of geometric errors on the total accuracy overshadows the accuracy error
attributed to nongeometric errors. Thus, by proper selection of measurement
configurations the effects of unmodeled errors on the identification of the geo-
metric parameters may become less significant.

The synthesis of an “optimal” observation strategy for a given manipulator
in the presence of noise and uncertainty is as yet an unanswered research issue.
The procedures described in this section could help in deciding the observation
strategy for given robots while at the same time providing a measure of con-
fidence in the results of the parameter identification.

For a given robot and measurement method we start by estimating the
accuracy of the measurement system, the measurement noise, the resolution and
uncertainty for the robot encoders, and the approximate range of motion of the
robot joints during the observations. We then do a series of simulations tabulat-
ing the effects of strategy, number of observations, and joint range of motion on
the accuracy of identification. We also note measures such as the condition
number or the observability index of the identification Jacobian for each case.

The range of measures observed will depend on the details of the particular
calibration problem. The units used for lengths and angles, the dimensions of the
manipulator, the type of measurement method, and the scaling of the rows and
columns of the Jacobian will all affect the range of measures observed. The
simulations done before the experiment will help to know what range of measures
apply to the problem being addressed.
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The simulations should show if the proposed experimental setup does have
the potential to identify the robot parameters to the accuracy desired. If nec-
essary, the experimental method may be modified at this stage itself based on the
results of the simulation. For example, the offset of the tool from the wrist of a
robot may need to be increased so as to improve the observability of the wrist
parameters. We then conduct the actual calibration experiment using the best
observation strategy permitted by the constraints of the measurement, and a
number of observations decided from the results of the simulation tables. We
compute the measures for the experiment using the actual robot configurations
of the observations and the nominal kinematics. This experimental condition
number may now be used to refer back to the simulation tables and estimate the
quality of the observation strategy during the experiment, and suggest a level of
confidence in the parameters identified.

Two groups of references provide the literature background for this section.
The first approach [7] focuses on the familiar numerical analysis concept of
“condition number” of a matrix. Such a number provides invaluable information
regarding the sensitivity of the least-squares identification algorithm to modeling
errors and noise in the measured data. The key ideas are described in detail in
Sections 4.5.1 and 4.5.2.

The second approach [21] adopts an observability index as a performance
measure. There are similarities to the condition number of the previous section.
The method is described in Section 4.5.3. Section 4.5.4 provides more insight into
the question of useful and informative measurement configurations using the
Kalman filtering formulation.

4.5.1 Numerical Sensitivity of Least-Squares Identification
Algorithms

The solution of a linear least-squares identification problem in general amounts
to the solution of an algebraic equation

Ax=b (4.157)

where A is a nonsingular matrix of order n. The vector b corresponds to the
measured data and as such is subject to uncertainty. The matrix A is related to
the measurement configuration and the system model and may itself be subject
to errors. Thus:

X + 6x = (A + 5A)"!(b + b) (4.158)

where the solution error dx reflects the sensitivity of the identification algorithm
toerrors in the model and the data characterized in Equation 4.158 as 5A and 6b.
As is well known to numerical analysts [11] and as shown next, such sensitiv-
ity may be characterized in terms of a single number derived from the matrix A.
We start with a brief review of the “norm” concept. The norm of a vector
x, denoted as ||x| is a function that assigns a real number to any vector x and
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The LM algorithm may work surprisingly well even for large residual prob-
lems although in such cases the rate of convergence may be quite slow. Improve-
ments through finite difference or quasi-Newton approximations of the matrix
S(k,,); of Equation 4.152 have been suggested in the literature. The details of
these approaches are outside the scope of this text. Interested readers are referred
to Scales [24].

4.5 OBSERVATION STRATEGY FOR ROBOT KINEMATIC
IDENTIFICATION

Observation strategy for calibration refers to the selection of robot configura-
tions and the number of observations to be made during the calibration experi-
ment. The selection of measurement configurations during robot calibration
plays an important role in determining the accuracy and speed of convergence
of the least-squares identification algorithms. The kinematic parameter errors
are not all equally observable. The “visibility” of each unknown parameter varies
from one robot configuration to another. There may even be configurations in
which some of the kinematic parameters are not observable at all.

Paying close attention to the observability issue and planning the measure-
ment strategy accordingly may save on the total number of different robot
configurations that are needed to be attained to obtain an accurate identification.
It is further argued [4,21] that there exist robot configurations at which the
impact of geometric errors on the total accuracy overshadows the accuracy error
attributed to nongeometric errors. Thus, by proper selection of measurement
configurations the effects of unmodeled errors on the identification of the geo-
metric parameters may become less significant.

The synthesis of an “optimal” observation strategy for a given manipulator
in the presence of noise and uncertainty is as yet an unanswered research issue.
The procedures described in this section could help in deciding the observation
strategy for given robots while at the same time providing a measure of con-
fidence in the results of the parameter identification.

For a given robot and measurement method we start by estimating the
accuracy of the measurement system, the measurement noise, the resolution and
uncertainty for the robot encoders, and the approximate range of motion of the
robot joints during the observations. We then do a series of simulations tabulat-
ing the effects of strategy, number of observations, and joint range of motion on
the accuracy of identification. We also note measures such as the condition
number or the observability index of the identification Jacobian for each case.

The range of measures observed will depend on the details of the particular
calibration problem. The units used for lengths and angles, the dimensions of the
manipulator, the type of measurement method, and the scaling of the rows and
columns of the Jacobian will all affect the range of measures observed. The
simulations done before the experiment will help to know what range of measures
apply to the problem being addressed.
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The simulations should show if the proposed experimental setup does have
the potential to identify the robot parameters to the accuracy desired. If nec-
essary, the experimental method may be modified at this stage itself based on the
results of the simulation. For example, the offset of the tool from the wrist of a
robot may need to be increased so as to improve the observability of the wrist
parameters. We then conduct the actual calibration experiment using the best
observation strategy permitted by the constraints of the measurement, and a
number of observations decided from the results of the simulation tables. We
compute the measures for the experiment using the actual robot configurations
of the observations and the nominal kinematics. This experimental condition
number may now be used to refer back to the simulation tables and estimate the
quality of the observation strategy during the experiment, and suggest a level of
confidence in the parameters identified.

Two groups of references provide the literature background for this section.
The first approach [7] focuses on the familiar numerical analysis concept of
“condition number” of a matrix. Such a number provides invaluable information
regarding the sensitivity of the least-squares identification algorithm to modeling
errors and noise in the measured data. The key ideas are described in detail in
Sections 4.5.1 and 4.5.2.

The second approach [21] adopts an observability index as a performance
measure. There are similarities to the condition number of the previous section.
The method is described in Section 4.5.3. Section 4.5.4 provides more insight into
the question of useful and informative measurement configurations using the
Kalman filtering formulation.

4.51 Numerical Sensitivity of Least-Squares Identification
Algorithms

The solution of a linear least-squares identification problem in general amounts
to the solution of an algebraic equation

Ax=b (4.157)

where A is a nonsingular matrix of order n. The vector b corresponds to the
measured data and as such is subject to uncertainty. The matrix A is related to
the measurement configuration and the system model and may itself be subject
to errors. Thus:

X + 0x = (A + 5A)"!(b + &b) (4.158)

where the solution error ox reflects the sensitivity of the identification algorithm
toerrors in the model and the data characterized in Equation 4.158 as 5A and b.
As is well known to numerical analysts [11] and as shown next, such sensitiv- -
ity may be characterized in terms of a single number derived from the matrix A.
We start with a brief review of the “norm” concept. The norm of a vector
x, denoted as | /x| is a function that assigns a real number to any vector x and
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has the following three consistency properties:

1. Jlex|| = |e||Ix(| for all real ¢ and all vectors x.
2. |x|| > O for all x # 0, and ||x|| = 0 only for x = 0.
3. Ix + yll < IIx|| + |lyll for all x and y (The triangle inequality).

In particular, three of the most common norms that are used for n-dimensional
vectors x with real elements are the 1-norm, 2-norm, and infinity-norm as follows:

lixlly = Zi || (4.159)
n 1/2

x|l = <Zl x?) (4.160)

x|, = max]|x;| forl<i<n (4.161)

where the 2-norm is often referred to as the Euclidean norm.
An induced matrix norm is defined as follows:

| Ax||

= forx# 0} (4.162)
I

Al = max{

Thus, an induced matrix norm depends on the vector norm that is used. One can
show that using the 1-norm produces the maximum column norm for the induced
matrix norm, as given by

Al = maX{Z la;l  forl<j< n} (4.163)
i=1

Use of the vector 2-norm gives the largest singular value of the matrix norm of
A which is also the largest eigenvalue of AAT and use of the co-norm yields the
maximum row sum as given by

Al = max{z la;| forl<i< n} (4.164)
j=1

A well known inequality known as Schwartz inequality is as follows:
IAB]| < |A]l B} (4.165)

We are now ready to start with the sensitivity analysis. Assume first that
0A = 0 but 6b # 0. Then

loxll < A7) libl| (4.166)

where equality is possible for certain vectors 6b.
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Similar to Equation 4.166 one may write:
Ibll < A 1|l (4.167)

Combining Equations 4.166 and 4.167 and assuming that b # 0, we find that

lox| _ 1, I1obll
< A JA™Y| = 4.168)
T = AT ) ‘
where equality can occur and, therefore, the bound is tight.
Define a condition number x(A) as follows
x(A) = |A[l A7 (4.169)

The larger the condition number the larger is the numerical sensitivity of the
solution to data errors.

Ideally x(A) = 1 which is the lowest bound on x(A). The condition number
depends on the particular vector norm that is used. For instance for the Euclidean
norm we find that x(A) is simply the largest singular value of A divided by the
smallest singular value of A. Assuming next that §A # 0 but éb = 0, interestingly
enough, the same condition number turns up as follows:

ox = [(A + 5A)! — A1Tb (4.170)

Using now the matrix identity

B!1-A'=A"YA-BB! 4.171)
One gets
lox) < AT [I0All lIx + ox|| (4.172)
or
llox|i —1y IGA]
e < A AT 4.173
x4 ax < TAIIAT A0 (4.173)

Linear least-squares routines involve the solution of an overdetermined sys-
tem Ax = b such that A is an m x n matrix where m > n. The least-squares
solution employs (ATA)x = ATb. The condition number for the overdetermined
system is the condition number of the n x n symmetric matrix C = ATA. The
robot calibration identification equation 6T = JJk is an overdetermined system.
The condition number for the identification Jacobian is thus given by

k{@) = @D IAITH (4.174)

These céncepts may be best illustrated through the example that is presented in
the following section.
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Figure 4.3. The 5R1P manipulator.

4.5.2 Identification Study of a 5R1P Manipulator

The SR1P manipulator arm is a six-degree-of-freedom manipulator arm with
five revolute joints and one prismatic joint. The manipulator is shown in Figure
4.3. The link parameters for the SR1P manipulator are shown in Table 4.1.
The lengths are in inches and the angles are in degrees. The manipulator has
a working volume of about 27 ft3. There are 24 link parameters: 8, r;, I;, «;, for
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TABLE 4.1. Link Parameters for the SR1P Manipulator

Link i o {°) L (in) r; (in.) 0;
1 —90 0 6 0,
2 +90 0 12 0,
3 +30 0 rs 0
4 —~90 0 0 0,
5 +90 0 0 05
6 0 I I 0

i=1,2,...,6. The df;sfori = 1,2, 4,5, 6 will be the encoder offsets at the revolute
joints. The dr; will be the encoder offset for the prismatic joint. a5 is chosen to
be 30° instead of 0° so that axis 2 and axis 3 will not to be parallel. This permits
using the DH notation for the calibration model. Note that this choice of a5 does
not in any way reduce the degrees-of-freedom for the SR1P manipulator arm.
We assume that the measurement method is capable of locating the exact position
of the robot end effector in the base frame coordinates. Thus, we are not simulat-
ing the measurement of end effector orientation. The measurement is a partial
measurement, three out of the possible six degrees-of-freedom of end effector
pose. This choice of measurement method does have consequences on the robot
parameter identification. One immediate consequence is that the last link twist
% cannot be identified since it will never affect the position of the end effector.
We proceed by assuming that « = 0.0 is a constant.

Considerations of model completeness (see Chapter 2 and Section 4.7) dictate
that a 5SR1P robot manipulator may have a maximum of 22 kinematic parame-
ters (excluding the 6 parameters required to locate the world frame): 4 parameters
per revolute joint and 2 parameters for the prismatic joint. We have 24 parame-
ters in Table 4.1. It is not immediately obvious which two parameters in Table
4.1 are to be defined as constants. Review of the definition of the DH notation
for prismatic joints [23] shows that it is /; and r;,, that must be set to a value of
0 when joint i is prismatic. In the case of the SR1P manipulator, a, and d, are
constant and equal to 0. This is because the location of frame 3 is determined by
the common normal between axes 4 and 5. Since the axis of the prismatic joint
(axis 3) is not fixed in its location in space, it is free to be moved so that it goes
through the origin of frame 3 exactly. This implies that I, and r, are always 0.

The flowchart for the calibration simulations is shown in Figure 4.4. The
approach taken during the course of the identification simulations was as follows.
The number of observations and the joint motion range for a simulation were
decided. Joint sets of measurement configurations were generated by using one
of four strategies. The SR1P manipulator forward kinematic model was then
applied to these joint sets to generate the observation data. The input to this
program was the link parameter table for the actual 5R1P robot manipulator to
be identified. The output data file contained the joint values and the position
coordinates of the end effector at each observation. The random noise of mea-
surement and the encoder noise were superimposed on the position measure-
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Figure 4.4. Flowchart for calibration simulations.

ments and joint values before being saved to the data file. The input to the
identification program consisted of the nominal link parameter table and the
observation data file. The programs to implement the linear and nonlinear
identification methods were written in FORTRAN so as to be able to call
the IMSL Mathematical Subroutine Library routines. These routines provide
powerful numerical identification software. The simulations were run on a Digi-
tal VAX 8300 running VMS 4.7.

The selection of a particular manipulator (SR1P) for simulation determines
the number of links and the types of joints in the kinematic model. Recall that
for the manipulator chosen we are attempting to identify a total of 21 kinematic
parameters (/3 = 0.0 and r, = 0.0 by definition for joint 3 prismatic, ag = 0.0 for
the last link frame). Some of the factors that can be expected to have an effect on
robot parameter identification are (1) choice of the kinematic model (for instance,
screw matrix notation instead of the DH notation), (2) type of measurement
method for observations (position of end effector, orientation of end effector, line
of sight to end effector), (3) number of measurements, (4) accuracy of the observa-
tion measurements, (5) noise in measurements, (6) accuracy and noise at the robot
joint encoders, (7) quality of the initial estimate of parameters, (8) observation
strategy, that is the selection of the robot configurations during measurements
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(joint angles, joint distance), (9) range of motion of the robot joints during
calibration (as a consequence of the constraints of a particular measurement
set-up), and (10) type of identification parameters (geometric, nongeometric). The
performance of the identification methods is judged by (1) success of convergence,
(2) accuracy of the identification, and (3) speed of processing.

Tables 4.2 to 4.8 show the results of simulations aimed at determining the
effect of the above factors on the performance of identification by the linear and
nonlinear methods. The symbols used in the tables are as follows. The variables
for the simulations were {l¢, 76}, {6, b}, {07, 81}, nyigiss {€m/2}, {€./2}, S, m, and
R. The results for the linear least-squares method were: n,,.,, tcpys Opms, and x(J).
The results for the nonlinear least-squares method were n,,.., 1,ya1, tepy, ANd Sy
These symbols are explained below.

The magnitude of the last link length and last joint offset is “Ig,75” (inches).
This corresponds to the tool distance from the wrist. The error value used for all
the 6; and «; parameters in the robot model is “86, o™ (degrees). The error value
used for all r; and J; parameters in the robot model is “dr, 6 (inches). The above
two variables are a measure of the distance of the parameter guess from the actual
parameters. The routines assume nominal parameters such that these error
values are guessed to be zero when starting the identification. Thus, larger values
of error parameters above correspond to a worse guess. The number of decimal
digits to which the observation measurements are stored in the data file is “ng;5,.”
This corresponds to the accuracy of the measurement system. The half width on
the random noise in measurement is “e,/2” (inches). The half width on the
encoder noise is “g./2” (degrees/inches). In both cases, the noise is assumed to
have a uniform distribution with zero mean. The observation strategy type is
“S.” The simulations were done using four observation strategies. These strate-
gies are numbered from 1 to 4. The number of observations is “m.” The joint
range of motion is “R.” The simulations were done using five joint ranges. These
are denoted by N, F, H, Q, and E. The notation stands for “normal, full, half,
quarter, and eighth.” These variables are explained in the discussion of the tables
below.

The number of iterations that the identification ran before convergence
(LSQRR as well as UNLSF) is “n;,.,.” The number of function evaluations during
identification (UNLSF) is “n,,,,.” The charged CPU time (in min:sec) for exe-
cution on a VAX 8300 is “tcpy.” The root mean square deviation in the identified
parameters from the actual error values which were set to 66, da, or, and 8l above
is “O.me.” This result is a measure of the accuracy of the identification. The
condition number of the identification Jacobian is “k(J).” The significance of this
condition number is discussed later in this section.

The parameters identified by the two methods (linear and nonlinear) under
the same conditions were always identical. Tables 4.2 to 4.7 have only one set of
results (LSQRR) because the identification results were identical for the two
methods every time. Table 4.8 shows the comparison of the two methods.

Table 4.2 shows the effect of tool distance from the robot wrist. This result is
a consequence of the fact that we are simulating the measurement of tool position
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TABLE 4.2. Effect of Tool Distance from Wrist

" Variable Results
6rms

ls, 76 Piter tcpu 6, a rl x(J)

10.0 5 14 0.00078 0.00017 260

5.0 5 14 0.0016 0.00020 252

1.0 5 14 0.0083 0.00021 373

0.5 5 14 0.017 0.00022 480

0.1 5 18 0.049 0.00028 1848

7
Constants

80, oo or, ol Raigits £/2 £./2 S m R
50 0.5 4 0.001 0.001 4 36 N

(without orientation). However, any calibration setup that arrives at the end
effector orientation from position measurements may exhibit a similar relation-
ship. It was found that the magnitude of the link length I; and the offset distance
r¢ had a direct bearing on the identification accuracy for the last few angular
parameters (605, das, and 56s). This is because these angular parameters may
affect the position of the end effector only in proportion to the magnitude of the
link length and joint offset. Thus [ and r represent the offset (distance) of the
tool from the wrist of the robot, and this offset should be large enough to provide
a “lever arm” for the identification of the wrist joint parameters. This would be
common sense during an actual calibration experiment, however the extent of
the effect as seen in the simulations might not be obvious. The results show that
as the tool distance is reduced from 10 to 0.1 in., the accuracy of identification
for the angular parameters reduces from 0.0008 to 0.05°. The accuracy of identifi-
cation of the distance parameters also reduces slightly. The condition number of
the identification Jacobian increased from 260 to 1848. The simulations are for
36 observations (as listed under the “constants” column).

Table 4.3 shows the effect of parameter guess on identification. The quality of
the guess had no effect on the accuracy of identification, only on the time required
to process the case. The parameter guess was increased from 0.1° and 0.01 in. to
as much as 20° and 2 in. The accuracy of identification remained constant. The
time for processing increased from 11 to 18 sec.

Table 4.4 shows the effect of measurement accuracy on the identifications. As
the number of digits in the measurement is reduced from 8 to 2, the accuracy of
identification reduces from 0.0004 to 0.003°, and from 0.0001 to 0.0008 in. For
the purpose of this table, the measurements were assumed to be noise free. The
remaining constants are the same as usual. The fact that the parameter identifica-
tion accuracy is directly related to experimental measurement accuracy should
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TABLE 4.3. Effect of Parameter Guess

Variables Results
5rms
00, do or, ol Mier tepu 0, a d,a
0.1 0.01 3 11 0.0008 0.0002
1.0 0.10 4 12 0.0008 0.0002
50 0.50 5 14 0.0008 0.0002
10.0 1.00 6 17 0.0008 0.0002
20.0 2.00 7 18 0.0007 0.0002
Constants
ls, 7 R4igits /2 &./2 N m R
10.0 4 0.001 0.001 4 36 N
TABLE 4.4. Effect of Measurement Accuracy
Variable Results
6rms
Mgigits Mier teru 0,0 rl
8 5 15 0.00038 0.00014
6 5 15 0.00039 0.00014
4 5 15 0.00042 0.00015
2 5 15 0.0028 0.00080
Constants
les 76 60, du 4d, da &m/2 &./2 S m R
10.0 5.0 0.5 0.0 0.001 4 36 N

of course be expected. Increasing the number of observations helps to reduce the
effect of random noise in measurement, but the basic measurement process must
possess an accuracy that is comparable to the parameter identification accuracy
desired. In fact, in the presence of measurement noise, the accuracy of identifica-
tion will begin to approach the accuracy of measurement only after a large
number of measurements have been taken.

Table 4.5 shows the effect of measurement and encoder noise. With no noise
and four decimal digits in the measurement, the accuracy of identification is
0.00007° and 0.00002 in. With encoder noise of 0.0001, the accuracy reduces to
0.0004° and 0.0002 in. The addition of measurement noise of 0.01 in. reduces the
accuracy of identification down to 0.006° and 0.001 in. The table shows that
measurement and encoder noise have a substantial effect on the accuracy of
identification. The question from the point of view of design of calibration
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TABLE 4.5. Effect of Measurement and Encoder Noise

Variables Results
5"!13

Sm/z 8e/2 Biter tCPU 0’ a r, l
0.0 0.0 5 15 0.00007 0.00002
0.0 0.001 5 15 0.0004 0.0002
0.0001 0.001 5 15 0.0004 0.0002
0.001 0.001 5 15 0.0008 0.0002
0.01 0.001 5 15 0.006 0.001

Constants

I, 16 68, ou or, ol " Maigits S m R

10.0 50 0.5 4 4 36 N

experiments is one of how many observations must be taken to neutralize the
effect of such random noise.

Table 4.6 shows the effect of increasing the number of observations using
different observation strategies. The strategies refer to the method used for
generating the robot configurations at which the observations are made. Strategy
number 1 consists of moving each joint by constant increments simultaneously.
Strategy 2 consists of moving one joint at a time while the remaining five joints
are held constant. This is done for all joints. Strategy 3 consists of holding one
joint constant while the rest of the joints are moved by constant increments
simultaneously. This is done for all six joints. Strategy 4 is a Monte Carlo type
method. The six joint variables are generated from six independent uniformly
distributed random variables. The random variables are scaled so as to span the
permissible range of each joint. ]

For each strategy, the number of observations is increased from 36 (or less)
to 360. The results show that increasing the number of observations improves
the accuracy of identification in all cases. However, some strategies are worse
than others. Strategy 1 is an extreme example of such a “bad” strategy. Even with
360 observations, the accuracy of identification for strategy 1 is worse than any
of the other strategies at 36 observations. It is possible to see that strategy 1
would be considered a bad strategy in any practical calibration experiment since
it would essentially result in observations made along a single space curve in the
robot work volume. Strategies 2, 3, and 4 result in better identification, with 4
doing somewhat better than 3, and 3 doing better than 2. The condition number
of the identification Jacobian for these strategies shows a difference between
Strategy 1 (over 20,000) and the other strategies (less than 1200). The better a
strategy, the lower its corresponding condition number. The increase in observa-
tions show diminishing returns in terms of improvement in identification accu-
racy. For Strategy 4 at 12 observations, the accuracy of identification is 0.002°
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TABLE 4.6. Effect of Observation Strategy

Variables Results
(srms

s m Rijer Lepy 0,a rl x(J)
1 7 6 7 0.032 0.013 23020
36 6 16 0.0078 0.0037 20024
90 6 33 0.0044 0.0020 21664
180 6 1:02 0.0047 0.0025 22307
360 6 2:03 0.0054 0.0019 22650
2 36 5 14 0.0018 0.00028 1203
90 5 31 0.0010 0.00026 1138
180 5 55 0.0012 0.00019 1119
360 5 1:47 0.00045 0.00013 1110
3 36 5 14 0.0013 0.00048 364
90 5 29 0.00065 0.00021 396
180 5 55 0.00089 0.00010 420
360 5 1:44 0.00032 0.000090 434
4 12 5 8 0.0021 0.00029 539
36 5 14 0.00078 0.00017 260
90 5 28 0.00079 0.00011 209
180 5 54 0.00042 0.00011 204
360 5 1:45 0.00030 0.00010 189

Constants

les 7o 60, da or, ol N gigits £nm/2 £./2 R
10.0 5.0 0.5 4 0.001 0.001 N

and 0.0003 in. At 36 observations, the accuracy is 0.0008° and 0.0002 in. At 360
observations, the accuracy is 0.0003° and 0.0001 in. It should be noted that the
accuracy of measurement (0.0001 in.) and the resolution of the joint encoders
(0.0001°) assumed in these simulations are very conservative. The noise levels are
also very low. An actual calibration experiment may be expected to show much
less accuracy of identification.

The simulations of the previous table assume that the calibration measure-
ments can be done in any valid pose of the robot manipulator. An actual robot
manipulator has limits on the range of motion of each joint. We call this range
“N” (normal) and the simulations of the earlier tables are all based on this range.
To simulate the limited range of joint motion that would result in an actual
calibration experiment we have the four choices of “F, H, Q, and E.” The
constraints of the measurement system during a calibration may keep all robot
joints from being exercised through their full range. “F” corresponds to the
maximum possible full range of motion for all joints. “H” corresponds to half
the maximum range for each of the first three positioning joints. Similarly, “Q”



152 PARAMETER IDENTIFICATION FOR ROBOT CALIBRATION

TABLE 4.7. Effect of Joint Range of Motion

R 0, 0, T 0, 0 0

N 0-300 —120- 120 12 - 48 0 — 360 —120 - 120 0 - 360

F 0 - 360 —180 — 180 12 - 48

H 0—- 180 —-90-90 30 - 48

Q 0-90 —45 > 45 39 - 48

E 045 —22 22 44 - 48

Variables Results
6rms

R Piter 0, o r,l k(J)

1 F 6 0.015 0.0033 16375
H 6 0.030 0.016 47802
Q 8 0.196 0.089 303101
E Diverge — — 1 x 10°

2 F 5 0.0032 0.00044 1260
H 5 0.0024 0.00045 1393
Q 5 0.0037 0.0011 3330
E 5 0.010 0.0027 9260

3 F 5 0.0011 0.00019 282
H 5 0.0020 0.00069 909
Q ) 0.0010 0.00041 2579
E 5 0.0067 0.0023 6640

4 F 5 0.0013 0.00020 239
H 5 0.0016 0.00076 501
Q 5 0.0024 0.0017 1696
E 5 0.0069 0.0041 4804

Constants
I, 16 - 88, da or, 61 Rgigits em/2 /2 m
5.0 5.0 0.5 4 0.001 0.001 36

and “E” correspond to quarter and eighth range for the first three joints. The
last three joints of the SR1P manipulator are responsible for orientation of the
tool. In the simulations, these joints are always allowed to go through their
normal range.

Table 4.7 shows the effect of the joint range of motion for different strategies.
For each strategy, the range of joint motion is varied from F to E. In every case,
the reduction in joint range of motion results in reduced accuracy of identifica-
tion. The magnitude of this effect is substantial. For Strategy 4 at F range, the
accuracy of identification is 0.001° and 0.0002 in. At E range, the accuracy is
0.007° and 0.004 in. The reduction in range of motion is accompanied by an
increase in the condition number of the identification Jacobian. In the case of
Strategy 1, the case of range E results in divergence and failure of the identifica-
tion procedure.
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TABLE 4.8. Comparison of Identification Techniques

153

Variable Results
LSQRR UNLSF
m Ryper tepy Pyper L ey
36 5 14 5 7 1:22
90 5 28 5 6 3:39
180 5 54 5 6 6:26
360 5 1:45 5 6 13:39
Constants
ls, 76 80, da or, ol Pigits £,/2 &./2 S R
10.0 5.0 0.5 4 0.001 0.001 4 N

Table 4.8 shows the comparison of the two identification techniques. As
mentioned earlier, both linear and nonlinear methods give identical results under
the same conditions. This table takes four cases of increasing number of observa-
tions and compares the time taken by the two methods. The linear method is
four to eight times faster than the nonlinear method. At 360 observations, the
linear method takes less than 2 min, while the nonlinear method takes about
13 min of CPU time.

The condition number of the identification Jacobian is an indicator of the
observability of the parameters to be identified. Decreasing the tool offset reduces
the observability of the wrist angular parameters and this is accompanied by
increase in the condition numbers in Table 4.2. A bad observation strategy such
as Strategy 1 is marked by very large condition numbers in Table 4.6. Reduction
in the range of motion of a joint during calibration implies lesser observability
of the parameters of that joint and this is accompanied by order of magnitude
increase in the condition numbers in Table 4.7.

Both the linear and nonlinear least squares are found to give identical param-
eter estimates for all of the cases considered. The linear method is as much as
eight times faster than the nonlinear method. However, the linear least-squares
method requires the user to write a program to compute the elements of the
identification Jacobian for the manipulator and model being used. This is a
nontrivial task that requires substantial work and may be a source of potential
programming errors. By comparison, the nonlinear method requires that the user
supply only the subroutine to compute the forward solution for the manipulator
to be identified. The method is robust in the face of large parameter uncertainties.
It may be easily modified to handle different kinematic models (including those
with non-geometric parameters), and may be extended to problems where it is
required to identify not only the manipulator kinematics but also calibrate the
location of a world frame and other frames in the robot workspace. The longest
time for identification by this method in our simulations was about 15 min of
CPU time. Since calibration is to be done off-line, this is not an unreasonable
duration to wait.
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The simulations showed that quality of the initial parameter estimates does
not affect identification accuracy and need not be among the important concerns.
On the other hand, accuracy of parameter identification is influenced by the
accuracy and noise in measurements, encoder resolution and uncertainty, selec-
tion of measurement configurations, number of observations, and joint range of
motion. It is seen that the condition number of the identification Jacobian during
calibration is an indicator of the observability of the parameters. Identification
is aided by providing an adequate distance of the tool from the robot wrist during
calibration. In the presence of noise and uncertainty, an adequately large number
of observations using a good observation strategy is essential. The question of
how many observations are adequate during a particular calibration experiment
is not obvious, and the synthesis of an “optimal” observation strategy is an
unanswered research issue at this time.

4.5.3 Observability of Kinematic Parameter Errors

One of the basic and most important tools of modern numerical analysis,
particularly numerical linear algebra, is the singular value decomposition (SVD).
This section is based on several references by Menq and Borm [4,21] in which
the observability of parameter error is studied via the use of the SVD method
based on the linearized error model and measured position data. Subsequently,
an observability index is defined and is used as a measure of observability of a
set of measurement configurations in simulation studies similar to those done in
the previous section.

We shall start with a brief review of SVD. The reader is referred to the work
by Klema and Laub [15] for more details.

Let A be any m x n matrix with real elements such that n > m. Then there
exists an m x m orthogonal matrix U and an n x n orthogonal matrix V such
that

A = UAVT (4.175)
where
_)»1 0 _
Ay 0
A=|0 0 (4.176)
| 0 —— Am O ]
with

A=A 2> Ay ==1=0 4.177)
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The numbers {4,,...,4,} are the singular values of A, that is, the positive
square roots of the eigenvalues of ATA and r is the rank of A.

The columns of U are the eigenvectors of AAT while the columns of V are
eigenvectors of ATA, that correspond to the eigenvalues 4%, ..., A2 of ATA
arranged in an ascending order. The columns of U form a set of orthonormal
vectors, and so do the columns of V. Quite a few software packages exist that
compute SVD very efficiently. For example, see Klema and Laub [15].

To see how all this applies to the kinematic parameter error identification
recall Equation 4.28 for the linearized error model in vector form:

e(H)=H( )X, j=1,....m 4.178)

where X is the vector of unknown kinematic parameter errors and e(j) is the
difference between the measured pose and the estimated pose based on the robot
nominal kinematics. H(j) is derived from the identification Jacobian at the
measurement configuration j. There are m measurement configurations.

Let E be the aggregated vector of pose errors in all m measurement configura-
tions:

e(1)
E=| : 4.179)
e(m)
Then
E = HX (4.180)

where H aggregates the matrices H(j),j = 1, ..., m, as in Equation 4.35.

Singularities in the identification Jacobian may arise depending on the se-
lected kinematic modeling convention. A common problem is that of X contain-
ing elements that are indistinguishable at any robot configuration because of the
kinematic nature of the robot. An ill-posed identification problem may become
well posed on appropriate reduction of X. It is assumed throughout that Equa-
tion 4.180 represents a well-posed problem.

Singular value decomposition may now be applied either to each matrix H( )
(Equation 4.178) of each measurement configuration or to the aggregated matrix
H of Equation 4.180. Thus, assuming that X is /-dimensional and therefore H(j)
is6 x I

H(j) = U,A, V] (4.181)

where

U; = [ﬁlj,ﬁzja--~:ﬁ6j] (4.182)

and @;;,i = 1,..., 6 are orthonormal 6 x 1 eigenvectors of H(j)H"( ).
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Vj: [e’lj,...,f’,j] (4.183)

¥;,i=1,..., l are orthonormal I x 1 eigenvectors of H(j)TH(}).

All these eigenvectors correspond to the set of eigenvalues 43 > --- > 12> 0
of H'(j)H(j).

The error model (Equation 4.178) for each robot configuration j may now be
written as follows

()= 3 A,0X)u, (4.184)
i=1

It is seen that only the projection of X on the subspace spanned by {v, PR .
is transmitted to the position error e(j). In general I > 6. Consequently, only a
portion of X can be observed from the measured position error in a single
measurement configuration.

Applying the same idea to Equation 4.180 that corresponds to the aggregated
errors of m measurement configurations one gets

E = UAV'X (4.185)
where
U = [f,...,b,] (4.186)
{a,,i=1,...,6m} are orthonormal 6m x 1 vectors. Likewise
V=[%,....%] (4.187)

where b,,i=1,..., ] are orthonormal I x 1 vectors.
It is assumed that 6m > I. Thus

A=[2Tz0 (4.188)
where
X, = diag(o,,0,,...,0) (4.189)

with 67 > 67 > -+ > o being the eigenvalues of H'H, and

z,=0 (4.190)
Then
1
E ~ Z a;(vTX) @, (4.191)
i=1

If none of the singular values o; is zero, we say that the kinematic parameter error
vector X is observable from the measurement vector E.



4.5 OBSERVATION STRATEGY FOR ROBOT KINEMATIC IDENTIFICATION 157
It can also be shown from Equation 4.191 that | E||, is bounded by
o lX|, < |Ell; < 0, [IX]l, (4.192)

In the work by Menq and Borm [21] a measure of the observability of H is
thus defined using all singular values g, ..., g, as follows:

0y = (0105...0)""  [detHTH)"*
T

The larger the value of det(HTH) the more “observable” X is given the m
measurement configurations. X becomes unobservable if at least one of the
singular values o; equals zero.

The same type of observability measure may be defined directly from either
the indentification Jacobian or the aggregation of identification Jacobians:

(4.193)

[det(JTJ)]*
R
Jm
where again / is the number of unknown kinematic error parameters. Note that
the condition number x(J) defined in the previous section decreases as the

observability index increases since it is inversely proportional to the determinant
of JTJ.

(4.194)

45.4 Observation Strategy from a Kalman Filtering View

Asapreliminary, a time invariant Kalman filtering formulation of the calibration
identification phase will be presented. The “time-invariant” formulation of the
Kalman filter equations for the identification of X, the vector of kinematic error
parameters, is a combination of batch and recursive estimation ideas. Its main
purpose is to facilitate the analytic treatment of questions raised related to
observation strategy selection.

The idea is to assume that there are k, repeated measurement readings at each
measurement location corresponding to a particular robot pose. k, = 1 means
“no repetitions.”

Let k, denote the number of different robot measurement configurations.
Obviously the total number of measurements m is given by

m=k,k

pr

(4.195)

Since the order of processing of the measurement data is arbitrary the following
particular ordering of measurements is selected:

Measurements taken at pose 1:

z(l), z(k, + 1), ..., z[(k, — Dk, + 1]
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Measurements taken at pose 2:
zQ2), z(k, + 2), ..., z[(k, — D)k, + 2]
Measurements taken at pose k,:
z(k,), z(2k,), ..., z(k,k,)

Every group of consecutive k, measurements may be concatenated to form a
measurement vector IT(i).

z[( — )k, + 1]

2[(i — 1k, + 2]

() = s i=1,...,k (4.196)

z(ik,)

This particular ordering of measurements makes the measurement Equation 4.76
a periodic time-varying equation in which the period of H(j) is k,, where j =
1,..., kk,

Equivalently the measurement vector II(i) of Equation 4.196 defines a time-
invariant measurement equation

TIG) = AX() + WG i=1,...,k (4.197)
where ]
H(1)
A= H,(Z) (4.198)
_H(.k,,)

(VG — Dk, + 1]

v — Dk, + 2]

¥(i) = 4.199)

v(ik,)

At a given robot measurement configuration the values of the noise vectors
at every repeated measurement vary, however, it is reasonable to assume that
the probability distribution of the noise remains unchanged. Thus, denoting the
measurement noise covariance matrix at a given configuration j by Z,(j), then

() =%, + Kk, K=0,..k—1 (4.200)
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Therefore the covariance matrix of W (i) is block diagonal as follows:

1) 0 ... 0
0 (@2 .. ©

(@) =1| . . 0 (4.201)
0 0 ... Ik,

In simple words the above time-invariant model is no other than the batch-
processing model with repetitions.
Repeated use of the error covariance Equation 4.70 as i increases yields

() = (E7! 4+ iATZG'A) (4.202)

where X (i) is the error covariance in estimating X at every repeated measurement
ii=1,..., k,. Therefore if k, is sufficiently large and the matrix ATZg'A is
nonsingular, then theoretically as the number of repetitions becomes high, k, —»
o, the calibration accuracy becomes perfect. This agrees with what has been said
before analyzing the no process noise case in Kalman filters.

The requirement that k, be sufficiently large corresponds to an observability
requirement of the system given in Equation 4.197 together with the “process
equation™

X()=X(i-1)=X (4.203)

Thus, as the observability of the time-invariant system depends on A alone, one
requires

rank(A) = dim(X) (4.204)

Equation 4.34 implies a necessary condition that k, should satisfy, namely

(4.205)

k,> 1+ int{ dim(X) }

dim[z(j)]

where int denotes the “largest integer not greater than.”

The condition is not sufficient due to the possibility that certain measurement
configurations H(j) do not contribute to the rank of the overall measurement
matrix A.

If the system given in Equations 4.197 and 4.203 is not fully observable, it
simply means that not all elements of the unknown vector X relate to the
information contained in the measurement data H(i);i = 1,..., k,. A trivial case
of unobservability is when there is a lack of sufficient number of measurement
constraint equations as occurs whenever the requirement in Equation 4.205 is
violated.
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4.5.5 Two-Link Manipulator Example

Consider the two-link planar manipulator problem. It is assumed that the only
geometric errors are in the link lengths r,, r, and in the joint variables 0, 0,.
The constant errors are denoted as dr;, dr,, d6,, df,, respectively. The nominal
and actual kinematic equations relating the world coordinates (P,, P,) to the joint
coordinates (0,, 6,) are given as follows.

Nominal Model (omitting the index j from P, , P, , 6, and 6,):

P, =r,cos6, + r,cos(0, + 6,) (4.206)

X0

P = rl Sin 01 + rz Sil‘l(01 + 02) (4.207)

Yo

Actual Model:

P = (r; + dry)cos(0, + db,) + (r, + dry)cos(6, + db; + 6, + db,) (4.208)
P,=(r, + dr,)sin(0; + d6,) + (r, + dr,)sin(6, + d6, + 6, + d6,)  (4.209)

The resulting linearized measurement equation becomes
z(j) = H()HX + v()) (4.210)

where

Z(_]) — |:Px(]) - Pxo(j) + vx(]):|

4211
Py(j)_Pyo(j)+vy(j) ( )

and

X = 4.212)

Suppressing the index j from 6, and 6, and adopting the following shorthand
notation:

56, = sin 6, (4.213)
cB; = cos 6, (4.214)
s;;0 = sin(0; + 0)) 4.215)
c;;0 = cos(0; + 0;) (4.216)

the H(j) matrix becomes



4.5 OBSERVATION STRATEGY FOR ROBOT KINEMATIC IDENTIFICATION 161

(—ry80; — 135,00 —rys80,0 cb, 0126] 4.217)

H(j) =
0 [(“71591 —1¢120) —ryc50 86 550
Trivially for k, = 1 (one measurement configuration), A = H(1) and is rank
defficient and as such the four elements of X are not uniquely identifiable.

Increasing the number of measurement configurations from 1 to 2, results
in having the A matrix:

=150, (1) — r35:,0(1)  —ry5,,0(1) ¢0,(1) ¢,0(1)

A= —r1¢0;(1) — ryc,,0(1) _"2'6'129(1) s0,(1) s.,0(1) (4.218)
—r150,(2) — 135:,0(2)  —1y51,0(2) c0,(2) ¢,1,0(2)

—r1¢0,(2) — ryc;,6(2) _f'zc129(2) 50,(2) 5,002

For most pairs of measurement configuration, 8,(1), 6,(1), 6,(2), 6,(2), A is full
rank and the system is observable. Here are a few interesting numerical examples
worked out using PC-MATLAB.

L.ry=2r=1, 8,(1)=60% 0,1)=235; 6,2) =60% 0,2)=0"
The resulting rank of A is 4. Note that 0, is the same in both configura-
tions, and the second configuration is singular. Nevertheless the system is
observable.

2 rn=2r=1 6,1)=73 0,1)=0°% 6,2)=34° 6,2)=180°
Result: rank (A) = 4. Here both configurations are singular!

3rn=2r=1; 8,(1)=45° 0,(1)=90° 6,2 =350 6,(2)= —90"°.
Resuit: rank (A) = 4. Here there is a “mirror symmetry” between the two
configurations.

d.ri=r,=1 6,(1)=14% 6,(1)=120° 6,(2)=134° 6,(2) = —120°.
Result: rank (A) = 4.

This is a particularly interesting case in which both configurations result in
the same world coordinates for the end effector. In other words, the total number
of calibration fixtures may be smaller than what one expects if contact between
the robot end effector and the calibration fixtures may be achieved using a variety
of robot configurations.

All of the above examples are illustrated in Figure 4.5. The only case that has
been found in which rank (A) < 4 is the case:

0,(1) # 6,2 6,(1) = 6,(2) (4.219)

In other words, when the robot configurations retain the same shape as shown
in Figure 4.6, no unique identification is possible.

The time-invariant identification formulation results from the assumption
that k, repetitions are made at every robotic measurement configuration. The
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3 4)

8, 2) = 6, (1)
’

8,2 =0,(1)+4

Figure 4.6. Unobservable configurations for the two link planar manipulator.

question that is studied in the next section is that of the necessary minimum
number of such repetitions for the sake of getting a low enough identification
error in a suitable sense. This question is somewhat artifical and of dubious
practical relevance as in most calibration measurement applications there are no
repetitions at all, that is k, = 1. Yet, such analysis may provide better insight into
the more important problem of necessary number of measurement configura-
tions k,, to achieve a prespecified calibration accuracy.
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The basis for analysis are Equations 4.114 and 4.202. The latter relates the
error covariance X, to i (the number of repetitions), X, (the initial uncertainty in
X), Iy (the measurement noise covariance), and A (the matrix that depends on
the robotic measurement configurations). The former formula is a condition for
truncating the repetitions. The termination condition may be absolute as in
Equation 4.114, or relative, as follows:

IP(HI <ellPoll, Vi=M,0<e<l (4.220)

In other words, when the identification error covariance norm reduces to an
acceptable fraction of the initial covariance norm, no more repetitions are
needed. The condition above makes sense only for values ¢ for which

ellPoll = |IPg | (4.221)

including the value ¢ = 1. In the case of a fixed X (no process noise) P,, = 0 and
any 0 < ¢ < 1 may be chosen. By Equation 4.202 || P(j)|| as a function of j, j =
0,1,2,...is monotonically decreasing.

Equation 4.202 may be rewritten as follows:

P(j) = (I + jATEG AP,) P, 4.222)
where I is the identity matrix. Using Schwartz’s norm inequality one obtains
PG < P}~ X + JATZG APy) ™| (4.223)
Then a lower bound M, on M is obtained from the inequality
I+ jHATEGIAP,) Y <& j>M, (4.224)

Obviously different matrix norms yield different bounds M, and exact results M.

Consider again the two link planar manipulator example. M may be easily
determined from Equation 4.222 using PC-MATLAB. A few numerical results
are shown below:

Lr=r=1 6/()=450,(1)=33% 6,2 =57 6,2 =—5°
P, = diag(0.05,0.05,0.1,0.1), ¢ = 0.1

. {[02 o1][02 o1
Zy = diag {[0.1 0.2]’ [0.1 0.2]}

Results: M = 1377, M, = 1632
Both, P, and Iy are “large.”

2. Increasing the link lengths of the first example to r; = 10, r, = 9, keeping
all the othe * values unchanged, results in M = 995.
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3. Decreasing the measurement noise by a factor of 10:

Ty s =01Zy, (4.225)

Result: M = 80

So far the matrix norm that has been used corresponds to the 2-norm.
Using the 1-norm (maximum column sum) gives M = 100. Using the
infinity-norm (maximum row sum) gives M = 86.

Changing the robot configuration to
0:(1) = 0% 6,(1) =90% 6,(2) =45 6,(2) = —90°

gives M = 2 (for all three matrix norms).
Same result for the configuration:

0:(1) = 0% 6,(1)=0% 6,(2) =45% 6,(2) = 180°

Obviously, there exists preferred configurations. In a qualitative sense, the
more drastic the change in shape from one configuration to the next, the
faster the convergence. The following group of examples studies configura-
tions that differ only slightly.

. The subscript of M denotes the matrix norm. It is also of interest to observe

M, of the inequality in Equation 4.224. Two measurement covariance noise
matrices have been tried, £y ; and 0.1Zy ;. The robot configuration is
described in terms of the 4-tuple 6, (1), 6,(1), 6,(2), and 6,(2) in degrees.

Noise
Configuration Covarience M, M, M, M,
(45,20, 50, 10) Medium 2748 2796 3328 2876
Low 279 280 333 288
(46,34,58, —6) Medium 62 62 77 67
Low 7 7 8 7
(50, 34,60, — 15) Medium 37 37 50 45
Low 4 4 5 5
(0,0, 180, 90) Medium 3 3 4 4
Low 1 1 1 1

In all situations, the spectral norm consistently gave the smallest M and
the 1-norm the largest. The deviation between the exact M and the bound
M, according to Equation 4.224 becomes significant only in cases of large
numbers of repetitions.

As expected, low measurement noise combined with “suitable” measure-
ment configuration drastically reduces the number of repetitions. This may
goaslowask, = 1.
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46 IDENTIFICATION OF THE ROBOT JOINT AXES

The construction of a robot kinematic model, regardless of the specific modeling
convention, always starts from the set of robot joint axes in an arbitrary robot
configuration. While the nominal kinematic model of a robot may be obtained
from engineering drawings of the machine or from crude measurements of the
robot dimensions, finding a more exact kinematic model can be done through
identification of the precise geometric relationships between the robot joint axes.
For that, each joint of the robot is individually commanded to move to a goal
point. During the motion of each joint, the position of a point on a tool mounted
on the end effector (Figure 4.7) is determined with respect to a known reference

Measurement point

Deflected extension
attached to robot
end effector

World reference
axis system

2y

Yw

|
014

-

S

Figure 4.7. World axis system and robot arm with extension for measurement. Reprinted
from [2].
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Sensor Plane Range Sensor 1

\ (X4 Yy 29
~¢_~ Target

4

Puma 860

Range
Sensor 3

Figure 4.8. Generating a plane of rotation and center of rotation for joint 6 of a PUMA
560 robot. Reprinted with permission of the authors [27]. Copyright © 1987 IEEE.

frame. Any single sighting device can be used for that purpose. For a perfect
revolute joint, the target point will move on a circular trajectory from which the
corresponding axis of rotation can be estimated. The same method may be
applied to prismatic joints.

The idea was developed independently by several researchers. Figure 4.7
shows a single-target robot set-up as was used by Barker [2]. Figure 4.8 shows
the measurement set-up used at Carnegie Mellon University by Stone and
Sanderson [27-29]. The target points in this set-up are transducers that generate
an acoustic signal. These transducers are mounted on each robot link. The
sensors are microphones that are placed at fixed locations in the world co-
ordinate space. Each sensor measures the time required for the acoustic pulse to
travel from the transducer to each sensor. This enables the target to be located
by triangulation. This process is described in more detail in Chapter 3. The
observed data points for each revolute joint motion define two geometric fea-
tures. These are the plane of rotation and center of rotation. Regression methods
are used to fit planes and circles through the observed target locations. The
normal to the plane of rotation passing through the center of rotation is the joint
axis. Similarly in the case of a prismatic joint, the locus of measured points define
the line-of-translation. This line is parallel to the robot prismatic joint axis.

A similar method using a theodolite system was employed by researchers at
the University of Texas at Austin [25,26]. It was termed a circle point analysis
(CPA). Whenever convenient, this short name will be used here as well.

The CPA method offers several potential advantages over the standard pa-
rameter identification strategy. First, no knowledge of the robot nominal model
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is needed. The method can be used even in cases where kinematic parameter
errors are relatively large.

Second, the identified joint axes may be expressed mathematically with respect
to any convenient coordinate system since what matters is the relative position
of every two consecutive lines. The lines are usually represented with respect to
a coordinate frame defined by the sensory system.

The method can also be used to directly study joint imperfections such as
“wobble” and “slop.”

Finally, the method allows a comfortable use of a calibration tool mounted
on or held by the robot hand where the repeatability in mounting the tool for
calibration is not so critical.

One should also recognize some of the limitations of this approach. First, since
only axes about which real motion occurs can be located in space, the method
can be used to find the parameters between the first and last joint axes. The fixed
transformations between the world coordinate frame and the robot base and
between the end of the robot and the tool still need to be found by other means.

Second, the accuracy of the method increases the larger the range of joint
motion during the data collection and the more uniformly spread apart the data
points are. Three-dimensional measurement equipment that can cover only a
small portion of the robot workspace often cannot be used to identify the robot
axes of motion.

4.6.1 Linear Regression Analysis

Regression analysis deals with the relationship among measured variables. Such
a relationship is expressed in terms of an equation relating one dependent
variable y to one or more independent variables x, x,, ..., x,. If the number of
independent variables is one the analysis is called “simple regression” compared
to “multiple regression” in the case of several independent variables. Considering
an equation that is linear in terms of the unknown coefficients

y=by+byx; + byx, +- + b,x, (4.226)

the analysis is referred to as “linear regression analysis.” The coefficients by,
by, ..., b, are called the “regression coefficients.”

This section provides formulas for the regression coefficients in both simple
and multiple linear regression problems as a simple applications of least squares
theory. The material is covered in many standard textbooks and references such
as [5,12].

Starting with simple linear regression, the measured data are a sequence of N
pairs of values (x;, y;),i = 1,2,..., N. A typical situation is that of fitting a straight
line to a set of measured points on a plane. The decision with regard to which
variable should be taken as the dependent one is often arbitrary, and sometimes
it depends on the physical nature of the problem.
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The theoretical regression curve is:
y=Po+ Bix 4.227)

with f§,, §, being the unknown parameters.
Every data point (x;, y;) obeys the model

yi=Po+Pixi+u; i=1..,N (4.228)

where u; is a noise term. The parameters f,, §, are estimated using least squares
to minimize the performance measure

M=

L
-

J= yi—Bo— B xi)2 (4.229)

The coefficients (bg, b, ) are the optimal values of (8, §;) that minimize J. In the
context of least-square identification the aggregated measurement vector Z and
the matrix coefficient H are

1
Z=|: (4.230)
N
and
1 x;
1 x,
H=}{ (4.231)
1 xy

One may now use the least-squares solution formula. It would, however, be
simpler to differentiate J with respect to 8, and B,. The resulting solution is

b, = =2 (4.232)

and

bo = )_) - blf (4.233)

where y and X are the mean values of y, and x,, respectively.
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Note that the optimal straight line
y = bo + blx (4.234)

passes through the mean point (X, ).

Thus far, no assumptions have been made with regard to the noise term u; in
Equation 4.228. Under the common assumption that u;, i = 1, ..., N are Gaus-
sian random variables that are independent of each other, have zero mean and
a constant variance g2, a straightforward application of the variance formulas
of least-squares estimation yield that b, and b, are unbiased estimates of §, and
p; and that

Var(b,) = (4.235)

and

(4.236)

Obviously, the larger the number of data points and the more spread apart they
are, the better is the “goodness-of-fit” of the estimated line to the correct one.

Extensions of the above results to linear multiple regression problems is
obtained as follows. N data points (y;, Xy;,...,%,;)i = 1,..., N are measured. The
theoretical regression curve is assumed to be

y=2P80+ Bix1 + -+ Bpx, (4.237)
Every data point obeys the model
Vi=PBo+ Brxi;i+ 0+ Bpxp + uy (4.238)

where u; is the noise term. The regression parameters f,, ..., f§, are estimated via
minimizing

=

H=3% (yi— Bo— Bix1i — = Bpxp) (4.239)

1

i

By differentiating J with respect to each one of the regression coefficients the
following set of linear algebraic equations is obtained for the optimal regression
parameters by, ..., b,:

Sh=a (4.240)
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where

Sis a p x p matrix whose entries are
N — —_ o
Si; = kZl (i — X3) (3 — X5); @Gh=1L...,p
The elements of the p-vector a are

N
ai=k;(,"k—f)(xik—fi); i=1,..,p

where

_ 1 X

Xi =33 X;

N k;l *

and

_ 1 X

v=5 k; Ve
The optimal coefficient b, is

bo = Y‘— blfl _ bzfz —rr — bpfp

An alternative and equivalent solution is to use Equation 4.44 where

T x5 X219 o0 Xp1
1 x x X
12 X222 -0 Xpa
H =
1 xin Xon .o Xpy

and Z is as in Equation 4.230.

(4.241)

(4.242)

(4.243)

(4.244)

(4.245)

(4.246)

(4.247)

This formalism is useful for obtaining formulas for the variance of each one
of the coefficients again under the same assumption that was made previously

regarding the noise terms u;.
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46.2 Fitting Data Points to Planes, Circles, and Lines

This section focuses on curve fitting using linear regression analysis. More
comprehensive treatment of the subject including additional techniques for curve
fitting can be found in [28] and in its list of references.

46.2.1 Planes One form for the equation of a plane is
Ax+By+Cz+ D=0 (4.248)

where the coefficients A4, B, C, and D are the parameters to be identified. There
are m data points (x;, y;,2;), i = 1, ..., m. To use linear regression analysis any
one of the variables x, y, or z may be selected as the dependent variable while
the other two are considered as the independent variables.

Let z be chosen as the dependent variable. Equation 4.248 may now be
rewritten as follows:

z=Ex+Fy+G (4.249)

where E, F, and G are the unknown parameters that need to be chosen to
minimize the following performance criterion:

L= (z—z) (4.250)

i=1

In other words, the pairs of data points (x;,y;), i = 1, ..., m are assumed to be
the correct X—Y coordinates of each point on the sought plane. Regression
corresponds to a minimization of the sum of squared errorsin the Z coordinate.
The formulas in the previous section are now specialized to plane estimation
by observing the following variable changes in Equation 4.226 for the case p = 2

yez, Boe G, B, E, B, F

(4.251)
X, & X, Xy ey, Neoem
Then from Equations 4.240 through 4.246, the optimal parameters are

01y 0,, — G,,0

E=_"w " 2%y (4.252)
Oxx0yy — ofy

F =20 = 000 (4.253)
Oxx0yy — Oxy

and

G=%7—Ex—Fy (4.254)
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where
£= % ; X, (4.255)
y= ;15 gjl Z (4.256)
7= % ig 2 (4.257)
and: ]
Orx = i; (x; — X)? (4.258)
Oyy = ig (v —y7 (4.259)
Oyy = :1 i — X) (i — ¥) (4.260)
0, = 2 (2 — D) — %) 4.261)
0,y = i‘; z—2)(:—y) (4.262)

As explained earlier with regard to Equations 4.235 through 4.236, the larger the
number of data points and the more spread apart the points are from each other,
the better is the goodness-of-fit.

Finally, the closer the identified plane is to lying on the X-Y plane of the
coordinate syste-n with respect to which the values (x;, y;, z;) are given, the better
the fit.

4.6.2.2 Circles on a Known Plane The analysis starts with the strong
assumption that the data points (x;,y,,z,), i=1, ... m all lie on a known (or
previously identified) plane. Consequently, it is assumed that the coordinate
frame, X YZ, with respect to which the data points are read is placed such that
the plane lies on or paraliel to the X—Y plane defined by the coordinate frame.
Thus one implicitly ignores z;, or in other words only the (x;, y;) pairs are used
in the identification.
The standard form for the equation of a circle is

(= 9P + (v — by =7

where (g, h) are the X and Y coordinates of the circle center, respectively, and r
is the radius.

To use regression analysis the dependent variable should depend linearly on
the unknown coefficients.
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Therefore, the circle equation is rewritten as follows:
w=x2+y>=Ax+ By + C (4.263)

where A, B, and C are the unknown regression coefficients. The selected de-
pendent variable w is the squared distance between a point and the origin of the
coordinate frame. The regression corresponds to minimizing the performance
measure:

Iy= 3 (W — wy)? (4.264)
=1

This minimization of the squared errors in w is in general not equivalent to
minimizing the sum of squared perpendicular distances between the measure-
ments and the circle unless the origin of the coordinate frame and the center of
the circle coincide. The center location is unknown a priori and, therefore, the
solution that minimizes distances to the circle circumference may be obtained
through repeated solution of the problem min(J,).

Using Equations 4.240 through 4.246 applied to the case p = 2, one uses the
following changes of variables in Equation 4.226:

ny2+y2, ﬁo“"c, BIHA’ BZHB

(4.265)
X X, X1, Neoem
The optimal solution is
A =200~ Twr Ty (4.266)
Oxx0Oypy — Oxy
B =20 To0ux (4.267)
OxxOyy — Oxy
C=w— Ax — By (4.268)
where X, y are as in Equation 4.255 and 4.256, respectively. w is
_ 1=
w= m Z 2+ y}H) (4.269)
0.x» Oyy» and g, are as in Equations 4.258 through 4.260
Owe = 3, (67 + ¥ = W)(x; — %) (4.270)

i=1

Gy = il F + 92 — W — 7) 4.271)
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4.6.2.3 Lines in 3D The standard form for the equation of a line in three-
dimensions is

x—xozy_YO=Z—Zo
A B C

@.272)

where (xq, o, Zo) are the coordinates of a point on the line. To characterize a line
in space only four parameters are required. One seeks a line equation that
minimizes the sum of the squared perpendicular distances between it and the
measured points positions.

A linear regression solution strategy may involve the combination of two
simple linear regression problems:

1. Fitting the projection line of Equation 4.272 onto the XY plane using the
measured (x;, y;) coordinates.

2. Fitting the projection line of Equation 4.272 onto the X—Z plane using the
measured (x;, z;) coordinates.

This is done in the following way. By Equations 4.232 through 4.233, the best
straight line fit using (x;, y,), i = 1,..., m on the X-Y plane is

y=by+ byx 4.273)
where

by = :—z (4.274)
and

bo=y—b X% (4.275)

where o,,, 0,, are as in Equations 4.258 and 4.260, respectively and X, y are as
in Equations 4.255 and 4.256, respectively.
Similarly, the best straight line fit using (x;, z;),i = 1,...,mon the X—Z plane is

Z=Co+Cyx (4.276)
where
axz ‘
and
Co=Z — ;X (4.278)

where 0, and 7 are as in Equation 4.261 and 4.257, respectively.
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Now, it is observed that Equation 4.273 is also the equation of a plane
perpendicular to the XY plane that contains the line given in Equation 4.273.
Similarly, Equation 4.276 is the equation of a plane perpendicular to the X-Z
plane that contains the projection line in Equation 4.276. The intersection of the
two planes defines the desired line (Equation 4.272) in 3D. In other words, the
combined Equations 4.273 together with 4.276 constitute the 3D line.

Note that this line passes through the point (X, 7, Z). To relate Equations 4.273
and 4.276 to Equation 4.272, the following parameters may be assigned.

Xo =X, Yo=73, 2o =2 4.279)
1 ¢

A=_—, B =1, C=_—- 4.280
b, b, (4.280)

An alternative method is to use the principal axis method. For details, refer
to work by Stone [28] and Ballard et al. [1].

46.3 Circle Point Analysis—The Measurement Phase

To find the axis of motion of joint j, a target point is placed on the j + 1 link or
on a tool attached rigidly to link j + 1. That includes the possibility of placing
the target on any of the links j + 2,j + 3,... under the condition that jointsj + 1,
j+2,... do not move while joint j is moving. Thus, one may employ either a
single target point located on the robot tool or end effector, or multiple target
points located each on a different robot link. The target point that corresponds
to the motion of joint j is denoted as the jth target.

The calibration measurement phase of an N degree of freedom manipulator
may start at the N th target analyzing the motion of the robot joint that is closest
to the robot end effector. While measuring the position of the Nth target, joints
1 through N — 1 are required to be in a fixed configuration.

After estimating the location of the Nth joint axis, the identification process
focuses on the N — 1 joint axis. For that, joints 1 through N — 2 must remain
at the same configuration as in the measurements of the Nth joint axis. Joint N,
however, may be positioned arbitrarily. If target N — 1 is also located at link
N + 1, then after selecting an appropriate position for joint N it must remain
fixed during the motion of joint N — 1.

This process is continued all the way down to joint 1. While measuring the
position of the jth target, joints 1 through j — 1 are required to be in their initial
“arm signature” fixed configuration. Joints j + 1 to N, on the other hand, can be
positioned arbitrarily. Through independent control of the manipulator joints,
joint j is then sequentially indexed to m different positions g, i =1, ..., m. To
minimize the regression errors a good guideline is to keep these joint positions
uniformly spaced about the entire range of motion of joint j. Then:

Qi = 4j,min + (i — 1Agq, i=1..m (4.281)
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where Aq is a constant joint increment and

qj,l = qj,min (4282)

and
qj,m = qj,max (4283)

The direction of motion from g; ; to g; ,, corresponds to the positive sense of the
corresponding joint motion, and so does the ordering of the measurement points.
For each value of the joint position g; ; the coordinates (x;, y;, z;} of the target are
measured, i =1,..., m.

By following the above measurement procedure, the identification problem
of each joint axis line equation becomes decoupled from the identification prob-
lems of the other joint axes. In the case where the target point j is not located on
link j + 1, the configuration of joints j + 1,..., N may be taken in such a way to
enhance the identification accuracy of axis j.

If, for instance, joint j is revolute, the configuration of the latter joints should
be chosen to maximize the radius of the circle traversed by target j, or to maximize
the circle segment that is visible to the sensory system.

Alternatively, the sequential robot joints motion may start at joint 1, “freez-
ing” joints 2, ..., N. The measurement then proceeds to joint 2, freezing joints
3,..., N and choosing an appropriate fixed position for joint 1. So on all the way
to joint N. This procedure was taken in [25] and is illustrated in Figure 4.9.

The entire identification procedure results in having the equations of N lines
in space. These are the robot’s N joint axes for the particular initial robot
configuration characterized by a set of joint positions g3, g3, .., gy (the “arm
signature”).

Depending on the particular sensory system that is used to trace the target
points, an optimal selection of the arm signature may be done according to “line
of visibility” considerations. This is the case when using opto-camera or three-
cable techniques [16]. The identification accuracy depends on being able to trace
the target along as large a portion of the total joint travel as possible. In the case
of a revolute joint a practical guideline is to view the target along at least half of
a circle.

The robot joint motion during the data collection experiment may be done
continuously if all sensors are synchronized to read the target coordinates
simultaneously. Otherwise there is a need to stop the robot at each point to allow
each sensor to read the same point. Depending on the identification algorithm
the joint position may or may not be read together with the target point
coordinates. Synchronizing between the robot controller that reads the joint
position sensors and the sensory system controller again may necessitate bring-
ing the robot to a full stop at certain designated points along each joint travel.
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Joint 1 circle points

Joint 2 circle points

az3

Joint n circle points

Figure 4.9. Circle point motion for individual axes, starting at joint 1 and ending with
joint n. Adapted from reference [25] with permission of the author.

4.6.4 Iterative ldentification of the Joint Axes

The material in this section follows closely Stone’s analysis [28]. Focusing on
the motion of one joint, let p,, ..., p, be the coordinates of the target point with
respect to the world coordinate frame established by the sensory system. Assum-
ing a revolute joint, these n points ideally lie on a circle in three-dimensional
space. Mathematically the problem of fitting a circle through the data point is a
constrained nonlinear optimization problem as follows:

Minimize the function J:

J=2 lIxi—pll (4.284)

M=

i=1

It
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subject to the following constraints:

Ix; —¢|?—=r*=0 (4.285)
(x;—c)'a=0 (4.286)

and
la|—1=0 (4.287)

The vector ¢ defines the center of the circle with respect to the world frame,
the vector a defines unit vector normal to the plane in which the circle lies, r is
the radius of the circle and the vectors x;, and i = 1, ..., n are the positions of n
points on the circle. The minimization is done with respect to 3n + 7 parameters
contained with ¢, a, r, X, ..., X,. By using Lagrange multipliers the problem
solution is obtained through solving 5n + 8 nonlinear coupled algebraic equa-
tions. Since n is relatively large (between 50 and 200, in most practical applica-
tions) a direct identification solution is cumbersome.

To simplify the solution the problem is decomposed into a sequence of two
subproblems:

1. Fitting the data points into a 3D plane to find the plane of rotation.

2. Fitting the data points into a circle that lies on the identified plane of
rotation. By that the center of rotation is found.

As is shown in Section 4.6.2 each of the subproblems amounts to solving a
linear regression problem. To ensure sufficient identification accuracy each one
of the above subproblems needs to be solved iteratively as will be shown next.

Consider first the problem of fitting a plane through the data points. Taking
z as the dependent variable the best goodness-of-fit is obtained if all the data
points lie on the X-Y plane or parallel to the X-Y plane. Apriori, the plane of
rotation of a particular joint under study in a given arm signature has no reason
to be even close to lying parallel to the world XY plane. The essence of the
iterative solution is then to introduce a sequence of coordinate transformations
to the frame with respect to which the data points are represented.

Let the revolute joint under study be j; j = 1, ..., N. Given the data points
(x:,¥i,2;); i=1, ..., m of target j with respect to a world coordinate frame
X—-Y-Z, namely a coordinate frame that is determined by the measurement
equipment or the sensors system, a coordinate transformation T from X-Y-Z
to X'—Y'—Z' is initially needed to transform the measurement points to roughly
lie either on the X'-Y’ plane or on a plane parallel to the X"-Y' plane. The
following strategy was attempted by Stone [28].

Referring to Figure 4.10 three of the measured positions that are mutually the
most distant from one another are picked up. Denoting the points by p,, p;, and
P..» Where the corresponding joint positions satisfy q; , < q;; < ¢; m, a coordinate
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Z sensor

X
sensor
x-

Figure 4.10. Initial approximation to the plane of rotation using three mutually distant
target measurement. Reprinted with permission of Carnegie-Mellon University and the
author [28].

frame X'~ Y’ —Z', which shares the same origin with the frame X-Y-Z, is con-
structed as follows: The X’ axis is taken to be parallel to the line joining p,
and p,. The Z' axis is taken to be perpendicular to this line and to the line join-
ing p, and p,. Thus, the transformation T becomes the following rotation
transformation:

_ RL R 0
T=R, = [0 0 0 1] (4.288)
where:
P— P
n=—— 4.289
Tip— ( )
P —Pe) X (P — Pi)
L= 4.290
5= (0, = ) X (B — B (4290)
and
0;=a; X I (4.291)

Denoting the transformed measurement points by pl,i=1,..., m These are
obtained from the original data points p; ; as follows:

pl,=Ryp;;, i=1...m  (4292)

p;.; OF P} ; are represented as 4-vectors to conform to the homogeneous transfor-
mation formulation given in Equation 4.288.

The second step after transforming the measurement points to the X-Y-Z
frame is to fit the points to a plane using Equations 4.248 and 4.252 through
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4.262. The result of the regression analysis is a plane characterized by the
coefficients A°, B°, C° D° with respect to the X'—Y'—Z’ frame, namely
A% + B%’ + C%' + D° =0.

The next step is the representation of the plane with respect to the X—Y-Z
frame. Since R, is a pure rotation, this is done in the following way:

A A°
B .| B°
o|=® co (4.293)
D DO

As a result of the first iteration the estimated plane of rotation may still not be
parallel to the X'~ Y’ plane. A new coordinate frame X”"—Y"—-Z" is now defined
by taking a rotation transformation R, with respect to the X—Y-Z frame. R, is
constructed using the most current estimate of the plane of rotation. A plane
Ax + By + Cz + D = O defines a vector (4, B, C, 1) that is normal to that plane.
Thus let the Z” axis unit direction vector a; be given by the estimated normal to
the plane of rotation:

(4.294)

2O 2w =l

where
w= (42 + B* + C?)'”? (4.295)

The X" and Y” axes unit direction vectors n; and o;, respectively, are chosen
arbitrarily to form a right-hand system.

The original set of points p; ; is now transformed using R,, and a new plane
A', B!, C', D" with respect to X”—~Y"—Z" is found using regression analysis.

The process is used repeatedly until the difference between consecutive esti-
mates of the plane of rotation becomes negligible. Stone reports that under the
following practical assumptions only a few iterations are required for the algo-
rithm to converge.

Assumption 1: The standard deviaton in the measurements of the target’s carte-
sian position is by several orders of magnitude smaller than the nominal radius
of rotation of the target.
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Assumption 2: The measured target positions correspond to joint positions
uniformly distributed between the upper and lower limits of the joints travel.

Assumption 3: For each revolute joint, at least 180° of joint travel is traversed
as part of the data collection.

The next step after estimating the plane of rotation is to estimate the center
of rotation. Let K denote the number of the last iteration in estimating the plane
of rotation. Then pf;, i = 1, ..., m are the measurement point representations
with respect to the coordinate frame X® — Y® — Z® frame. This circle does
not minimize the sum of squared perpendicular distances between the measure-
ments and the circle as one would expect. A sequence of iterative solutions is
now initiated involving a sequence of translation transformations X ® — y® _—
Z® 5 X K+D) _ y &+ _ Z®&E+D... in such a way that the origin of the new
coordinate frame coincides with the most current estimate of the circle center.
This is done as follows:

Let the circle equation after iteration k be

=g+ —h)=r (4.296)

where x, y are represented in the X® — Y® — Z® coordinate frame. k = K,
K+1,..., K+ L. Each one of the data points p{, ..., p® represented with
respect to the kth coordinate frame is translated by (g,, h,,0)". In other words
frame k + 1 is obtained from frame k via

1 0 0 g,
0 0 h

F.,. = 001 o F, 4.297)
00 0 1

The algorithm terminates when the changes in the location of the circle center
become very small.

Finally, the circle equation parameters gX* 4 pK+1) p&+L) shoyld be trans-
formed back to the world frame X — Y—Z retracting the last L translative transfor-
mations that have been made previously.

The joint axes line equations can now be written in terms of a point on the
line, this is the center of rotation coordinates in the case of a revolute joint
denoted as (x,;, y.;, 2;) and a unit vector normal to the plane of rotation given
in terms of the element of a; of Equation 4.294. Thus

x_xcj=y~ycj=z_zcj_
Aifw;  Bw  Gfw

J

i=L.., N (4.298)
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The estimation of a prismatic joint axis may follow similar ideas. The “best-fit”
line must pass through the mean point (X, 3, Z). Thus, the data points may all be
initially translated to a new frame having (x, ¥, Z) as its origin.

4.6.5 Kinematic Parameter Extraction from
Identified Joint Axes

The circle point analysis data collection and identification actions result in
obtaining least-squares estimates for the line equations of all robot joint axes at
a given robot configuration termed the arm signature. In the case of a revolute
joint the identified center of rotation provides a point on the identified joint axis,
whereas the identified plane of rotation provides for the direction cosines of the
joint axis line. In the case of a prismatic joint the mean point is on the estimated
joint axis line. The identified line is the intersection of two identified perpendicu-
lar planes.

The main objective of the circle point analysis method is the identification of
the robot kinematic parameters. The selection of a suitable arm signature plays
an important role in determining the regression goodness-of-fit of the joint axes
line equations. Once these lines are obtained, the extraction of the robot link
parameters becomes independent of the choice of the arm signature.

Two strategies are offered in the literature to extract the kinematic parameters
from the identified joint axes. The first, due to Stone [28], consists of the following
steps:

1. Link coordinate frame specification

2. Calculation of the link homogeneous transformation matrices from the
relative locations of the assigned link coordinate frames

3. Derivation of analytic formulas for the kinematic parameters in terms of
elements of the link homogeneous transformation matrices. The formulas
are derived in a method very similar to Paul’s [23] inverse kinematics
solution method.

The second strategy due to Sklar [25,26] is to compute geometric entities
such as common normal lengths, offset distances, and twist angles directly from
the identified joint axes line equations. Standard vector algebra relationships and
solid geometry formulas are used for this purpose.

4.6.5.1 Stone’s Method for Kinematic Parameter Extraction from
Identified Joint Axes Given an identified joint axis line equation expressed
in terms of a world coordinate frame normally defined by the calibration sensory
system, a three-step process is proposed for extracting the kinematic parameters
of interest.

The first step involves specification of link coordinate frames. The modeling
convention known also as the S-Model (refer to Chapter 2) consists of
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Identified
Plane-of-Rotation
Joint i+1)

{XYZ)} -- Sensor Coordinate Frame
1

Figure 4.11. Coordinate frame construction for a revolute joint. Reprinted with permis-
sion of Carnegie-Mellon University and the author [28].

1. Assigning the Z; axis for link i frame to be along the identified joint axis
i+ 1.

2. Assigning the origin of frame i to be at the identified center of rotation of
axis i + 1 (in the case of a revolute joint) or at the mean point (in the case
of a prismatic joint).

3. Arbitrary assignment of the X, ¥; axes over the plane perpendicular to
joint axis i + 1. In the case of a revolute joint this is the identified plane of
rotation.

Figures 4.11 and 4.12 illustrate the link coordinate frame assignment in the
cases of a revolute joint and a prismatic joint, respectively. In the case of a
revolute joint, the unit direction vector a; is the unit normal vector to the
estimated plane of rotation of joint i + 1. Its positive sense must correspond with
the positive sense of rotation of the i + 1 joint. The direction of either the X axis,
defined by n,, or the Y axis, defined by o; is arbitrary in the S-model. For instance,
one may choose the unit direction vector n; to be

n = Pi+1,1 — Pit1,c (4.299)
[Pi+1,1 — Piss,ol

where p,, , is the location of the first target position for joint i + 1 projected
onto the plane of rotation. p;,, . is the center of rotation. The Y axis direction
vector o; is the cross-product of the Z and X axis unit direction vectors, a; and
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Identified
Line-of-Translation
(Joint i+1)

{XY2Z}) -- Sensor Coordinate Frame
z

Figure 4.12. Coordinate frame construction for a prismatic joint. Reprinted with permis-
sion of Carnegie-Mellon University and the author [28].

n;, respectively. The unit direction vector a;, in the case of a prismatic joint, is
the unit direction vector of the estimated line of translation of the i + 1 joint.
Again, the positive sense of a; conforms to the positive sense of the joint transla-
tion. The choice of either the X axis or the Y axis is completely arbitrary.

The second step, after assigning link coordinate frames, involves the computa-
tion of the link homogeneous transformation matrices. Let S; denote the homo-
geneous transformation relating coordinate frame i to the world coordinate
frame. Then

n; o a; p;
L= 4.
8. I:O 0 0 1:| (4.300)

Denoting by B;, i = 1, ..., N the relative link homogeneous transformation and
by B, the fixed transformation relating the robot base to the world coordinate
frame, we have:

Si=BoB,...B; i=1.. N (4.301)

Thus
B, =SS; i=2,...,N (4.302)

which can be computed without the knowledge of B,. The computation of B,
requires having B, and then
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B, = B,'S, (4.303)

The robot calibration process involves the estimation of B, as well. This must
be established before the circle point analysis starts.

The B; transformations are analogous to the Denavit—Hartenberg A, transfor-
mation matrices (see Chapter 2). However, because the assignment of the origin
of the link coordinate frame and its X axis are arbitrary, there are two additional
link parameters.

B; = R(z, f)T(0,0,7)T (L, 0, OR(x, %)R(z, y;) (4.304)

where I; is the common normal between axes i and i + 1 and o is the twist angle
between axes i and i + 1. Also

Bi=6;— 74 (4.305)
and

r,=r,—b_, (4.306)

where 6, is the rotation angle between X; ; and X; and r; is the offset distance

between /;_, and I,. The additional parameters y; and b; account for the differences

in placing the link coordinate frame as compared to the DH convention.
Expansion of Equation 4.304 results in the following expressions:

ny O0x 4y P«
B, = EOR A (4.307)
n, o, a, p;
0 0 0 1
where
n, = cos B;cosy; — sin ff;cos o; sin y; (4.308)
n, = sin fj;cosy; + cos f;cos a;siny; (4.309)
n, = sin a;sin y; 4.310)
0, = —cos f§;siny; — sin f;cos o; cos y; 4.311)
0, = —sin f;siny; + cos f;cos a; cos y; (4.312)
0, = sina; COS y; 4.313)
a, = sin f;sina; 4.314)
a, = —cos f;sina; (4.315)

a, = cosa; (4.316)
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P, = b;sin B;sina; + a; cos f; 4.317)
py = —b;cos B;sina; + a;sin f; (4.318)
pz = bi COS di + di (4.319)

Given the numerical values of the B; matrices, the last step involves solving
Equations 4.308 through 4.319 for the six unknown link parameters.
Applying Paul’s backward multiplication technique [23] the solutions are

0 whena, =a,=0
B = —a . (4.320)
atan——= otherwise
ay
2 2
o, = atan “aﬂ (4.321)
», = atan (axn,)® + (a,n,)* + (a,n, + a.n,)? 4322)
—a,n, +a.n,
a; = p,Cos f; + p,sin §; (4.323)
RSB PyCOS By g 20
b = sing (4.324)
0 ifsing; =0
d; = p, — bcosw; (4.325)

from which the DH parameters may be extracted.

4.6.5.2 Sklar’s Method for Kinematic Parameter Extraction from
Identified Joint Axes Following closely the analysis done by Sklar [25],
this section focuses on extracting the DH parameters directly from the joint axes
line equations. The ideas can be easily extended to include kinematic parameters
used in other robot kinematic modeling conventions.

The following notation is used in this section:

a;; = direction vector of the common normal between joint axes i and j,
pointing from axis i to axis j. In the case where j =i + 1, a shorthand
notation a; will be used.

s; = direction vector pointing along the positive direction of joint axis i.

The available data for the kinematic parameter extraction include all direction
vectors s;, i = 1,..., N, and a given point (x;, y;, z;) lying on each joint axis i.
We shall denote such points by the vector r;.

r=(x, Y 2z)" (4.326)
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Denote by a; the twist angle between axes i and j, as measured by a right-handed
rotation from s; to s; about the vector a;;. The angle a;; can be computed from
the pair of equations:

sinoy; = (s; X §;)-a; (4.328)

In other words, the magnitudes of the twist angles, a;, are readily available from
the given joint axis descriptions. Their signs, however, require finding first the
appropriate common normal vectors.

The common normal vectors are also needed for computing the joint rotation
angle 6;. This angle is measured by a right-hand rotation from a;; to a; about
the vector s;, as follows:

sing; = (a;; X a;)"s; (4.330)

In the case of a revolute joint j, the calculated angle 6; corresponds to the
particular arm signature joint j position.

The remainder of this section focuses therefore on the computation of the
common normals between each pair of consecutive robot joint axes and the offset
distance between consecutive common normal vectors.

When studying joint axes i and i + 1, three cases are distinguished and
different formulas are derived for each case. The cases are

1. Skew lines
2. Intersecting lines
3. Parallel lines.

The appropriate case can be determined from the given experimental data.
Such a test is developed next.

A line in space, as shown in Figure 4.13 has the following equation written in
terms of its direction vector s;, a fixed point r; and an arbitrary point r:

r—r)xs=0 (4.331)
The constant vector s,; defined as
Soi =L X §; (4.332)

represents the moments of each component of the direction vector s; about the
coordinate axes.

The basic equation used to indicate if a pair of lines are skew, parallel, or
intersecting is referred to as the mutual moment (M M) equation. The mutual
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Figure 4.13. A general line in space. Adapted from reference [25] with permission of the
author.

moment of two lines j and k is defined as
MM = s;" 8o, + 8;*Sg; ' (4.333)

MM is the moment of s, ons;, or symmetrically the moment of s; on s,. Referring
to Figure 4.14, let P, and P; be the intersection points of the common normal
between line k and line j with the respective lines. Equation 4.333 results from
expanding the expression

MM = [(P, — P) x s,]"s;. (4.334)
For details refer to the work by Sklar [25]. Obviously
P, — P; = aay, (4.335)

where a;, is the common normal length. By substituting Equation 4.335 into
Equation 4.334, and using the twist angle Equation 4.328, the mutual moment
equation is finally obtained:

MM = —aysinay, (4.336)

where MM is computed from the given measured data using Equations 4.332
and 4.333. Equation 4.336 provides the conditions to distinguish among the three
cases of an arbitrary pair of lines. The lines are skew if MM # 0. When MM =0
the lines are either intersecting (if a;, = 0) or parallel (if a; = 0). Distinguishing
between the intersecting and parallel cases can be done through the twist angle
Equation 4.327.

A second application of Equation 4.336 is in determining the sign of the twist
angle. If MM > 0 then ay > 180°, and if MM < O then g < 180°. Again refer
to Figure 4.14.
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a, =§; x S,

Figure 4.14. General cases of adjacent lines. Adapted from reference [25] with permission
of the author.

A third application of the mutual moment equation is in determining the
direction sign of the common normal vector, whenever MM # 0.

a, = —sign(MM) 1 ——= % X S

’ ls;

4.337
X 8| ( )

The joint rotation angles 6; can now be found using Equations 4.329 and 4.330.
The common normal length a; can be calculated projecting an arbitrary
vector defined in terms of two points, one that lies on axis j and the other that
lies on axis k, onto the common normal unit direction vector. Let A; be an
arbitrary given point on axis j, and A, be an arbitrary point on axis k, then
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ay = (A — Ay)-ay, (4.338)

To find the offset distance d; between every two consecutive common normal
vectors a;; and a;,, it is necessary to compute the coordinates of the points at
which each common normal intersects the joint axes, namely points P; and P,
(as denoted in Figure 4.14). Two equivalent computation methods for finding
these intersection points are shown next.

Method 1(Sklar [25]): Considering first the case of skew lines, the intersection
point P; between the common normal a; and axis j, is also the intersection point
between axis j and a plane defined by a;, and s,. Solid geometry theory provides
for a general formula for the intersection point between a given plane and a given
line, as follows:

P = (ajk X §) X So; — (Sox " 2u)s;
(@p X 8)°s;

1

(4.339)

Similarly

P, — (@ X i) X Sor — (So;" x)S;
=
@y % 8;)8

(4.340)

Denoting by Q; and Q); the intersection points of common normal a;; with axes
i and j, respectively, the offset distance r; is obtained from

=P — Qs (4.341)
For intersecting axes, we have
P, =P, (4.342)
Taking the cross-product of both sides of Equation 4.342 with the vector s, yields
P; x s, = s, (4.343)

Taking now the cross-product of both sides of Equation 4.343 with the vector
So;isolates the unknown P;. The result after several simplification steps becomes

So; X Sor _ Sox X So;

P=P =P, = (4.344)

st N Sk Sj * SOk

In the case of parallel axes j and k, r; = 0 by definition of the DH convention.
One still needs to determine a;; and a;; for this case. This is done as follows:

P, + azay = P, (4.345)
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Taking the cross-product with the vector s; yields
Soj T @y X 8; = COS Uy Sox (4.346)

where cos o, = + 1. The exact sign of cos a;, is known through a previously made
computation. Another cross-product with s; using the vector algebra relationship

ax(dxec)=(ach—(abjec (4.347)
isolates the common normal vector as follows:
azap =S; X (COS 0y Sox — Soj) (4.348)

Method 2: The starting point of the alternative method for computing the
intersection points P;, P, between the j — k common normal and the j, k axes is
a parametric representation of the joint axes lines. Let P be an arbitrary point
on axis j, and P,; be a known point on that line.

Then

P=P,;+s;t (4.349)
where ¢ is a real parameter. Let t = t; denote the parameter value at the intersec-
tion point, P;.

Similarly, let v be the free parameter in describing axis k, where v = 0 corresponds
toa known point P, and v = v, corresponds to the unknown intersection point
P..

By orthogonality of the pairs (a; and s;) and (ay and s), two linear algebraic
equations in terms of the unknown variables t; and v, are obtained as follows:

P.—P)s; =P, —P)s,=0 (4.351)
Substitution of Equations 4.349 and 4.350 into Equation 4.351 yields
(L} + M}? + NPt — (L;L, + M;M, + N;N,)v, =
(xc,k - xc,j)Lj + (yc,k - yc,j)]\lj + (Zc,k - zc,j)lvj (4'352)
(L;L, + MM, + N;N)t; — L% + M + N2, =
(Xe = %o, )i + (Ve — Ve, JMi + (Ze i — 2, )Nk (4.353)
where
s;=(L;,M;,N)" (4.354)
se = (L, My, )" (4.355)
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and (x ;. ;»4,;)" and (X, ; Ve Z..)" are the known points on axes j and k,
respectively.

4.7 OBSERVABILITY ISSUES IN KINEMATIC ERROR
PARAMETER IDENTIFICATION OF BASE AND
TOOL TRANSFORMATIONS

4.71 Introduction

Better understanding of the identifiability of parameters in the base and tool
transformations requires a somewhat more careful approach to robot error
model construction. It is shown in this section that a consistent differential
transformation formalism needs to be taken to construct error models in order
to ensure that the identification Jacobian is a matrix function of all joint variables
and that the joint variables are about the actual joint axes of the manipulator.
It is shown that if robot calibration measurements do not provide the informa-
tion about the end effector’s orientation, the orientation parameters in either the
base or the tool transformations become unobservable. It is also shown that
under additional conditions of the tool or world frames, a further reduction in
the number of observable kinematic parameters may occur, depending on the
choice of error models. The section also investigates the relationship between
common observability measures and the irreducibility of the error model.

This section is organized as follows: 4.7.2 focuses on some properties of left
and right differential transformations. These are used in Section 4.7.3 to derive
two versions of generic manipulator kinematic error models. These models are
“generic” in the sense of being independent of particular choices of manipulator
kinematic modeling conventions. In Section 4.7.4, the concept of error model
irreducibility is introduced and discussed. The generic error models are utilized
in Section 4.7.5 to study several issues in the kinematic error parameter identifica-
tion of manipulators, and in particular observability of kinematic parameters of
the Oth and nth link transformations. The relationship between error model

irreducibility and commonly used observability measures is discussed in Section
4.7.6. :

4.7.2 Right and Left Differential Transformations

Let T, denote the homogeneous transformation matrix relating the manipulator’s
tool frame to the world frame,

T, = AoAA,...A, A, (4.356)

where each A; is a homogeneous transformation matrix relating two coordi-
nate frames located on two consecutive joint axes. Let ¢;, i = 1, ..., n, be joint
variables. This is shown in Figure 4.15 where the joint variables shown are all
rotational. The — 1th, Oth, and nth link coordinate frames are sometimes termed
as the world, base, and tool frames.
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Figure 4.15. Convention for robot link coordinate frames.

Let T be an arbitrary homogeneous transformation matrix relating one link
frame to another. We denote by dT the additive differential transformation of T,
given by

dT=T-T° (4.357)

where T° is the transformation that corresponds to the nominal kinematic
parameters and T corresponds to the actual kinematic parameters. The right
multiplicative differential transformation of T, AT", is defined as

TAT* =T (4.358)
Similarly, the left multiplicative differential transformation of T, AT', is defined as
AT'T =T (4.359)

The superscripts u and ¢ indicate that the respective entity is associated with
either the U; or T; matrices to be defined shortly.
The additive and multiplicative differential transformations are related through
AT* =1+ (T% T =1 + 8T* (4.360)
and

AT' =1+dT(T% 1 =1+ 8T (4.361)
where 8T* and 8T have the following structure [23]:

0 -0z &y dx
0z 0 —ox dy

oT = 4.362)
—o0y Ox 0 dz

0 0 0 0
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where [dx, dy, dz]" are the translational errors and [dx, 8y, 6z]7 are the rotational
errors. This matrix structure is true for either §T* or 8T, although values of their
elements are in general different.

From Equations 4.360 and 4.361, the right and left multiplicative differential
transformations are related by

AT' = T°ATHT®)! (4.363)
Similarly,
8T = T°ST*(T%) ! (4.364)

To ensure that the joint rotations are about the actual axes after calibration,
care should be exercised in selecting a differential transformation formalism. For
the sake of convenience assume that all joints are revolute in the following
discussion. A; can be modeled in the following two alternative forms:

A? = Rot(z,6,)V,, i=0,1,...,n (4.365)
with 6, = 0, or
A? = V;Rot(z,6,,,), i=0,1,....,n (4.366)

with 6,,; = 0. In Equation 4.365 and 4.366, V; is related only to the ith nominal
link parameters excluding the joint variable. Assume that left multiplicative
differential transformations are adopted to model kinematic errors. When A? is
modeled as in Equation 4.365,

Ai = AA,A?
— AA,Rot(z,0)V, (4.367)

In this case, the joint variable 6, is about the ith imaginary axis as shown in Figure
4.16a. On the other hand, when A? is modeled as in Equation 4.366,

Ai = AAiA?
= AA,V,Rot(z,6,,,) (4.368)

In this case, the joint variable 0., is about the i + 1th actual axis as shown in
Figure 4.16b. Similar analysis applies to the use of right multiplicative differential
transformations. In summary, to ensure that the joint rotations are about actual
axes after calibration, whenever A, is in the form of Equation 4.366, the left
multiplicative differential transformation formalism should be adopted to model
kinematic errors. On the other hand, whenever A, is in the form of Equation
4.365, the right multiplicative differential transformation formalism should be
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Figure 4.16. Modeling kinematic errors with left multiplicative differential transforma-
tions.
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chosen. The above guidelines are applicable to robots featuring prismatic joints
as well.

From now on, the superscript “0” standing for “nominal” will be omitted
without causing any confusion.

4.7.3 Generic Forms of Linearized Kinematic Error Models

Some preliminaries are needed for the derivations. An arbitrary 4 x 4 homogen-
eous transformation T is often written as

R p
T_[Om 1] (4.369)

where R is a 3 x 3 orthonormal matrix and p is a 3 x 1 vector. A vector
P = [p..p,,p.]" may be represented by a skew-symmetric matrix Q,,

0 —D: py
Q,=! p. 0 —p. (4.370)
—py, P O

With this notation, Equation 4.362 can be rewritten as

3T = [01 . J 4.371)

The following general relationship holds between a three-dimensional vector
&’ and its skew-symmetric matrix representation ;. Let R be a 3 x 3 ortho-
normal matrix. Then

Q;. = RTQ,R 4.372)
implies that

8 =RT6 4.373)

4.7.3.1 Linear Mappings Relating Cartesian Errors of

an End Effector to Cartesian Errors of Individual Links We first
derive one of the mappings using right multiplicative differential transformation
formalism. Let

U=AA. ... A_A, i=0,1...n (4.374)

Thus, Uy =T,and U,,, =L

A linearized kinematic error model is valid only if the kinematic model is
both parametrically continuous and differentiable [33]. Parametric continuity
is needed to ensure that small joint axis misalignments cause small errors in the
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kinematic parameters. Differentiability of the kinematic model means that all
clements of the matrix representation of the model are differentiable with respect
to the link parameters.

Let y* = [d*7,8*T]T = [dx*, dy*, dz", 6x* 5y*, 6z*]" be the vector of cartesian
errors of the end effector using the right multiplicative differential transformation
and x* = [(d3)",(85)",..., ()", &)71" = [dxt, dys, dzo, 6x5, 6y, 625, ..., dXy, dYy,
dz*,6x*, 8y", 62417 be the vector of Cartesian errors of every link frame of the
robot using the right multiplicative differential transformations.

Proposition 4.7.1: Assume that a given kinematic model T, is parametrically
continuous and differentiable. Then the linearized relationship between the
Cartesian errors of individual links and those of the end effector is given by

g P (4.375)
where the linear mapping L% R®"*1 — R is

Lu:[(R'I)T (R, - RYT (-RYQ, L, 05

¢ ’ (4.376)
O3><3 (R1)T 03 x3 (Rn)T O3x3 13x3:|

where (€3 ), i = 1, ..., n, is a skew-symmetric matrix whose elements are p; ,,
pt,and p ,, the elements of p} associated with U;. The matrix RY is the rotation
matrix associated with U;.

Proof of Proposition 4.7.1: It is shown in [32,33] and Equation 2.44 that

8T, = Y, UL AU, 4.377)
i=0
Then
5 = ‘;) (RY,;)7€2% Ry, (4.378)

where Q¢ is the upper-left 3 x 3 submatrix of 6T} and €3 ; is the upper-left 3 x 3
submatrix of 8AY. By Equations 4.372 and 4.373

& =) (RS (4.379)
i=0

The last three rows of L* in Equation 4.376 are thus obtained noting that
RY,, =15 ,5. Also from Equation 4.377,

4" = .;) (RY,,)TCY ptyy + (RY,,)"dY

= ‘Zo (—R?+1)Tﬂ',',,i+15'i‘ + (R;"+1)lei‘ (4-380)
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using the fact that Qj ,p¥., = 8} x p¥,,. The first three rows of L* in Equation
4.376 are thus obtained noting that R;,; = I;,; and @ ., = O; ;. O

Derivation using left multiplicative differential transformation formalism fol-
lows a similar path. Let

T, = AoA,"A_,A, i=0,1,....n (4.381)

where T_, =L

Let y* = [d'7,87T]7 = [dx',dy",dz", 6x*, )", 621 be the vector of Cartesian
errors of the end effector using the left multiplicative differential transformation
and x* = [(d5)",(85)",..., ()", (8:)"1T = [dxh, dyh,dz, 0x5, 0v%, 825, ..., dx., dy',
dz,,, 6x,, 0y, 62,17 be the vector of Cartesian errors of every link of the robot
using the left multiplicative differential transformation.

Proposition 4.7.2: Assume that a given kinematic model T, is parametrically
continuous and differentiable. The linearized relationship between the Cartesian
errors of individual links and those of the end effector is given by

y =L%X' (4.382)
where the linear mapping L’ R6®+D _, RSis

I,; O, R! Q Ry - R, Q. R_
Lt — l: 3x3 3 x3 0 ( p,ROt 0) - 1 'Ds tl 1] (4.383)
O;.3 Iixs Os,3 0 ’ 0s,3 R,
Here Q) ;,i =0, ..., n — 1, is a skew-symmetric matrix whose elements are Pi xs
P.,y» and pj ..

Proof : The proof is similar to that of Proposition 4.7.1. above.

The following remarks are made in cases that the matrices L* and L' are used
as identification Jacobians. Whenever A, is in the form of Equation 4.365, L¥
should be adopted to model kinematic errors. Otherwise g, may never appear in
the identification Jacobian. Consequently, the kinematic errors associated with
the nth link become unidentifiable. Similarly, whenever A, is in the form of
Equation 4.366, L' should be chosen.

The structure of the matrices L* and L' is independent of the choice of a
particular kinematic model. The relationship between y* and y* can be found
using Equation 4.364. Since parallel results can be obtained using either right or
left multiplicative differential transformations, the superscripts u and ¢ are drop-
ped in the remainder of the section whenever no confusion is caused.

4.7.3.2 Linear Mapping Relating Cartesian Errors to Link Param-
eter Errors Denote by p the vector of kinematic parameters in a given
kinematic model such that p € R™ and m is the number of parameters. Assuming
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that the kinematic model is differentiable,
x = Kdp (4.384)

where K: R™ —» R%®*1)_ x is the vector of Cartesian errors of every robot link
frame, and dp is the parameter error vector. By Equations 4.375 and 4.382, the
pose error vector y is related to the parameter deviations through

y = LKdp (4.385)

The matrix structure of K depends on the particular choice of the kinematic
modeling convention. For a given kinematic model, K* can be derived from
Equation 4.360. The matrix K' can be derived from Equation 4.361. More
specifically, K has the following form,

K = diag(K,,K,,...,K,) (4.386)
where K;: R™ — R%®*1) and m, is the number of link parameters in A;.

Example: A modified Denavit—Hartenberg modeling convention [13] is defined
by postmultiplying A; with Rot(y, §;), where A, is as in the Denavit—Hartenberg
modeling convention. In this case, the parameter vector is [d;, a;, 6;, ;, B;]7. The
formula of K is as follows:
[ —sPica; cB;  asPsa; O
sa; 0 a;cu; 0
cPico; sP; —aicBisa; O
0 0 —sfica; cf;
0 0 sa; 0
0 0 cfeo;  sp;

i=12..,n—-1 (4.387)

o = O O O O

Notice that the cases of i = 0, n are excluded because the modified Denavit—
Hartenberg convention cannot be used to model the Oth and nth link transforma-
tions [30, 33].

The matrix LK is an identification Jacobian of the manipulator. If a large
enough number of pose measurements is taken, the identification of dp is possible
applying least-squares methods.

4.7.4 Error Model Irreducibility

A necessary condition for the indentified Jacobian LK to be full rank is that the
elements of dp are independent. If dp contains dependent elements, it is possible
to find linear mapping relating dp with z whose elements are independent. The
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problem can be stated as follows: Find a linear mapping M, where M: R™ — R™,
such that

dp =Mz (4.388)

where z € R™; m'(<m) is the number of independent parameters in the kinematic
model. M has the following form:

M = diag(My, M,,...,M,) (4.389)

where M;: R™ — R™:; m, is the number of independent parameters in A,. Com-
bining Equations 4.385 and 4.386 with Equations 4.388 and 4.389 yields

KM = diag(K,M,,K,M,,...,.K,M,) (4.390)

Example: Again the modified DH model is used as an example. Whenever the
(i + I)thjoint axis is not nominally parallel to the ith axis, §; is redundant. Thus

[1 0 0 0]
0100
M;=|0 0 1 0|, i=12..n—1 (4.391)
00 01
(0 0 0 0

yielding a reduced-order parameter error vector [dd;,da;, d0;, do;]¥. Whenever
the (i + 1)th joint is parallel to the ith joint, d; is redundant. Thus

0 0 0O
1 0 00
M;=(0 1 0 0, i=12..,n—-1 (4.392)
00 0
[0 0 0 1]
yielding a reduced-order parameter error vector [da;, d6;, da;,dp;]7.
After M is found,
y = LKMz = Gz (4.393)

where G = LKM: R™ — RS,
The irreducibility of a linearized error model is defined as follows:
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Definition 4.7.1: Consider a parametrically continuous and differentiable kine-
matic model. Its linearized error model is irreducible if all link parameters are
independent. Otherwise it is reducible.

The concept of irreducibility is often applied to the construction of a robust
linearized error model. Model reduction is often done analytically. An alternative
way of eliminating dependent parameters is through Singular Value Decomposi-
tion of the identification Jacobian.

475 Observability of Kinematic Error Parameters

Let s be the number of different measurement configurations taken to calibrate
the robot. To find the inverse solution from Equation 4.393, enough measure-
ments have to be taken. Let G; be defined as in Equation 4.393, that is, G;: R™ —
Réfori=1, 2, ..., s, are the identification Jacobians at each measurement
configuration. Define an aggregated Jacobian matrix

G,

G=| (4.394)

where G: R™ — R®*,
It was shown [9,10] that the number of independent parameters N in a
complete model of a rigid robot must satisfy the following inequality

N<d4n—2p+6 (4.395)

where p is the number of prismatic joints of the robot. A minimum number of
measurement configurations can be determined accordingly. For example, 30
independent kinematic parameters are required to model a 6 degree of freedom
PUMA-type robot. For a unique solution of the parameter error vector dp, five
measurement configurations must be chosen as each configuration provides six
equations. If more than five measurement configurations are used, least squares
methods have to be employed to solve the overdetermined system.

Definition 4.7.2: The kinematic error parameters are said to be observable if GTG
is full rank.

The observability depends on both the kinematic modeling convention as well
as the selection of measurement configurations.

Proposition 4.7.3: Assume that the right multiplicative differential transforma-
tions are used to model kinematic errors. If the orientational errors of a manipu-



202 PARAMETER IDENTIFICATION FOR ROBOT CALIBRATION

lator end effector are not measured, then all the orientational parameters of A,
are unobservable. In this case, the number N of observable kinematic error
parameters must satisfy the following inequaiity

N<d4n—2p+6—o, (4.396)

where o, is the number of independent orientational parameters in A,. If in
addition the last joint of the manipulator is revolute and the origin of the tool
frame lies on the last joint axis, then the number N of observable kinematic error
parameters must satisfy the following inequality

N<4n—-2p+6—-o0,—ot,, (4.397)

where ot,_; = min{o,_,,t,—, }; 0,-; and t,_; are the number of independent
orientational and translational parameters in A,_,, respectively.

Proof : 1f the orientational errors of the manipulator are not measured, then the
last three rows in the linear mapping L* as given in Equation 4.376 are deleted.
It is clear that in this case, the columns of L* corresponding to the orientational
parameters of the nth link transformation are always zero. Thus the orientational
parameters of A, are unobservable. Combining with Equation 4.395, one has
Equation 4.396.

If in addition the last joint of the manipulator is revolute and the origin of the
tool frame lies on the last joint axis, p} , and p, , are zero and p, , = p; .. Thus

0 —p:,z 0
Q=D 0 0 (4.398)
0 0 0

Q;, , is independent of the joint variables, therefore the columns of (—Ry™Q
depend linearly on the columns of (R¥)”. This implies that either the orientational
parameters corresponding to the columns of (—R%)"Q%  or the translational
parameters corresponding to the columns of (R¥)” are unobservable. Combining
the result with Equation 4.396, one has Equation 4.397. O

Remark: Proposition 4.7.3 explains why only 25 parameters are independent
when the PUMA arm was calibrated using only positioning errors of the end
effector, as was done in references [6,33]. Other researchers have also observed
the same phenomenon [10,31].

Proposition 4.7.4: Assume that the left multiplicative differential transforma-
tions are used to model kinematic errors. If the orientational errors of a manipu-
lator end effector are not measured, then all orientational parameters of A, are
unobservable. In this case, the number N of observable kinematic error parame-
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ters must satisfy the following inequality
N<d4n—-2p+6—o9, 4.399)
where o, is the number of independent orientational parameters in A,.
Proof : Similar to the proof of the first part of Proposition 4.7.3.

Proposition 4.7.5: Assume that the left multiplicative differential transforma-
tions are used to model kinematic errors. If the Oth link frame is parallel to the
world frame, then the translational parameters in A, are unobservable. In this
case, the number N of observable kinematic error parameters must satisfy the
following inequality

where ¢y, = min{¢,,t, }; ¢;is the number of independent translational parameters
in A;. If, in addition, the orientational errors of the end effector are not measured,
then

N<4n—-2p+6—0y— ty, 4.401)
where o, is the number of independent orientational parameters in A,

Proof : When the base frame is parallel to the world frame, R is an elementary
matrix. Thus R} is independent of the joint variables (i.e., it is not a function of
¢,) and the columns related to R{ in L depend linearly on the first three columns
of L*. In this case, either the translational error parameters corresponding to R}
or to the first three columns of L' are unobservable. Combining with Equation
4.395, one has Equation 4.400. Equation 4.401 is obtained after combining
Equation 4.399 with Equation 4.400. O

~ Propositions 4.7.3 through 4.7.5 are true for any choice of kinematic modeling
conventions. The next simple fact reveals the relationship between the observa-
bility of kinematic parameters and the irreducibility of linearized error models.

Proposition 4.7.6: Consider a parametrically continuous and differentiable kine-
matic model. The parameters in its linearized error model are unobservable if
the linearized error model is reducible.

Proof : Denote the Jacobian matrix associated with the reducible error model
as LK where LK: R™ - R4 Since the model is reducible, there exists a linear
mapping M, where M: R™ — R™, relating the nonindependent parameter vector
to the independent parameter vector. Let G = LKM. Notice that the column
rank of LK is the same as that of G. Since m’ < m, Dim[(LK)"LK] > Dim(G"G),
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where Dim(-) denotes the dimension of a matrix. However Rank [(LK)"LK] =
Rank(G”G). Thus (LK)"LK is singular. By Definition 4.7.2 the proofis complete.
0

4.7.6 Observability Measures of Reducible Error Models

Observability measures are discussed in detail in Section 4.4.

Proposition 4.7.7: Consider a parametrically continuous and differentiable kine-
matic model. If the linearized error model is reducible, then

Cond(G) = (4.402)
and
0(G)=0 (4.403)

Proof : If the error model is reducible, the columns of G are not linearly in-
dependent. In this case o, = 0. Thus the claim holds. d

Observability measures are therefore meaningless in the case of a reducible
model because in such a case, these observability measures are always zero or
infinity, respectively, no matter how many measurements are taken and how well
the configurations are chosen. As is well known, the matrix GTG can become
singular at any iteration step of a numerical identification process even if the
kinematic model itself has no singularities. Robust minimization techniques such
as the Levenberg—Marquardt algorithm have been successfully applied to cope
with the problem [3,22]. The same techniques can provide an identification
solution even if Cond(G) = oo and 0(G) = 0.

4.8 CONCLUSION

In this chapter, we covered a wide range of estimation techniques that are
applicable to the identification of manipulator kinematics. The purpose of the
review was not only to present detailed identification algorithms, but to highlight
the ideas behind and the special requirements of different methods.

Linear least-squares and nonlinear least-squares algorithms are the most
straightforward and practical means for estimating the unknown kinematic
parameter errors from measured data. More advanced methods such as Kalman
filtering or Barker’s method for robot joint axis estimation are primarily research
tools intended to provide more insight into the still not fully understood relation-
ship between the calibration error and calibration measurement accuracy.

Many interesting observability properties of robot kinematic parameter
errors become evident through the study of the relationship between end effector
and link Cartesian errors. It is particularly instructive to observe the role played
by error modeling through either right or left differential transformations. A lot
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more remains to be discovered. An important open research problem is to
characterize analytically optimal sets of measurement configurations when an
irreducible error model is used. This chapter described, however, several tech-
niques that allow the designer to determine perferred robot calibration measure-
ment configurations using intelligent off line simulation studies.
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CHAPTER 5

S0 —

IMPLEMENTATION OF
MANIPULATOR CALIBRATION

In the first four chapters, we concentrated on constructing an appropriate model
for a given manipulator and then determining a set of coefficients that causes the
model to predict the manipulator motions as accurately as possible. Once this
process has been completed, the improved version of the robot model must be
incorporated into the controller so that the proper relationship between work-
space coordinates and joint transducer readings is achieved. This process of using
the identified model to enhance the accuracy of the manipulator is referred to as
the implementation step and is the focus of this chapter. It would seem that since
we have developed and verified a more precise model, implementation would
simply be a matter of modifying the computer algorithm in the controller.
Unfortunately, this is seldom a simple process. The difficulty comes in the form
of the model that has been developed.

As described in Chapters 1 and 2, most kinematic models use the joint
displacements or joint transducer readings as the input and produce an estimate
of the end effector pose as the output. These models are referred to as forward
kinematic models. All of the model formulations described in Chapter 2 are for
forward models since the joint displacements are treated as inputs. A robot
controller, on the other hand, may receive a desired end effector pose as the input
and must, in such a case, compute the joint displacements necessary to achieve
this pose. In other words, the inverse kinematic model is required for use in the
controller.

If the forward model of the manipulator is simple enough, the inverse model
may be obtained by simply rearranging the equations that form the model so
that the elements of the end effector pose are the inputs and the necessary
joint variables are the outputs. This solution for an inverse model has been
accomplished for most robots that have parallel and orthogonal axes of motion
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Joint transducer Forward Actual
readings calibration robot pose
Desired Inverse Joint
robot pose > calibration > positions

Figure 5.1. Forward and inverse calibration.

and whose wrist axes all intersect at the same point. Such robots have been
termed simple robots by Hayati and Roston [6]. Although many robots are
designed to be simple, we find that after calibration the axes are not exactly
parallel or orthogonal and do not quite intersect. These variations from the
design are small, but they invalidate the assumptions on which the inverse
kinematic model was derived and, therefore, a new inverse kinematic model must
be developed.

Following the concept of forward and inverse kinematic models, Shamma [11,
12] divided the process of robot calibration into forward and inverse calibration.
Asillustrated in Figure 5.1, forward calibration is defined as the process of using
encoder angles or, more generally, joint transducer readings as the input to a
model that will yield the actual end effector pose. Inverse calibration is defined
as the reverse process. Since both the forward and inverse models are required
in the controller, we have presented the calibration procedure as a set of four
steps with implementation being the final part of the process. Modeling, measure-
ment, and identification would, therefore, be forward calibration and imple-
mentation is inverse calibration.

It is important to stress that the implementation phase of robot calibration
plays an important role in both off-line programmed and taught applications. In
the case of off-line robot programming, which is common in advanced CAD/
CAM environments, it is necessary to be able to position the end effector at the
workspace coordinates of the task poses. This means that it is necessary to
determine the inverse kinematics of a robot that has a nonsimple kinematic
structure. Although many of today’s industrial robots are nominally simple, in
the sense that a simple closed-form solution exists for the nominal inverse
kinematics, the conditions that create such simplicity, such as three consecutive
joint axes that intersect at one point, are often lost in the actual machine. Having
an identified, and presumably more exact kinematic model for the robot, there-
fore, cannot be considered as “end of the road.” There are implementation issues
that must be addressed, such as the numerical solution methods that may be used
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for the inverse kinematics problem as well as the methods of modifying the robot
control software.

Taught applications, in which the task points are programmed and repre-
sented in joint space, do not require the knowledge of the robot kinematic model
as long as the structure of the robot does not change. For example, robot
replacement on a manufacturing line without calibrating the new robot may
often result in the loss of the ability to run the stored taught application. As no
two robots are identical, due to unavoidable robot machining and assembly
tolerances, application software normally cannot be shared between the two
machines. One must either reprogram the new robot joint commands to reflect
the variations in geometry or ensure that the new robot has been properly
calibrated and will execute the application as precisely as the previous machine.
One approach to calibration when changing robots for a taught application is
to develop an algorithm to modify the joint commands at each point in the task.

Both problems, numerical inverse kinematics and joint command updating,
are mathematically the same. Model-based solutions [8, 13, 14, 18-20] are dis-
cussed in detail in Sections 5.2 and 5.3. The underlying assumption behind using
model-based accuracy compensation is that the prime source of accuracy errors
is robot geometric errors. Accuracy compensation in the presence of significant
nongeometric errors requires different methods. A “black box” approach was
taken in the work by Shamma [11, 12]. The method is based on fitting of abstract
interpolation functions to relate the joint transducer readings in a selected group
of robot measurement configurations to measured pose errors. Such functions
can then be used to compute the joint commands correction terms at the
application points. Since nongeometric errors are load and configuration de-
pendent, the requirements that such a strategy poses on the data collection phase
are significantly different than the measurement requirements to accommodate
model-based techniques. These issues and related archiving issues are discussed
in Section 5.4.

Section 5.1 presents implementation issues on a more mathematical basis. It
may be skipped, for better continuity, by readers who are interested primarily in
the algorithmic side of accuracy compensation.

5.1 ACCURACY PROBLEMS IN TAUGHT AND
DATA-DRIVEN APPLICATIONS

As was mentioned in the previous section it is important to distinguish between
the two types of robotic tasks. Referring again to a symbolic robot kinematic
model, let the model of an N-degree-of freedom robot be

x = g(n,a) (5.1)

where x is a 6-vector of the end effector position in world coordinates (robot
pose), 1) is an N-vector of joint commands (robot configuration), and a is a vector
of all the fixed kinematic parameters.
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Data-driven tasks are described in terms of a sequence (or more generally a
tree) of k poses {x(1),...,x(k)}. The number of poses, k, and the specific values
x(f),j = 1,..., k, of the task points may in general depend on sensory information
that is obtained on-line. For each task point x(j), the vector of joint commands
1(j) must be computed through the robot inverse kinematics. The better the
knowledge of the robot model, the more accurate the determination of the
particular robot joint commands that will lead the robot end effector through
the desired task points.

Taught tasks on the other hand are described in terms of a sequence of
k configurations {n(1),...,n(k)} that are programmed by moving the robot
manually through the task points. Ideally, taught applications do not require the
knowledge of the robot kinematic model. Their success depends only on the
robot’s repeatability. Practically though, one needs to take into account possible
changes in the robot geometry. Such effects are not necessarily slow and gradual.
Permanent changes in the robot geometry may occur instantly following ordi-
nary scheduled maintenance actions such as bearing adjustment and dismantling
and replacement of the motor/bearings/encoder assembly at certain robot joints.
The need to replace a robot on the manufacturing line may often result in the
loss of the ability to run a stored taught application. Without calibration it is
unlikely that two robots, even if they are nominally the same, will be able to share
a taught application. When a robot is replaced or when permanent geometric
changes occur there is a need to update the preprogrammed joint commands.

It is convenient at this point to consider two robots with similar geometries,
A and B.

Let

Xa = g(Ma,a,) (5.2)
Xg = g(Np, ap) (5.3)

be the kinematic models of robots A and B, respectively.

Robot A may represent the nominal machine. In the case of a taught applica-
tion, robot A is the robot on which the task {m,(1),...,n,(k)} has been pro-
grammed. Robot B is the robot with the new geometry. Under the assumption
that the kinematic identification phase has been successfully completed, the
actual kinematic parameters ag are assumed known. There is of course an
unavoidable degree of uncertainty as no identification process is perfect. The
parameter estimates az embedded within the nominal function relationship g(+)
are adopted as the new robot kinematic model parameters.

Robots A and B share the same task {x(j),j = 1,...,k}. Ideally it is desired
that at every task point

xA(j) = xg(j) = x(j), i=1..,k (54)

Practically, due to the imperfect nature of the identification process and the
unavailable errors attributed to nongeometric parameters, some errors in accom-
plishing the task must be tolerated.
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The first type of errors to be considered is due to the robot resolution or
minimum move. The joint move resolution is often determined by one of the
following factors:

1. Actuator’s minimum move, as in the case of a stepping motor minimum
step size.

2. Joint position sensor quantization effects, as in the case of finite word length
error of an optical encoder.

3. The accuracy of the robot feedback control system at each joint, as in the
case of quantization errors in a digital control system.

Mathematically such errors are described as follows: Let i denote the joint
number in an N degree of freedom manipulator, i = 1,..., N. Thus, #;, the postion
of joint i, is the ith component of the N-vector n. Denoting the joint travel
boundaries by 7; min a0d 7]; 1max» TESpectively, there is a finite number N; of distinct
joint commands due to the joint minimum move A;.

N, = int <_—"i’“‘“ _ ’1L> (5.5)
A;
Joint move resolution is rarely of any importance in taught applications. If a
joint minimum move presents a serious limitation to the robot task programmer,
as for instance in a component insertion application, either the position of the
application fixtures need to be adjusted to fit the limitation of the given robot or
the entire robot needs to be replaced by a machine that can better cope with the
task requirement. In a data-driven application, on the other hand, it should be
recognized that there may not exist a joint command n( ;) that will exactly bring
the robot end effector to the desired task point x(j). One should settle for n,(J),
the closest feasible neighbor of n( ), taking into account the given minimum joint
moves. Let x,( ) be the end effector position that results from implementing the
command N, (). Then &, the error in task step j due to the minimum-move
limitation (assuming no other error sources), is

Emmj = [1X(J) — xa(i)llg (5.6)

where ||| is a convenient norm of the weighted pose error. The choice of norm
as well as weighting matrix, Q, is dictated by the nature of the task. Such norms
may be selected in the following ways:

Method 1: Weighted quadratic error

1%(/) — Xa(Nllg,2 = [x(7) — X2 (NI QIX(J) — Xa(/)] (5.7)

where Q is a positive semidefinite symmetric matrix. The choice of Q may reflect
a necessary scaling action to match numerically Cartesian position errors to
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certain orientation errors. Q may also reflect task-dependent emphasis given to
particular components of the pose error vector.

Method 2: Maximum weighted absolute error

1%(7) = Xa(Mlg,0 = max{|[Q[x(j) — xa(/)]1ii = L,...,6} (5.8)

where []; denotes the ith element of a vector. Q is an appropriate weighting
matrix. The maximizing process runs among the absolute values of the six
elements of the weighted pose error vector.

Minimum-move error is just a small factor that limits the accuracy of robots.
It provides for the predictable part of the total accuracy error, unlike other error
sources that are random in nature.

An important class of error sources is the one that determines robot repeat-
ability. Repeatability has been defined as the robot’s ability to return to a
previously taught configuration. Imperfect repeatability is caused by

1. Clearance effects at the robot joints.

2. Disturbance and noise effect in the feedback positioning control system.
3. Gear backlash.

4. Structural deflections.

Mathematically, in a taught application, let n(j) denote the configuration
stored in the robot controller for task step j. The actual joint positions obtained
by robot A are

Na(J) = N0)) + £rep,n(J) (59

where €., ,(j)is a random zero-mean vector. Worst case values of the error may
theoretically be obtained and may be used to model the components of &rep, n(J)
as uniformly distributed random variables. These may vary from one robot pose
to another due to payload and gravity loading of the robot structure. The
configuration error shown in Equation 5.9 causes a robot pose error

X(J) = Xa(J) = Erep,x () (5.10)

x(j) corresponds to the pose when teaching the values n(j), and x,(j) is the
actual pose obtained as a result of applying ().

Robot repeatability must also be recognized in applications programmed
off-line. Taking into account repeatability effects, but assuming zero minimum-
move errors and perfect knowledge of the robot kinematic model, robot total
accuracy errors equal the accuracy errors due to joint repeatability. From the
robot calibration point of view this represents the “ideal.” Robot accuracy can
never be better than robot repeatability. Minimum-move limitations and model-
ing errors cause the total accuracy errors €,.(j) to be larger than the “ideal”
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€p.x(j). The comparison between the vectors needs to be done in a suitable
vector-norm sense. Variations as large as 50:1 between ||&,.(j)ll and [[€.., (/)
have been reported by researchers and engineers.

It may be helpful at this point to mentally isolate errors due to uncertainty
in the kinematic model. Assuming perfect joint repeatability and infinitesimally
small minimum move, let £,,(j) denote the accuracy error in step j of the
application due to model uncertainties.

x(j) — xa(j) = £@l(j) (5.11)
x(J) — xp(j) = £22(J) (5.12)

The goal of robot calibration, in a data-driven application context, is initially
to get a more accurate kinematic model of the robot. Robot B represents the
robot for which a more precise model has been identified. The next objective is
to improve, on the average, on the accuracy in performing every step of the task.

leR) < e, Vij=1...k (5.13)

The total accuracy error &,,(j) is a complicated combination of the minimum-
move error £,,(j), the joint repeatability error &, ,(j), and the model un-
_ certainty error g,,(j). Let M,(j) be a number that represents the maximum
tolerated pose error norm in a given step j of a given robotic task. Then, robot
A “needs calibration” if

18D > M) (5.14)

forsome stepj,j = 1,..., k. The norm of £2’( j) is taken in the same way as shown

for minimum-move errors in Equation 5.7 or 5.8.
Similarly, a calibration action is declared “successful” if and only if

e < M,(j), Vij=1....k (5.15)

1e®|| depends on the accuracy of identifying the robot kinematic model. This of
course depends on the accuracy of the measurement equipment used in collecting
the data in the calibration measurement phase.

The correction phase of robot calibration is the process of implementing the
identified model of Robot B to satisfy the requirement in Equation 5.15.

In the case of a data-driven application, the correction phase is implemented
(at least conceptually) by substituting the estimated kinematic parameters into
the kinematic model, Equation 5.3, of robot B:

rp = fip (5.16)
ag = 4 (5.17)
XB(j)=X(j), j= L.,k (5.18)
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where x( j) are the required task points. Then one determines the joint commands
Ws(j)j = 1, ..., k by solving the inverse kinematics problem

x(J) = g[mg(j): s, 23] (5.19)

Unlike the inverse kinematics problem of robot A

X(j) = g[a()) ma,24] (5.20)

that for many commerical robots may have a simple analytic solution due to
parallel or intersecting axes of motion, the inverse kinematic problem for robot
B is difficult. All the simplifying assumptions that worked so well for the nominal
model (robot A) are no longer valid for the actual model (robot B). The solution
Ns(j) of Equation 5.19 is, in general, found numerically.

The correction phase for taught applications is seemingly more involved
although it amounts to exactly the same difficulty as for the data-driven applica-
tions. The goal is to find a transformation method to map the task points n,(j)
into ng(j) so that the total accuracy requirement given in Equation 5.15 is met.
The software that is needed to perform such taught-task modification is part of
the overall robot calibration system. The size of the correction factor that needs
to be added to every joint command at every task point depends in general on
the particular joint and the location within the robot work space at each given
task step. It also depends on the old and new kinematic model parameters.

Updating of joint commands is sometimes done without ever using the kine-
matic models of robots A and B. The procedure involves limited reteaching,
Robot Bis moved to a few selected task points in which the joint commands ns(Jj)
(for some values of j) are recorded. Then all the rest of the task points ng(j) need
to be estimated using interpolation methods. The feasibility of such a technique
depends on how small a portion of the total robot work space is used for the
particular application. This form of joint command updating does not require
any calibration measurements and any kinematic parameter identification. It is
questionable whether such a method can be called “robot calibration” in the
sense used in this book. The techniques shown in Section 5.4 with regard to
calibration in the presence of strong nongeometric errors may be applied to
implement intelligent robot reprogramming. Model-based automated robot re-
programming is also discussed in Section 5.3.

Coming back to model-based joint commands updating in taught applications,
the goal is to find a formula or an algorithm for the task points transformation.

Calibration in taught applications is declared “successful” if

where M,(j)is as explained in Equations 5.14 and 5.15. Rewriting Equation 5.21
in terms of the kinematic models of robots A and B

lglns(/), as] — g[Ma()) aadll < M,(j) (5.22)
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forevery j =1, ..., k. {a,} are the nominal kinematic parameters, {agz} are the
identified kinematic parameters, 1, (j) are the taught joint commands, and ng(j)
are the unknown new joint commands.

The use of additive correction factors is a convenient way of updating the joint
commands:

Ms(j) = Ma(j) + An(j) (5.23)

Assuming that the difference between the models of robots A and B is “small,”
that is
lagll = lla, | (5.24)

then one expects ||An(j)| to be small too. One can then linearize the kinematic
equations of robot B about the old set of joint commands. The following
inequality is expected to hold

Igna(i), as] + Js[na(NIANG) — glna(h)andll < Me(j)  (5.29)

where Jj is the Jacobian matrix of robot B evaluated at the task poses of robot
A. Thus, at least conceptually, an approximation “formula” for the joint com-
mands update is then given by

An(j) = Iz Ma(N1{EMA()), ap] — g[Ma()), 2x1} (5.26)

As intuitively expected, the correction factor to a first-order approximation
depends on the pose error evaluated at the “old” set of configurations and on
the inverse Jacobian of robot B evaluated at the task configurations of robot A.

The correction algorithm of Equation 5.26 breaks down at or near singular-
ities of robot B. The fact that an evaluation of the inverse Jacobian of the new
robot, robot B, is required makes Equation 5.26 highly impractical. This chapter
explores compensation methods that use the model of robot A (rather than robot
B) together with the identified kinematic parameter errors.

52 COMPENSATION ALGORITHMS FOR ROBOT
GEOMETRIC ERRORS
5.2.1 Inverse Jacobian Based Updating of Joint Commands

Assuming that the identification phase of the calibration process has ended, the
errors in the robot kinematic parameters are available. The problem of error
compensation can be stated as follows:
Given:
1. The robot nominal kinematic model relating the pose homogeneous trans-
formation matrix X to the vector of joint positions q

X =F,(9 (5.27)
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2. The robot calibrated model, obtained by substituting the identified kine-
matic error parameters into the nominal link transformation matrices.
That is, every parameter k; is replaced by k; + Ak; where Ak; is the identified
error parameter

X =F.q (5.28)

3. Desired pose X, and a corresponding nominal inverse kinematic solution
q, at this pose

9, = F1(Xy) (5:29)
Find:

The necessary change dq of the joint positions, such that
F.(q, +dg) =X, (5.30)

q, + dq is to be used in place of q, as the new set of joint commands once dq is
determined.

A straightforward approach proposed in [13] and [8] is based on two
assumptions.

Assumption 1: Positioning and orientation accuracy errors, when using the
nominal kinematic model, are small.

Assumption 2: The desired pose does not fall at or near a robot singular
configuration.

The algorithm works as follows. Since the accuracy error is assumed to be
small, it can be regarded as a vector equal to the differential change vector of the
end effector positions, when using the nominal solution q, in both the nominal
and the actual forward kinematics. The robot Jacobian can be used to transform
this pose error vector into the corresponding joint position changes. The method
must be applied iteratively until a suitable termination condition is met. An
outline of the complete algorithm is given below.

Step 1: Compute an estimated robot pose X that corresponds to the available
nominal inverse kinematics solution g,

X = F.(q,) (5.31)

Step 2: Calculate the pose error matrix between the desired pose X, and the
estimated actual pose X,.

dX =X, — X, (532)
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Step 3: From dX form the equivalent differential error vector dx

) 0,,9,,0,)"
d — — x>y z
i m [(dx, d,,d,)"
This is done in the followng way:
One solves for the multiplicative error matrix A (see Paul [10])

A =dX-X;!
Ideally, the result should have the following structure
0 -0, o, d
4, 0 —o, d,

Ay =
-0, O 0 4

y x

0 0 0 0

X

z
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(5.33)

(5.34)

(5.35)

In most real cases, however, dX is not small enough. Also the actual A
matrix obtained from Equation 5.34 rarely has an upper 3 x 3 skew-

symmetric block because of numerical errors. If we denote

ayy Gy 433 Qg4
A az1 G2 Gz3 dy4

a3y Q3 Q433 A3y

0 0 0 O

(5.36)

then the differential error vector dx may be taken through averaging of

off-diagonal elements of the matrix A.

dx = 3(a3; — az3)
5y = %(‘113 — asy)
0, = 3(az; — a;,)
d,=ay,
dy,=ay,
d,=az,

Step 4: Compute changes in joint positions using
dq=Jtdx

where J is the robot Jacobian formulated using the nominal model.

(5.37)
(5.38)
(5.39)
(5.40)
(5.41)
(5.42)

(5.43)
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Step 5: Update joint commands by setting:
q=4q, +dq (5.44)

Step 6: Check an appropriate termination condition. For instance, if at least
one element of dq becomes smaller than the resolution of the corresponding
robot joint position encoder, then terminate the algorithm.

Another suitable termination condition may be based on comparing [|dg® —
dq*™| to a desired lower threshold. The integer k denotes the current iteration.
If the termination condition is not met, the six-step procedure is repeated.

The computational efficiency of this algorithm depends critically on Equation
5.29 and Step 4. In fact, for robots with general geometries, finding the compen-
sated joint commands with the foregoing algorithm may not be any more
effective than directly solving the inverse kinematics of the calibrated robot using
some numerical method. For robots with relatively simple geometries, such as is
the case with most industrial robots, much simplification on computation can
usually be obtained. In Equation 5.29, for example, closed-form solutions have
been determined for robots containing a wrist center, which is almost invariably
the case with nominal industrial robots. Moreover, as has been demonstrated in
[15], with proper formulation, inversion of the Jacobian for similar geometrically
simple types of robots can be obtained analytically in closed form. Note that
in Step 4 of this approach the Jacobian is formulated based on the nominal
model. This allows for the algorithm to exploit the full advantage of closed-form
solutions that are typically available for most industrial robots. The result is, of
course, a significant reduction of the computations involved.

A general and systematic method of developing the Jacobian inverse analyti-
cally has been proposed by Waldron et al. [15]. The main idea of their method
is to formulate the Jacobian by selecting an appropriate reference frame in which
the Jacobian is expressed and the point of reference to which the end effector
velocity is referred. It suggests that if the robot geometry contains concurrent
joint axes, using a reference frame with the origin at the point of concurrency
will greatly simplify the Jacobian. If the geometry includes parallel joint axes, the
Jacobian can likewise be simplified by transforming to a reference frame parallel
to those axes.

* For example, given robots with axes 4, 5, and 6 intersecting, such as a PUMA
560, an effective choice of the reference frame is on link 3 with its origin at the
point of concurrency (the wrist center). This places the reference point of end
effector velocity at the point that is instantaneously coincident with the origin of
the fixed reference frame. The Jacobian that results will, in general, be of the

following form:
_|du 2
J= [ 5, 0 (5.45)
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2
0

Figure 5.2. Geometry of manipulator chain of example 1. Adapted from reference [15].
Copyright © 1985 ASME.

QZ

Note that all the elements in the lower right-hand quadrant are zero. This is a
direct consequence of the axes 4, 5, 6 of the robot being concurrent. It can be
seen that analytic inversion of the Jacobian becomes feasible, since, in terms of
the application here, the lower three components of dq are now functions of the
lower three translational error components of dx, which are directly solvable.
The remaining rotational error (upper three) components of dq can be obtained
subsequently by treating the already found components as knowns. Of course,
the differential error vector, dx, must be transformed into the same reference
frame, frame 3 in this example, in which the Jacobian is expressed.

Example 1: Simulation results of an elbow manipulator.

Referring to Figure 5.2, which shows the nominal geometry of the robot, Table
5.1 summarizes the Denavit—Hartenberg (DH) parameters for the nominal model.

The length parameter values were adopted from the PUMA 560 nominal
model as given in [ 5], although the two nominal models are not quite the same.

In the work by Waldron et al. [15], explicit formulas for the manipulator
Jacobian that relates the vector of joint rates to a particular choice of a world-
coordinates velocity vector p are derived.

TABLE 5.1. DH Parameters of the Simulated Elbow Manipulator

Link Number a;,(mm) d,(mm) o;(degrees) 0,
1 0 0 90 Variable
2 m=4318 [=149.09 0 Variable
3 n =433.07 0 0 Variable
4 0 0 90 Variable
5 0 0 90 Variable
6 0 p = 56.25 0 Variable
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The resulting inverse Jacobian formulas led to the following joint command
uppdates:

—H;

40 = mcb, + nc(0, + 05) (5.46)
do, = %03[#’ — (d0))lc(6, + 65)] (547)
do; = %[(d()1 Y0, + 6;) — (d0,)(n + mch;) + ] (5.48)
dOs = 6,50, — 6,c0, + (d0,)c(6, + 05 + 0,) (5.49)
dbg = é[&xc()‘t + 6,50, — (d0,)s(6, + 05 + 6,)] (5.50)
d0, = 6, — (d0,) — (d0;) + (dB)cOs (5.51)
where
d, o, pcl,s0s
n=|d, [—]| 6, x| pstyss (5.52)

d, o, —pcls

Equations 5.46 through 5.52 were used in simulating the compensation algo-
rithm for various “calibrated” models of the elbow manipulator as described by
Huang and Gautam [8], in certain designated desired robot configurations.
Nominal inverse kinematic solutions for the PUMA 560 robot are available
in the work by Fu et al. [5], and versions of these were adopted here.

The rate of convergence for finding the solutions, using the joint resolution
criterion, was found to vary from four to six iterations in all cases tested. Some
typical simulation results for the Elbow robot are presented in Table 5.2. It can
be seen that the accuracy is improved by approximately a factor of 40 to 1 after
compensation. Note that in the simulation the errors introduced to the robot
model are much worse than can be seen in real robots—the error for a PUMA

TABLE 5.2. Typical Simulation Results for Elbow Robot
X Axis Error Y Axis Error Z Axis Error Total RMS Error

No. Imitial Comp. Initial Comp. Initial Comp. Initial Comp.

1 5.59 0.04 297 0.17 2.55 0.07 6.82 0.19
2 2.64 0.00 3.08 0.13 4.25 0.10 5.88 0.16
3 2.67 0.08 4.31 0.09 2.18 0.04 5.52 0.13
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is typically less than 5 mm in practice, thus it is reasonable to expect that an even
better rate of convergence can be obtained. '

The number of operations required to calculate the dx vector are three
multiplications, nine additions, and no transcendental function calls (3M +
94 + QF). The transformation of dx into frame 3 requires 24 multiplications, 27
additions, and no function calls (24M + 274 + OF). The calculation of dq using
the analytic solution of Jacobian inverse requires 24 multiplications, 16 addi-
tions, and 8 function calls (24M + 164 + 8F). The total number of operations
required for each iteration of the compensation scheme are 51 multiplications,
52 additions, and 8 function calls (51M + 524 + 8F). Although the number of
iterations is more than that claimed in [13], it should be noted that the computa-
tional effort required in each iteration is much smaller as the result of the use of
analytic closed-form kinematic solutions.

Similar strategy was proposed in [13]. All inverse-Jacobian-based algorithms
may not converge if the kinematic parameter errors are large. At singular con-
figurations the algorithm breaks down since the inverse Jacobian does not exist.
It is a common practice not to teach task points that are at or near the robot
singular configurations. To ensure that no entry to the singular zones is en-
countered during the iterations of the compensation algorithm sufficient safety
margins from the singular zones need to be maintained while the robot is
programmed.

5.2.2 Redefinition of Task Points Displacement Matrices

The key idea is to redefine the desired positions and orientations in amounts that
will create an equivalent effect to that of updating the robot joint commands.
This was suggested originally by Veitchegger and Wu [13] and brought into a
more complete form by Vuskovic [14].

Let
_|Ra Pa
Xy = |: 0 1 ] (5.53)

where p; and R, are the desired end effector position vector and orientation
matrix, respectively. Let Ap, and A, be the position and orientation modifica-
tions. Thus, the modified desired pose X, is
I+ AR A
X, = |:( + Od) a Pa +1 Pd] (5.54)

The modified desired pose to the robot nominal inverse kinematics is used to
produce joint commands that will move the actual manipulator to the originally

desired pose, as follows (see Eq. 5.27-5.28):

F.[F'(X.)] =X, (5.55)
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The problem is to solve for the appropriate Ap, and A, that will satisfy Equation
5.55. Ay = A4(Ak,) is a skew-symmetric matrix associated with the vector Ak,
of orthogonal rotations of the last link about the basis vectors of the manipulator
base.

The term Ak, is found similarly to 8 of Equation 5.33. Denoting the manipula-
tor’s end effector position vector x in terms of p and a vector k:

k
X = [ p} =g(q.3) (5.56)

where q is the vector of joint positions and a is the vector of fixed kinematic
parameters. It is shown by Vuskovic [ 14] via Taylor series expansion of Equation
5.55 that a linearized solution for Ap, and Ak, is

op
Apy = ——A 5.57
pd aa a ( )
Ak, = —%Aa (5.58)
Ja

where Aa is the identified vector of kinematic parameter errors. The terms dp/da
and 0k/0a are “kinematic sensitivities” that constitute the identification Jacobian
derived in Chapter 2.

The kinematic sensitivity matrices can be computed explicitly as shown in
[14] using geometric interpretation of Jacobian matrices as originally suggested
by Whitney [16] as follows:

g_; _x, (5.59)
«% — (5.60)
g_c‘z),. _z (5.61)
g_gi I (562)
2713: =y % (1 — ax) (5.63)

where a;, «;, d;, 0, are the DH parameters and f; is the additional kinematic
parameter that may be added to handle nominally parallel joint axes (see Chapter
2). x;, ¥;, Z; are the basis vectors of the ith link where the link coordinate
assignments are done according to Craig’s modification of the DH convention
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[3] such that the axis z; is colinear with the ith joint axis. r; is the vector

connecting the last link frame origin with the ith link frame origin.

Similarly:
ok
da;,
ok

— =X

do;

ok
od;

x_,
a0,
ok

aﬂi'—yi

=0

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

The vectors x;, ¥;, Z;, I; can be computed recursively for simple nominal manipula-

tor models, as follows:
If O(,-_l = 0, then

X; = (s0,)y;—1 + (cO)x;4
Yi = (c0)yi-y + (50)x;-,

Z;=12; 4
If oy = igoo, then
Xi = i(sei)zi._l + (cei)xi"l
y; = i(c()i)z,-_l + (sgi)xi-l

Z;= 1Y
where
x, = (1,0,0)T
Yo = (0,1,0)7
zO = (0, 0, l)T
Finally:

=T+ X+ di 2y

l'N=0

(5.69)
(5.70)
(5.71)

(5.72)
(5.73)
(5.74)

(5.75)
(5.76)
(5.77)

(5.78)
(5.79)

Substitution of Equations 5.59 through 5.79 into Equations 5.57 through 5.58
yields the general formulas for desired pose compensation that hold for any

N-degrees-of-freedom open-chain manipulator:
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N N
Apy = — 2 (Xi-14a;_; + z;Ad;)) — 21 (Xi—1Aoy_1) X 134
=1 i=

N
- Zi (Vi1 ABioy) X (Xoy — @iy X;y) (5.80)
Aky = _i (x;Ax; + y;AB;) (5.81)
i=1

Example 2: Vuskovic’s pose compensation formulas [14] for a PUMA
manipulator.

The above formulas are specialized to the particular set of nominal link
parameter values of the PUMA manipulator. These are

oy =0, =0
oy =0ay =05 = —90°
d4=90o

dg=a; =a4 =as=0
di=d,=ds=dg=0
Fo=r =r=p
ra=rs=rs=0

Upon obtaining the calibrated kinematic parameter errors, the following entities
may be computed:

L1 = (cB;)Ac, — (s6,)AB, 1y = (s0,)Aat, — (cB,)AB,
o= +¢(6, + 05) Aoy + Aa, Ny = —s(0, + 03)A0o; — 1,
{3=Aa, +(cbs)Aas N3 =dsAa; +d, + (s0s)Aas
{a=(cl,)Ads —(s6,); s =(s0,)Ads—(c0,)¢s
{s=04+(s05)arAos + Ady + Ady + a,AB, 15 =n,+(s6,)Aa,
{6 =c(6,+ 03)ns — 5(0, + 03)n, e =5(6; + 03)ns +c(6, + 03)n,
{7="{¢+(ch,)Aa, + Aqa, 1= —(s0,)Aa, + Ad,
(g =(c0,)AL; — (50, )5 ng = (s61)AL; +(cb){s
Lo =04+ (c8;)Aas N9 = (s65)Aas

Lo =1(c04)s 110 =(504)s

Cra=clb, +63)L10— (0, + 05)no 11 =58(0; + 65){ 10+ c(0, + 03)n,

Cr2 =(cO)n10 — (s6,)y4 N2 = (0110 + (c0,){44
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Then

—(e8,)0, — Aag + 114,

Aky =] —(s0,){; — {12

—N2— 1

and
—(c6,)¢; — Aay {g + Aay
Ap, = —(s61)(2 XPpa—| Mg — a4Ad
- 7

where a, is the desired approach vector of the wrist (i.., the third column of the
desired orientation matrix R,).

As claimed in [14], simulation studies show that the method appears to be
working well even at singular configurations.

5.3 OPTIMAL DESIGN OF ROBOT ACCURACY
COMPENSATORS

The algorithms for robot accuracy compensation discussed in the previous
section were derived using task-point attainment equality conditions, that is,
assuming that the desired robot pose after compensation can be attained without
error. At this point it is worthwhile to realize that several sources still contribute
to the robot pose error even in the presence of accuracy compensation. Among
these are

1. Imperfect identification of the robot kinematic parameter errors. Thus, the
actual kinematic model contains uncertainties.

2. All the compensation algorithms that have been discussed thus far are
based on linearized error models.

3. Existence of unmodeled nongeometric errors.

In this section, the problem of joint commands updating using the identified
kinematic error parameters is cast as an optimization problem as demonstrated
in the work by Zhuang et al. [17-20].

Several design tradeoffs are highlighted while optimizing the solution. The
first tradeoff is between the attained compensated pose error and the size of the
correction vector to the robot joint commands. Obtaining sufficiently small
accuracy errors may sometimes require exceedingly large joint command changes.
If this may result in hitting a joint travel limit, or in entering a robot singular
zone, then, of course, the compensation action becomes impaired.
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The second tradeoff is between end effector position and orientation errors.
Different applications may emphasize different aspects of robot accuracy. There
are also scaling problems that may impair the quality of the compensation.
Positioning errors, that are absolute errors, sometimes have orders of magnitude
difference with respect to orientation errors. Thus, the weighting matrix that is
used as part of the optimization performance measure may be adjusted to avoid
numerically difficult scaling differences.

Like the methods discussed previously, the compensation method discussed
here is also based on a linearization of the kinematic model and as such is valid
only if the identified errors are sufficiently small. There is no need to solve
explicitly the inverse kinematics problem of the actual robot. The correction
algorithm is linear in terms of the identified kinematic parameter errors. The
coefficients of the kinematic errors that affect the compensation algorithm de-
pend on the nominal kinematic model and the nominal task points only. Because
of the particular choice of performance index, the solution exists at all robot
poses. For example, near singularities of the nominal model, the optimal strategy
may be to introduce no corrections. The size of corrections can be made to
depend on the distance of the task point from the robot workspace boundaries
or special singularity zones.

5.3.1 Mathematical Background—Linear Quadratic
Regulators for First-Order Discrete Time Systems

Consider the following particular case of a first-order linear discrete-time system:
Xpeg =X+ by, k=12, (5.82)

where x,, the state vector, and b, the vector coefficient of the scalar control signal
u, are both n-vectors. The system is time varying as b, does not necessarily retain
the same values from one time instant & to another. It is assumed that the vector
b, is known at every k = 1, 2, ... and so is the initial state vector x,.

The optimal control problem is to find a set of N numbers u,, k=1,..., N
that are the control values such that the following performance measure J(u; ...,
uy) is minimized:

N
J(y,...,uy) = X1€+1 Qxy4q + kzl ‘Vkuf (5.83)

where Q is a given symmetric nonnegative definite matrix. Also given are the
numbers y,, k = 1, ..., N assumed to be strictly positive.

In simple words, the objective of the control problem is to drive the state
vector X, in N steps as close as possible to zero without using excessive control
values.

The main result is the following recursive solution algorithm:
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Theorem: The optimdl control values u¥, k = 1, ..., N that minimize J(u,,...,
uy) of Equation 5.83 subject to Equation 5.82 are expressed in the following
control law:

ut =k’x, k=1,...,N (5.84)

where the row vector of gain coefficients k{ is obtained recursively as follows:

kI_, = — by Py k=0,1,....,N—1 (5.85)
N by Piby_i + v U
Py = P+ Poby ki, (5.86)
P,=0Q (5.87)
The resulting minimum cost J* is
J*¥ = J(ut...,uf) = x] Pyx, (5.88)

Proof: A standard dynamic programming argument is to assume that optimal
controls [u¥,...,u%_,] have already been selected and the problem is to find u}
at the final step. Let Jy y4; be the cost function for optimizing uy, where

Jyne1 = Xy41QXpyyq + TNUR (5.89)
Denote P, = Q. By substituting from Equation 5.82 for xy,, one gets
I = (xy + bN“N)TPO(XN + byuy) + VN“)zv (5.90)

By differentiating Jy y., With respect to uy

aJ,
g;:H-l = 2'}}NuN + 2b;P0(XN + bNun) (5.91)
N

and equating to zero uy is found:

bIP,

~bIP.by + 7y Xy (5.92)

uy =

Since the second derivative of Jy_y., With respect to uy is positive, uy is the global
minimum. Denote

—b3P,

kl=——" "
N bIPoby + vy

(5.93)
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then
ud = klixy
The optimal cost at the final step is then
J¥ ne1 = X {1+ byk{)TPo(I + byk}) + knyvky ) xy

P,b,blP
T _ Fobybyk,
- {Po by Pyby + VN} *w

= Xy {Po + Pobyky}xy

— w7
=xyP; xy

‘where

P1 = Po + Poka§
The same strategy is now repeated to find u_,,
uf-y = ky-1 Xy

where

by_, P,
by-1Pyby_y + vy,

T —
kN—l -

(5.94)

(5.95)
(5.96)
(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

LetJy_1,n+1 = Jy-1,n + Jy, n+1 be the cumulative cost for the last two steps, then

JE-1ne1 = X1 PaXy_y
where
P, =P, + Piby_ k§_,
By mathematical induction, for the kth stage
uF-r = Ky_xXy_y
where

by P,

k;\;-—k = _bT
n-kPiby i + In_i

and

* T
IN-kn+1 = Xy PeXy g

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)
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where

Piis = Py + Piby ki (5.107)
Finally, the minimum cost is
JEn+1 = X1 Pyxy (5.108)
That completes the proof.

Studying the solution, Equation 5.85 reveals that the requirement that all
coefficients y, be strictly positive is intended to ensure that uf never attains
infinite values as might happen for particular values of by should the performance
criterion in Equation 5.83 be based on the terminal error only.

5.3.2 Joint Command Updating Problem Formulation as an
Optimal Control Problem

The position and orientation of the end effector in world coordinates of an N
degree-of-freedom manipulator can be represented by the following 4 x 4 homo-
geneous transformation matrix Ty

nx Ox ax px
a, p
Ty = o (5.109)

z OZ az pZ

0 0 0 1

We define a vector f=[f;, f5,..., f12]7, consisting of the nontrivial ele-
ments Of TN’ that iS, [fl, f2’ f3]T =n= [nx’ ny’ nz]T, [f4> fSa f6] =0= [Ox’ oya
0,15, Lf1: fos fol=a = [ax,ayaaz]T and [ fi0, fi1, f12)" =p= [Px>Py,Pz]T'

Accuracy errors may be modeled in terms of an error matrix ATy, or equiv-
alently an error vector Af. The problem is to find adjustments of the joint
variables such that Af is minimized (of course in a certain norm sense, || Af]]).

The 12-vector f is the function of the vector of link parameters denoted here
by p and the vector of joint variables q,

f = f(p, q) (5.110)

For instance, in the DH model, [p7,q7]7 = [«,a”,d”,87]". For an all-revolute
robot, p = [«7,a”,d"]” while q = 0, where a is the vector of all link twist angles,
a is the vector of all common normal lengths, d is the vector of offset distances
between consecutive common normals, and 0 is the vector of joint rotations.
The kinematic errors of a robot are composed of two parts: nongeometric and
geometric errors. Geometric errors can be modeled as link parameter deviations
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Ap and joint offsets Aq,. Nongeometric errors due to effects such as joint
compliance and link deflection are hard to model. For simplicity only a subclass
of nongeometric errors, namely those that can be modeled as nonlinear functions
of the joint commands are considered. We denote by Aq,, the equivalent joint
commands that produce the overall effect of nongeometric errors. The variables
Ap, Aqyy, and Aq,, are assumed available from the parameter identification
phase. Denote

Aq = Aqoff + Aqng (5111)
If no data are available concerning nongeometric errors, the algorithm assumes

Aq,, = 0. The objective is to choose joint variables adjustment Aq, to minimize
| Af]| at every task point ¢°, where

Af = f(p° + Ap,q° + Aq + Aq.) — f(p°,q°) (5-112)

Since the kinematic parameter errors are assumed small, a linear approximation
is used to estimate Af in terms of the identified kinematic parameter errors.

of
Ap + —
29, q° 6q

of
Ag +

N of
9, q° aq

Af~
op

Aq, (5.113)

0, q°

where the matrix kinematic sensitivities 9f/dp and 0f/0q depend on the nominal
model of the robot at the particular task point. Denote

of
-~ = A 5.114
of
il =B (5.115)
8q 90, q® f
then
Af ~ A;Ap + B;Aq + B;Aq, (5.116)

where 4; e R™ *'? and B; € R¥ *!2 Here M is the number of link parameters in
the whole model. For example, if the DH model is used, M = 3 x N. Equation
5.113 will be referred to as a redundant linearized error model since the vector f
is a redundant description of the robot kinematics, compared to a description
using a 6-vector. Let

x, = A;Ap + B,Aq (5.117)
B=[b,,...,by] =B, (5.118)

and
u="[u,uy,...,uy]" =[Aq.1,Ad. 2, -, Age n]T (5.119)
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where b,, x, € R'2. Then Equation 5.113 can be rewritten as the following
discrete-time state equation

X,H.l = Xk +bkuk k= 1, 2,...,N (5.120)
X, =X, (.121)

The problem now takes a form of the standard optimal control problem dis-
cussed in the previous section. A cost function J, representing the end-point
accuracy may be chosen as follows:

Iy = X1 QuXy41 (5.122)

The solution can be found by using the least-squares method. However, to
include the size of the control signal as part of the cost and by that also avoid
singularity problems, a modified cost function is selected.

5.3.3 Optimal Control Solution to the Calibration
Compensation Problem

The solution of the linear optimal control problem is the vector u of the joint
variable corrections (or compensations) that minimizes the modified cost func-
tion J(u)

N
J) = x5+ Q, Xy + k; Veldy (5.123)

subject to Equations 5.120 and 5.121. The terminal error weighting matrix, Q,,
is taken to be symmetric nonnegative definite, and the control weights y, are
strictly positive.

The optimal solution u;* is given by the feedback control law (Equation 5.84)
that is repeated here for clarity:

uF = ki'x, (5.129)

where kI is obtained from a recursive solution of a related matrix Riccati
difference equation as shown in the previous section:

by_.P
KT — Nk p_01,..,N—1 5.125)
N by i Peby & + vk (
Py = P + Pby by, (5.126)

with

P, =Q, (5.127)
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The resulting minimum cost is

J* = x]Pyx, (5.128)

Note that if y, = 0, for any k = 0, ..., N — 1, then k] becomes undefined at
singularities of the nominal kinematic model. The choice of the modified cost
function (Equation 5.123) ensures the existence and uniqueness of the optimal
solution. .

Later in this section a method of choosing Q, and 7, is presented. After
Aq, = u is obtained, the actual vector of joint variable q,., to be used at this
particular task point is

QG =q° + Aq, (5.129)
The procedure is now repeated at every task point.

Remarks:

1. The resulting joint command may in certain cases exceed the joint travel
boundaries. The solution is no longer optimal if a saturated joint command
is taken. To prevent this, one may iteratively readjust the weighting coefli-
cients y,. In addition, safety margins at the joint boundaries must be left
when the task is created, leaving room for calibration corrections. More
discussion of the subject will be given later in this section.

2. The pose error after compensation in general cannot be made zero even if
the identification phase of the calibration process is perfect. The optimal
cost value according to Equation 5.88 is in general nonzero.

3. x, is the vector of the linearized initial pose error and x ., is the vector of
the linearized final pose error. The performance of the compensation may
be determined from the ratio of J* (given in Equation 5.88) and x7Q, x..

The selection process of Q, and y, is explained next. Assuming initially Q, to
be the identity matrix, the first term in the cost function (Equation 5.123) is then
the square of the Euclidean norm of the pose error vector. The first nine entries
of the Af vector represent orientation errors and the other three elements
represent positioning errors. The positioning errors are absolute errors having
sometimes orders of magnitude difference in scaling with respect to the orienta-
tion errors depending on the selection of unit systems. The weighting matrix Q,
can instead be selected to relate the cost function to the relative errors. This may
be achieved through choosing a diagonal Q,, in the following way. Let Q, =

diag[q,,.922,.-,912,12), where

Q== =123 (5.130)
i / .
Gi=1—35=4di i=4,5,6 (5.131)

loll?
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gii , .
9 = Tl = Qi i=17,8,9 (5.132)
_ G =1
g = T i=10,11,12 (5.133)
Thus

. 910,10 911,11 912,12
Qx=dlag[Q' B e P s :| (5.134)

o > el el p?l

The particular choice of values g;; now reflects different accuracy requirements
of positioning and orientation of the end effector. For instance, let g;; = k, for
i=1,...,9 and g}, = k, fori = 10, 11, 12. Then

k k2 k2 k2 :I
B | T YRR

Q, = diag [kl,.. (5.135)

The values of y, may be chosen to achieve several objectives. First, the correction
Aq_, also needs to be normalized whenever the robot features both types of joints,
revolute and prismatic, with different scalings. Second, at task points that require
one or more of the joint variables to be near the joint travel boundaries or near
robot singularities, large values of y, need to be selected to reduce the amount
of correction. A suggested method of choosing y, is as follows:

Be=0,——, >0 (5.136)

k,rang

Where gy ..., the square of the total kth joint travel, is used to normalize the
corrections in the case of the robot with two types of joints. In the case of an
all-revolute manipulator one may set gy ran, = 1.

Acting as a penalty coefficient, J, , may be chosen to be inversely proportional
to the minimum distance between the kth nominal joint command and its
boundaries, or it could be chosen as a switching function, being a very large
number only when the above distance is smaller than a preset threshold value.
At the limit, 9, ;, = oo, which results in a zero correction. Large values é, , may
degrade the correction as the cost function of Equation 5.123 is driven away from
that of Equation 5.122. Again an alternative is that safety margins are maintained
during the programming of the application. If such margins are sufficiently large,
d,, may be set to one.

Coming back to the linearized accuracy error Af of Equation 5.113, we notice
that the linearization is done with respect to both the joint variables as well as
the fixed kinematic parameters. Actually it is necessary to linearize only with
respect to the joint variables since p = p® + Ap and q = q° + Aq are assumed
known following the kinematic parameter identification. Let Af™ denote a
modified expression for the accuracy error vector as follows:
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of
Af™ = -
f(p.q) + 74

Aq. — f(p°.4°) (5.137)

pq

where 0f/0q depends on the actual parameters p and q. Assuming that Ap and
Aq are small, one can approximate 0f/dq|, , as follows:

+ o
99, q© 6q6p

o g
%‘Lq _%

o f
Ap +

Aq (5.138)
#°, g0 oqop

p%,q°

Substitution of Equation 5.138 into Equation 5.137 and ignoring higher order
terms of Aq and Ap yields

of
AT = £(p,) + o

Aq™ — £(p°, q° 5.139
34 q.” — f(p°.q°) ( )

0,0

The same optimal control solution method can now be applied to find Ag®™ by
defining a new initial vector x™:

x™ =f(p, ) — f(p°,q°) (5.140)

Remark: Expressions 5.139-5.140 provide also a conceptual solution to the
automated robot reprogramming problem. The reprogramming is done by using
endpoint sensing to determine the end effector location without ever identifying
the actual kinematic model. Let q° be the programmed joint commands vector,
f(p°, q°) be the position of the desired task point and x,(q°) be the actual position
of the robot’s end effector when the command q° is applied. x,.(q°) is measurable
using the same type of measurement techniques that are described in Chapter 3.
Define

x{P = %,(q°) — f(p° q°) (5.141)

where x{™ denotes an initial condition for an optimal control algorithm that
calculates the joint command increment Aq®. Mathematically, Aq®™ and Aq™
are completely identical. The only difference is that x™ is a calculated entity
while X is a measured entity.

The modified calibration compensation solution based on Equations 5.139
through 5.140 becomes particularly attractive in cases where large kinematic
parameter discontinuities exist as in the case of using a DH modeling convention
for a robot that has nominally parallel consecutive joint axes. In such cases,
Equation 5.113 is no longer valid while Equation 5.139 is.

The only advantage of the fully linearized redundant model Equation 5.113
over the partially linearized redundant model of Equation 5.139 is that Equation
5.113 is in the form that allows model reduction to a nonredundant error model
along the lines to be discussed next.
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5.3.4 Calibration for Reduced-Order Error Models

The computation effort can be drastically reduced through simplification of the
redundant error models presented in the previous section. In this section an
equivalent reduced-order error model is derived followed by a computational
cost comparison between the redundant and simplified error models.

Considering the homogeneous transformation matrix Ty of Equation 5.109,
let dTy be a differential transformation as described by Paul [10]:

dTy =Ty 0Ty (5.142)
where
oz 0 —oxy dy
oTy=| N (5.143)

—dyy  Oxy 0 dzy
0 0 0 0
[dxy,dyy,dzy]" are the translational errors and [6xy, 8yy,5zy]7 are the rota-
tional errors of the end effector. d Ty is a known matrix. It can be obtained from

Ty in one of the two following methods:

1. Linearization with respect to p and q, as follows:

T oT,
dTy = aa_: p P Fq’! p Aq (5.144)
or
2. Exact difference as follows:
dTy = Ty(p,9) — Ty(p°.q°) (5.145)
where p = p° + Apand q = ¢° + Aq.
From Equation 5.142 one can now find 6 Ty:
0Ty = TR -dTy (5.146)

The reader is referred to a similar procedure carried in Section 5.2.
Define a reduced-order accuracy error vector Ag as

Ag = A,Ap + B,Aq + B,Aq, (5.147)

where A, € R®*% and B, € RM*¢. The above equation will be referred to as a
g 4
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reduced-order linearized error model. Similar to the derivation in the previous
section let

V. = A,Ap + B,Aq (5.148)
[big...,by,] = B, (5.149)
u=Aq, (5.150)

where b, y. € R® and u € R".
The vector y, can be constructed from 6Ty as y, = [dxy.dyy,dzy, dxy, Sy,
6zy5]". The matrix B, is constructed as follows. Define a matrix L,

Lk=T,;1‘Z—ZN , k=1,..,N (5.151)
k ip%,q°

Then the vector b,, of Equation 5.149 is the kth column of the matrix B,, where

B i =[Liis i=123 (5.152)
[Belas = [Lils2 (5.153)
[Bglsy = [Li ]y 3 (5.154)
[Bydex = [Lilz s (5.155)

fork=1,...,N.
Equations 5.147 to 5.150 can now be rewritten as the following state-variable
model:

Yerr = Vet b,  k=1,2,..,N (5.156)
Yi =Y. (5.157)

Minimizing the cost function J(u), where

N
J(u) = y};ﬂ nyN+1 + kzl ykul% (5.158)

subject to the difference Equations 5.156 and 5.157. Q, is given in Equation 5.162
below and y, is positive for every ke [1,...,N].
The optimal solution of u, is given by the feedback control law

uf =kLy, (5.159)

where kj, is obtained from a recursive solution similar to Equation 5.85 with the

initial condition P, = Q,.
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The key problem is to construct a cost function J, so that minimizing J, is
equivalent to minimizing J (of Equation 5.122), where

J,= yll‘;+1nyN+1 (5.160)

It will be shown now that J, is equal to J, if the matrices Q, and Q, satisfy the
conditions given below

Proposition: Let

Q.= diag[‘111a422,---,‘112,12] (5.161)
then J, = J, if
ngB 03><3
Q =|: (5.162)
Y 03x3 Ql3x3

where the upper left block Qj, 3 is

L JPNPS | n’Q,o-,0 n"Qo-,,2
3x3 = n"Q,o-;,0 07Q,0-120 07Q,0-122 (5.163)

n7Qo-_;,2 07Qy0-1,2 a"Qy0-4,8

and the lower right block Q},; is

07Q,_¢0+2a"Q;_oa —n'Q,_50 —nTQ,_¢a
Qs3= —n"Q; 50 a"Q,_oa+n"Q;_3n —07Q; ;a
—n"'Q,_¢a —07Q;_;a n"Q,_3n+07Q, 0
(5.164)

where n, o, and a are defined in Equation 5.109, and Q; 3, Qa-s; Q,_y, and
Q.- are 3 x 3 diagonal matrices as follows:

Q;-3 = diag[4g;1,922,923] (5.165)
Q4-¢ = diag[qas, dss> dee (5.166)
Q,_o = diag[q77,9ss> 9991 (5.167)
Q10-12 = diag[q10,10-911,11-912,12] (5.168)

Specifically if (as in Equations 5.135)

k k k
Q, = dia [k yersk 444] 5.169
R WA N TTE (5.169)
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then Equations 5.162 takes the simple form of

k k k
= dia —2,—2—,—2—,2k,2k,2k] 5.170
Q g[npuz o2 Tpl2 21 2K 2k (.170)

Proof: Denote
dtyy dty, dtyy dty,

dtyy dt,, dt,; dt
4T, = 21 @iy diy; dlyy (5.171)
dty; dty, dty; dts,

0 0 0 0

By Equation 5.109 and the definition of f, x, = [dt,,dt,,,...,dt5,]". By defini-
tion of Ag, y, = [dxy,dyy,dzy,5xy,0yy,0zy]7. Thus by Equation 5.142, the
elements of the vector x, can be expressed in terms of the elements of y. as follows:

xc,l = Oxyc,6 - axyc,S
Xe,2 = oyyc,6 - ay)’c,s

Xe,3 = 0,6 — aye,s

xc,4 = _nxyc,6 + axyc,4
Xe,s = —MyYe s + ayye,a
xo,6 = —nzyc,G + azyc,4

Xe,7 = Mx¥e,5 — 0xYe 4

Xc,8 = MyVe,5 — Oy)c 4

Xe,0 = NzYe, s — 0¥ 4
Xe,10 = MyYe1 + 0xVe 2 + Ay Ve 3
Xe,11 = MyVe 1 YOV 2 + A Ve 3
Xe,12 =MV 1+ 0). 2+ 4. Y, 3

Jo(X;) is a quadratic form of y, as shown by the following straightforward
derivation:

JuXe) = X.Q.x. = (07Q10-1,m)y2; + (07Qy0-1,0))2,
+@"Quo-122)2; + 207Q10-120)Y,, 1Y, 2
+207Q10-128))e, 1¥e.3 + 2007 Q10-128) e 2Ve 3
+(@"Qy_0a +07Q,_40))2,
+@"Q;_0a + 07Q, _;m)y?
+(07Q4-60 + 0"Q;_;m))Z
—2(07Q7-90)y; 4¥e,5 — z(nTQ4—63)yc,4yc,6
— 200" Q1 -33)y,, 5¥.6
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Since y, is arbitrary, equating the above to y7 Q,y, resuts in Q, being in the form
of Equation 5.162. Since Q, is nonnegative definite and the equality holds for
any (x,, y.), then the resulting Q, is also nonnegative definite.
By Equation 5.135 and the orthogonality of n, o, a, Equation 5.170 results.
O

Further simplifications to the optimal control algorithm are possible for
manipulators with particular geometry. For example, if the manipulator is 3T-
IR, then the state equation given in Equation 5.156 decouples since the orienta-
tion error vector & = [dx, 8y, 8z] is not a function of the prismatic joint correc-
tions Ad. The problem can now be solved using two consecutive linear quadratic
regulator algorithms, where the first one is for correction of the orientation
deviation &, and the second one is for correcting the position errors without
changing the orientation vector that has been corrected by the first algorithm.

Two factors contribute to the computational complexity of the optimal con-
trol compensation strategy:

1. Computation of the coefficient matrix B (or B,) and the initial conditions
x, (or y,) of the state equations.

2. Computation of the correction vector Aq, after B (or B;) and x, (or y,) are
made available. The complexity of B (or B,) depends on the choice of the
kinematic model.

To compute k%_,, about n(n + 1)(M + A) operations are needed, where M
stands for multiplication, A stands for addition, and » is the dimension of the
weighting matrix Q, (or Q,). There are N steps, therefore Nn(n + 1)}(M + A)
operations are needed. However if Q, (or Q,) is diagonal, the number of
operations reduces to (N — 1)n(n + 1)(M + A) + 2n(M + A). To compute P,
n(n + 1)(M + A) + n*A operations are needed. N[n(n+ 1)(M + A) + n*4]
operations are needed for N steps. Py, however, is needed only for the calcu-
lation of the minimum cost J*. Therefore, if J* is not explicitly required, the
number of operations is reduced to (N — 1)[n(n + 1)(M + A) + n>A]. Again for
a diagonal Q,(Q,) matrix, the computation cost for P, through Py_, requires
(N — 2)[n(n + 1)(M + A) + n*A] operations.

After b, becomes available, computation of w, for N steps needs about Nn
(M + A) operations.

Assume that the minimum cost J* needs not be calculated, then the total
number of operations T,, for computing the compensation algorithm given
B,(B,) and x,(y.) is approximately:

T,,=(N—D[2n(n+ 1)(M + 4) +n*A] + n(n+ (M + A) + n?A +2Nn(M + A)
(5.172)

If 9, (or Q,) is diagonal, then

T,,=(N —2)[2n(n+ 1)(M + A) + n* AT+ n(n + 5)(M + A) + n?A +2Nn(M + A)
(5.173)
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For the redundant error model n = 12 and by taking a diagonal matrix Q,
the resulting number of operations is T,, = 1596M + 23164. For the reduced
order error model n = 6 and for Q, being diagonal, T,, = 474M + 654A. Using
a reduced order model requires about one-quarter of the computational effort
required by the corresponding redundant error model after x, (or y,) and B; (or
B,) are available.

Fora 3T-3R type of robot, computing each correction vector needs only about
290 multiplications and 390 additions after the initial conditions and the coeffi-
cients of the state equations are set.

5.3.56 Simulation Example of PUMA 560 Robot

The kinematic model of the Unimation PUMA 560 robot as described in [5]
was adopted for this simulation. The kinematic parameters using DH convention
are listed in Table 5.3. The simulated kinematic errors are listed in Table 5.4.

Both the reduced-order and redundant linearized error models were used to
obtain the required joint variable corrections A®. Simulations show that the
outputs of the two algorithms match closely. The linear quadratic regulator
algorithm using the reduced error model is, of course, much faster. In Table
5.5, results obtained by the linear quadratic regulator algorithm based on the
reduced-order error model are given to illustrate the effectiveness of the algo-
rithms presented in this section.

TABLE 5.3. Link Parameters of the PUMA 560

Link
Number «;(deg) a;(mm) d;(mm) 0, (deg)
1 90 0 0 —160 — 160
2 0 431.8 149.09  —225-45
3 90 —20.32 0 —45 - 225
4 0 0 43307 —-110-170
5 0 0 0 —100 - 100
6 0 0 5625  —266 — 266

TABLE 5.4. Simulated Parameter Deviations

Link
Number Aa;(deg) Ag;(mm) Ad;(mm) A6 (deg)
1 0.1 0.05 0.1 -0.05
2 —0.05 0.1 —0.075 —0.1
3 0.05 —0.1 0.05 —0.1
4 —0.15 0 0 —0.1
5 0.15 0 0 0.1
6 —-0.13 0 0 0.1
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TABLE 5.5. Simulation Results for k, = k, = 1 at a Nonsingular
Robot Configuration

Error Norm [|An| iAol llAa|l Apll/lIpll
Before correction 0.004990 0.004399 0.002369 0.000796
After correction* 0.000010 0.000006 0.000011 0.000008
After correction** 0.000010 0.000002 0.000010 0.000007
After correction*** 0.000011 0.000002 0.000011 0.000002

*y = 0.01, dTy is computed by Equation 5.144.
**y = 0.01, dTy is computed by Equation 5.145.
**%y = 0.0001, dTy is computed by Equation 5.144.

Joint Variable Correction Ab, A9, A6, Af, Abs Abg
For correction* —-0.038 0.t16 —-0.165 —0013 -0.119 0.318
For correction** —0.038 0.116 —0.165 —0.013 -0.120 0.318
For correction*** —-0.038 0.117 -—-0.167 -0014 -0.119 0.319

Note: A6, is in degrees.

Table 5.5 illustrates the following facts: (1) The correction results are in-
sensitive to the choice of computation methods of dTy. (2) The results are
also insensitive to the choice of y, as long as the robot is not near a singular
configuration. The nominal joint vector in this example is assumed to be 0° =
[90, —90,45,45,45,0]. Line (*) lists the norms of the orientation and positioning
errors after corrections when dTy is computed by the linearized error model in
Equation 5.144. Line (**) lists the results when dTy is computed by Equation
5.145. In both cases, y is the same. Line (***) gives the results when y is chosen
to be 0.0001 and dTy, is computed by the linearized model. Table 5.5 also lists
the joint variables corrections corresponding to the various cases.

Table 5.6 shows that k, and k, (from Equation 5.135) can be used to adjust

TABLE 5.6. Simulation Results for y = 0.01

Error Norm fiAn] Ao [Aaj] lApl/lpll
Before correction 0.004990 0.004399 0.002369 0.000796
After correction* 0.000010 0.000002 0.000010 0.000007
After correction** 0.005634 0.005139 0.002323 0.000008
After correction*** 0.000007 0.000007 0.000010 0.001776
*hy=ky = 1.
wf, =0k, = 1.
werp =1k, =0.

Joint Variable Correction Ab, Ag, A, Ab, Ab, Afg
For correction* —0.038 0.116 —-0.165 —0.013 —-0.120 0.318
For correction** —0.025 0.103 —0.148 —0.002 0.016 0.000
For correction*** 0.116 —-0.012 —-0012 —-0.027 —-0.060 0.184

Note: Af, is in degrees.
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TABLE 5.7. Simulation Results for k, = k, = 1 in a Singular Robot Configuration

Error Norm | An] Aol | Aa|| i Apli/ipl
Before correction 0.003367 0.004823 0.004809 0.000951
After correction* 0.000009 0.000395 0.000395 0.001807
After correction** 0.000619 0.000026 0.000619 0.000197
After correction*** 0.000753 0.000024 0.000752 0.000051
*y = 0.01.

**y = 0.0001.

**xy = 0.0.

Joint Variable Correction AG, AQ, A0, Ab, Ad; Aby
For correction* 0.128 0.024 0.152 1465 —0.195 —1.415
For correction** —0.021 0107 —-0.133 1528 —-0.127 —15.13
For correction** 0.038 0017 —-0.167 1691 —0.119 -16.74

Note: A6, is in degrees.

the results in tradeoff of positioning or orientation accuracy. Here the nominal
joint variables are the same as those of the last example. The upper part of Table
5.6 lists the orientation and relative positioning errors before and after correc-
tions. The lower part of Table 5.6 gives the corresponding joint variable correc-
tions. dTy is computed here by Equation 5.144.

Table 5.7 shows that , plays a very important role when the robot is near a
singular configuration. The nominal joint variable ° is chosen as [90, — 90,45,
45, —1,0]. Since 65 = —1.0°, the PUMA arm is near a wrist singularity. Simula-
tion results show that the joint variable corrections will be very large if y is set
to or near zero, though the error norm is minimized. Here again d Ty, is computed
by Equation 5.144,

Obviously the degree of success in improving the accuracy of a manipulator
depends strongly on the accuracy of identifying the kinematic errors of the
manipulator. Another limitation of the method is due to the “small perturbation
assumption,” based on which linearized error models are derived. If the kinematic
errors are too large, iterative methods may have to be employed.

5.4 NONPARAMETRIC ACCURACY COMPENSATION

The main literature sources on which this section is based are the works by
Whitney and Shamma [11,12]. A good short review can also be found in the
chapter by Hollerbach [7].

Parametric models for some of the robot accuracy error sources, including all
nongeometric factors, may be quite difficult to obtain. Some error factors are too
difficult to be expressed analytically. Others may display local variations of a
random nature. Although parametric models are convenient because they are
global and cover the whole workspace, a failure to model an error source may
cause model-based methods to lose accuracy significantly. One may need, in
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certain cases, to counter model-based identification and compensation with
methods that are more empirical, use abstract interpolation functions, and may
be valid only locally. Such an empirical approach, on the other hand, is in-
dependent of the need to model every error source. The idea is to approach the
robot as a “black box,” or more exactly, to approach the accuracy error as a
“black box.” One may still want to benefit from the robot nominal kinematics as
a prime source of useful information.

The objective is to find a set of approximating functions that relate statically
(or, in other words, algebraically), a given set of input data to a given set of
measured output data. The measurement phase for nonparametric calibration is
not quite the same as with the model-based method. First, the robot is moved
through a set of configurations. At each configuration, the joint position encoders
are read (this is the input data) and the end effector position and orientation in
world coordinates is measured using end-point sensing. The difference between
the measured pose at the measurement test points and the estimated pose when
using the nominal model yields the accuracy error at each test point. This is
normally the output data for model-based calibration. For nonparametric cali-
bration, however, one additional measurement step is required. The pose error
at each test point is manually compensated and the necessary amount of joint
displacement correction is recorded. The approximating function that relates
algebraically, at a given test point, the vector of joint transducer readings to the
vector of joint displacement corrections usually has no direct physical signif-
icance. It is purely an empirical curve fit model. One attempts to find a function
that will “best” account for the joint corrections in all tests points, given the joint
readings in these test points. This “best” approximating function of the joint
readings can then be used to compute a precise inverse kinematics solution (i.e.,
calculation of joint commands for desired arbitrary robot poses). The “black
box” approach to robot calibration is illustrated in Figure 5.3.

Among the many available classes of approximating functions, two have been
the subject of active research in robot calibration. One is based on multivariate
polynomials to be discussed in Section 5.4.1 and the other is based upon table
lookup schemes such as CMAC, discussed in Section 5.4.2.

Calibration that is based on a nonparametric approach applies best to robot
accuracy enhancement only in the regions of the workspace where data were
taken on which the coefficients of the approximation functions were based.
Collecting calibration data over the entire robot workspace is in most cases not
feasible. In the work by Whitney and Shamma [11,12] it was reported that a
robot with one set of approximating functions could be accurately calibrated
over about a quarter of the robot’s workspace.

5.4.1 Robot Calibration Using Polynomial Approximating
Functions

The basic ideas of using polynomial approximating functions to relate the joint
encoder readings to accuracy errors can be described as follows [11, 12]:
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Let 5, be the vector of joint encoder readings at the ith measurement point,
i=1,..., m Let Ax, be the measured joint compensation at the same test point
i. We denote by (An,); the kth joint correction, k = 1, ..., K. There will be two
cases:

1. K = 3. This case relates to a study of a 3 DOF manipulator in which case
1, is the position error vector.

2. K = 6. The study of a general manipulator in which ; is the 6-vector of
position and orientation errors.

As was shown [11,12], the solution of the first case plays an important role
in the solution procedure of the second more general case.
Let ,(n) be the jth multivariate polynomial,j =0, ..., L — 1 in the elements
n, of the joint encoder readings vector n, I = 1,..., N, where N is the number of
manipulator’s degrees of freedom. For example, such a polynomial of order 2
takes the general form of
Bim) = af + aPny + - + ofny + aflni + afhnin, + -
a1 mi-z + aPn? (5-174)

A family of L different polynomials is selected. The number L and the order
of each polynomial in the family are arbitrary design parameters.

Example 3: Three Link Manipulator.
Let each polynomial §;(n) be of the form
Bi(n) = nin3ns (5.175)
where r, s, and t are nonnegative integer exponents that satisfy the inequality
- 0<r+s+t<3 (5.176)
Taking all possible combinations results in having 20 different polynomials
Bo=1, Bi=m, Ba=ns Bs=ms Pa=ni,
Bs =Mz ..., Bis = 1213, Bio =3

The polynomials are ordered according to increasing r + s + ¢, increasing s + ¢
(in case of equal values of r + s + f) and increasing ¢ (in case of equal values of
s+ 1)

Hence, a natural choice of L in this case (ie., the case of three variate
polynomials of order 3) is 20.
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Let Bi(n;) be the value of polynomial j at the robot configuration i. The
following model is now fitted to the measurement data:

coBo(My) + e Bi(My) + -+ + e o1 By (1) = (Amy),
cxoBoMz2) + ¢ fi(Mz) + -+ + Cr-1B-1m2) = (An,),

CkoBoMm) + i1 Bi(M) + - + €4 o1 Br—1 (M) = (An),, (5.177)

for k=1, ..., K. ¢; is an unknown coefficient of polynomial j for the kth
joint correction. There is a total of K - L unknown coefficients, or, more descript-
ively, there are K separate linear least-squares problems involving each L un-
known coeficients and m data points. Obviously an over determining condition
m > L must be satisfied.

Denote by the matrix B the values of the polynomial at the measurement
points.

Bomy) - Br1(my)
B= : : (5.178)

BoMm) - Br-1(My)

Also denote

& = [Ckos Chts---»Cp—1 1" (5.179)

An = [(An);5-.., (Am)m 1" (5.180)

Then the least-squares solutions, ¢f, for the unknown vectors¢,, k = 1,..., K are
¢t =[B"B]"'B"Ay,, k=1,...,K (5.181)

For arbitrary selection of polynomials and measurement points there is no way
to ensure that the matrix B'B will not become ill conditioned. This calibration
method should then involve in addition to a careful selection of the family of
approximating polynomials an even more careful selection of the robot measure-
ment configurations. Both selections are mutually dependent.

The idea is to construct the polynomials to be orthogonal to each other at the
measurement points. Orthogonality of two polynomials §;,(n) and B,(n) at m,
measurement points means that

2 Bi1(m)B(m;) = 0 (5.182)

where m; < m (m is the total number of measurement points).
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The orthogonalization algorithm is carried in the following manner:

Given:

1. A set of ordered measurement data points (m;, An,), i=1,...,m
2. A family of multivariate ordered polynomials as in Example 3.

Then

Step 1: Pick up f, = 1.
Step 2: Let B,(n) be a linear combination of f, and a new term that is
introduced by muitiplying B, with one of the independent variables, say 1, .

Bi(m;) = 2o B + Bots (5.183)

Step 3: The undetermined coefficient «, in Equation 5.183 is chosen such that
Bo(m) and B, () are orthogonal to each other at n; and n,, as follows:

Bo(m1)B1(M1) + Bo(Mz)Bi(m2) = 0 (5.184)

Substitution of Bo(m,) = Bo(Mz) = 1, f1(N,) = % + 1Y, Bo(M2) = @ + g
into Equation 5.183 provides the unique solution for «:

7+ n?

; (5.185)

Uy =

Step 4: Let B,(n) be a linear combination of all previous polynomials, that is,
Bo(m) and B, (n) and a new term that is introduced by multiplying a previous
polynomial by one of the independent variables [maintaining a consistent
ordering of B;(n) as in Example 3].

Therefore, choosing a previous polynomial to still be f,, however, this
time multiplied by #,, we get

7V + g

) |
M+ Bona (5.186)

B(m) = o Bo — a, 2

Step 5: The parameters a,, «, are adjusted to ensure pairwise orthogonality
with respect to previous polynomials. That is, orthogonality of 8, and j,
at the points 1y, n,, and n;:

3
_;1 Bom;)B.(m)) =0 (5.187)

together with orthogonality of , and f, at the same three measurement
configurations.
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i B1(m;)B(m;) = 0 (5.188)

A unique solution («,, a,) results.
Next Steps: The algorithm continues in the same manner. For each new
measurement point a new polynomial is created, such that it is orthogonal
to every one of the previous polynomials

As a result of the orthogonalization algorithm, the matrix B’B becomes
diagonal.

A final improvement to the orthogonalizing algorithm is a normalizing of each
polynomial as it is obtained. This is accomplished by multiplying the poly-
nomial by a constant y, so that

% 2 Bi(m;) =1 (5.189)

The set of polynomials, in such a case, is said to be orthonormal and the BB
matrix becomes the identity matrix. An explicit least-squares solution (Equation
5.181) immediately results.

So far we assumed an arbitrary set of measurement points. The least-squares
solution is highly sensitive to the selection of data points. In other words, using
the resulting approximating polynomials (Equation 5.174) for inverse calibration
may exhibit different levels of error depending on the set of measurement points
that is used to construct the approximating polynomials. The use of a uniformly
spaced grid of measurement points, in the robot joint space, may turn out to be
~ highly suboptimal.

The problem of optimal spacing of measurement points is a classical numerical
analysis topic referred to in the literature under the title “Chebyshev polynomials”
(see for example Isaacson and Keller [9] or Fox and Parker [4]). Some of the
key ideas of the one-dimensional case of approximating a function f(x) by a
polynomial of degree n are outlined next. Extensions to multiple dimension, that
is, the fitting of multivariate polynomials to functions of several variables, are
straightforward. In other words, once it is understood how to space the data
points along one axis (in joint space), the same spacing strategy can be employed
independently along each of the other axes.

Let f(x) be an arbitrary continuous function of a one-dimensional variable
x. Suppose that we decide to approximate f(x) by a polynomial of degree n, p,(x),
with a leading coefficient 1. The degree of the polynomial # is a fixed preselected
parameter. The problem is to find the other n coefficients of p,(x) to minimize
the error defined as

A(f,pa) = 1f(X) = Pl o = max{|f(x) — p,(x)l, fora<x<b} (5190)

where [a,b] is the interval of interest of x. A polynomial P¥(x) that minimizes
d(f, p,)is the “best approximation” among all polynomials of degree of at most n.
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It was observed by the Russian mathematician Chebyshev that such a best
approximating polynomial is unique and the related error function f(x) — p*(x)
must attain the extreme values +d(f,p}), with alternate changes of sign, at
least n + 2 times in [a, b], including the end points of the interval. To get a
better understanding of why this is so, consider the important special case of
f(x) = 0. Suppose that g¥*(x) is another polynomial of degree n with leading
coefficient 1 that has a smaller extreme value, that is d(f,q¥) < d(f,p¥). The
difference p¥(x) — g;¥(x) is another polynomial of degree n — 1 that has alterna-
ting positive and negative values at n + 1 points at least, or in other words, it
has n zeros, which is impossible. Therefore ¢*(x) = p¥(x).

The most obvious functions with successively equal and opposite values are
the trigonometric functions sin 6 and cos 8, with equal and opposite values of
+1 at n+ 1 points in 0 < 6 < 7, including the end points. It is deduced that
the required unique best approximating polynomial in the special interval of
[a,b] = [—1,1], creates an error function that is a multiple of ¢,(x), where

t,(x) = cos(ncos ! x) (5.191)

_ t,(x)is known as the Chebyshev polynomial. We notice that the coefficient of x"
in t,(x) is 2"~. Therefore the best approximating polynomial p*(n) with a leading
- coefficient of 1 should have a related error function:

Fx) — pk(x) = 2"t (x) (5.192)
A simple change of variables
y=3[(b - a)x + (a + b)] (5.193)

converts the approximation of f(x) over —1 < x < 1 into a related approxima-
tion of g(y) over a < y <b, for arbitary intervals [a,b].

An obvious consequence of Equation 5.192 is that p¥(x), the best approximat-
ing polynomial of degree n, is actually equal to f(x), the function it approximates,
at n + 1 distinct point x,, ..., x,. These points correspond to the zeros of the
Chebyshev polynomial ¢,,(x).

For arbitrary continuous function f(x), the above is still not enough to
actually construct p¥(x). Some more insight can be obtained if f(x) happens to
have n + 1 continuous derivatives over the interval of interest [a,b]. In such a
case there exists n + 1 distinct points, x4, X4, ..., X, in [, b] such that

rg = = X = 1) (k= %) ey
fx) = p2x) = T FeNQ (5194

where f®*1(-) denotes the (n + 1)th derivative of f(x), and {(x) is a midpoint in
the interval [min(x, x,, ..., X,), max(x, Xq,...,X,)]-

The case £V = constant corresponds to the case where f(x) is a polynomial
of degree of at most n + 1. In this special case the error expressed in terms of
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Equation 5.194 can be minimized by choosing the points x,, X, ..., x, such that
the polynomial (x — x¢)(x — x,)**(x — x,) has the smallest possible maximum
absolute value in the interval [g, b]. It becomes obvious now why the particu-
lar case of f(x) =0 was said to be so important. In the robot calibration
problem, the functions f{n,,...,#n,) are not known explicitly. All is known is a
set of interpolation points (1, and the measured joint correction in each such
configuration).

The optimal spacing problem formulation can now be done as follows:

Given an interval [a, b] for x, find a set of interpolation points x4, x4, ..., X,
in the interval such that the maximum of the absolute value of |(x — x,)(x — x,)
-+ (x — x,)| in the interval is minimized.

The optimal solution x&, x¥, ..., x* is then used to define the measurement
points at which measurement readings f(x¥), f(x*), ..., f(x*) are taken and a
least-squares fit of a polynomial of degree n + 1 is performed.

The solution to the optimal spacing problem is readily given in terms of the
zeros of the Chebyshev polynomial. Thus:

1 2k +1 =
*=_ —_ .- . =
X2 2[(b oc)cos(n 1 2) +(a+ b):|, k=0,1,...,n (5.195)

One can then show that the minimal value of the largest deviation of [(x — x,)...
(x — x,)| from zero is 27"|0.5(b — a)|"*.

The effect of Chebyshev spacing is to place more points near the boundaries
of the interval of interest and fewer in the interior. Application of all these ideas
to robot calibration is not straightforward. By applying Chebyshev spacing in
the joint space as one should, the robot user is not left with a clear knowledge
of which part of the robot workspace has been calibrated. By applying Chebyshev
spacing in world coordinates, the optimality of the spacing algorithm, in the
sense explained above, is no longer assured. As an “ad hoc” solution, reported
by Shamma [12], Chebyshev spacing was performed in the world coordinates
that best suit the geometry of the individual manipulator to avoid unreachable
“pockets.” For a cartesian manipulator this would have involved spacing along
the XYZ axes. For the PUMA 560 simulations [12], spacing was performed in
cylindrical coordinates, as shown in Figure 5.4.

Example 4: Calibration of the First Three Degrees of Freedom of the PUMA
560 Robot (see Whitney and Shamma [11,12]).

The calibration procedure for the waist, shoulder, and elbow of the PUMA
560 robot can be summarized as follows:

Step 1: Define a region in the robot’s workspace and generate a set of training
points via Chebyshev spacing (see Figure 5.4.)

Step 2: Construct a set of orthonormal three variate polynomials in the
variables #,, ,, and 7.
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4

VAR AR,

Figure 5.4. Data points generated by Chebyshev spacing. Reprinted with permission of
MIT and the author [12].

Step 3: At the above training points find the required joint corrections. To
find the encoder corrections necessary to drive the manipulator to the
desired world coordinate position involves the following experimental
procedure:

1. Let the desired test point position be x{®, which corresponds to a joint
position vector n{™, according to the robot nominal inverse kine-
matics. Apply the command n{™, and measure the actual end point
location, x, using the measurement device.

2. Manually perturb the joints until the manipulator end point is in the
desired training point x(¥. Record the joint readings 0. Then Ay, =

(a) (n)

n N

Step 4: Solve for the coefficients that give the polynomials the best fit to the
data. There will be three such sets of coefficients, one set for each joint.

The procedure was applied to a simulated PUMA. Sixty-four data points were
generated. Hence, the dimension of the B matrix was 64 x 20. Chebyshev spacing
was performed in R®Z cylindrical coordinates with four points along each axis.
The ranges were as follows
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300 < R < 860 mm
0<d<90°
—500 < Z < 500 mm

which covers about a quarter of the manipulator’s workspace. In the simulated
nominal and actual models, accuracy errors were found in all the data points.
The average positioning error was 1.6 mm with standard deviation of 0.51 mm
and maximum difference of 2.5 mm. After calibration, the positioning error
between the actual robot model and the calibrated robot model reduced to an
average of 0.12 mm at the data points, with standard deviation of 0.06 mm and
maximum difference of 0.3 mm. In addition the calibration was also tested at 50
randomly selected points in the calibrated region with roughly similar accuracy
results.

Direct extension of the method presented for calibrating a 3 DOF manipulator
(N = 3) to the case of a general manipulator may be very cumbersome computa-
tionally. For instance, the use of third-order, six-variate polynomials requires 84

“terms (compared to 20 terms as shown in the example), thus requiring a very
large and probably impractical number of data points.

One may start by calibrating the first three degrees of freedom of the manipula-
tor, keeping the wrist joints locked in their zero positions. One cannot, however,
calibrate the wrist in the same manner, keeping the first three joints locked, since
the experimental procedure for finding the joint corrections may not apply in
this case. The desired wrist training positions may not be reachable when the
first three joints are locked and only the wrist joints are varied.

A procedure for wrist calibration, based on measurements of end point posi-
tion only is proposed in Shamma’s work [11, 12]. It is assumed that the robot’s
first three joints have already been calibrated. Thus, when a robot end effector
is commanded to go to a certain desired position and orientation represented by
the transformation X, and ends up at an actual location X,, the actual position
error, e, defined as

X, X, = [AR(;“ ‘(’;’] (5.196)

must depend only on the wrist joint values, if e, is measured with respect to a
cordinate frame at the desired end point location:

De, = e,(14,15, 1) (5.197)

The left superscript (T) indicated that e, is measured with respect to the tool
coordinate frame. The relationship between X, and X, is through a translation
transformation denoted as the “tool compensation transformation” (T,

X, = X{T, (5.198)
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Thus, the X YZ compensation translations are found from the fourth column of
X;'X,. For this, it is enough to measure only the positon of X, and orientation
may be ignored.

For the same values of the first three joints, the tool compensation transforma-
tion is found experimentally for different sets of wrist angles. One can now
construct three variate polynomials to approximate the compensation XYZ
translations to the wrist joint positions at a given end effector position.

Such polynomials need to be constructed at different values of the robot first
three joints.

5.4.2 Cerebellar Model Articulation Controller (CMAC)

As discussed in the previous sections, there are a number of different approaches
to solving the inverse kinematics problem for a robot manipulator. For a solution
to be useful for real time trajectory computations, it must be both accurate and
computationally efficient. Many of the algorithms described earlier have placed
a primary emphasis on accuracy and are practical only for off-line trajectory
generation. One approach to compromising between speed and accuracy would
be to divide the workspace of the robot into a number of discrete areas and then
use a numerical procedure to determine the inverse kinematic solution for each
area. These solutions would then be stored in nonvolatile memory and could be
quickly recalled by the robot controller. Unfortunately, this simple approach
requires a prohibitively large amount of memory. For example, consider a typical
six axis robot with a workspace of 30 x 30 x 30 in. If we assign a resolution of
0.1 in. to each Cartesian position coordinate and 1.2° on each orientation
coordinate, the memory required would be roughly 0.729 x 10> words. Clearly
this is far in excess of what is available with today’s technology. These large
memory requirements can possibly be reduced, however, by applying a technique
based on the concepts of a neural network. The cerebellar model articulation
controller (CMAC) was originally developed by James Albus [1,2] to model the
function of the cerebellar cortex of the brain, but its efficient use of memory
and property of generalization make it useful as a general purpose function
approximator.

5.4.2.1 Description of CMAC To clarify the description of CMAC, a
simple example will be developed. A pictorial representation of this two input
example is shown in Figure 5.5. The input space consists of a two-dimensional
surface, which may be represented with a Cartesian coordinate system XY. Any
input may be represented as a vector, s, such that

s=[X,Y]" (5.199)

It is important to note that the input space consists of discrete elements, meaning
that the input axes have a finite resolution. The accuracy of CMAC as a function
approximator is compromised by this discretization. On the other hand, finite
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Figure 5.5. An example of a CMAC workspace.

resolution is a reality for most robots due to hardware limitations and the CMAC
can be tailored to match this.

Basically, CMAC is a mapping that encodes an input vector into a set of
pointers that selects a set of weights from subtables. The selected weights are
then summed to generate the output vector. The encoding of the input vector is
accomplished with “quantizing functions” applied to each of the input axes.
In our example, four quantizing functions are used. Each quantizing function
is represented by the lines labeled k = 1 through k = 4 in Figure 5.5. Each
quantizing function is the encoder that points to one subtable. The subtables for
our example are illustrated in Figure 5.6. For example, given the input vector
s = [3,5]7, the weights selected from the subtables are the set (Bc, Ee, Hh, K1).
Each element of this set has a weight associated with it and the output is
calculated as the sum of each of these weights. This process for the input vector
s = [3,5]7 is illustrated in Table 5.8.

CMAC selects a unique set of weights for each input vector. Another input
vector that lies in the neighborhood of the first would map to a different set, but
would contain many weights selected by the first vector. This may be rephrased
by saying that points that are close together in the input space have output values
that are similar. This is the basis of the property known as “generalization.”

To set up a CMAC model for a particular problem, several elements of the
process must be specified. First, an appropriate resolution must be chosen for
the input space. This choice is based on the requirements of the particular
application. It must be remembered, however, that the finer the resolution of the
input space, the greater the memory requirement for the CMAC model. The
second choice is the number of quantizing functions that will be used. The
maximum allowable number of quantizing functions is equal to the number of
resolution blocks along one axis of the input space (R) minus one. The minimum
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Figure 5.6. Output subtables for the CMAC example problem.

number of quantizing functions is one. One quantizing function represents a
“one-to-one” mapping and uses the maximum amount of memory. The more
quantizing functions used, the less memory will be required. It seems reasonable
to assume that as the amount of required memory is decreased, the accuracy
of the CMAC output will degrade. It is, therefore, important to establish a
relationship between the number of quantizing functions (memory usage) and
CMAC accuracy. The final step in establishing a CMAC model is to determine
the weights that go in the subtables. Albus [1,2] proposed a “teaching” scheme
whereby the weights are determined iteratively by trial and error. This technique
is reviewed in the following paragraphs.

TABLE 5.8. Subtable Weights

Subtable Location Weight Value
1 Bc 11.5
2 Ee 25
3 Hh 25
4 Kl 17.6

Output 34.1
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5.4.2.2 CMAC and Learning So far, no mention has been made of where
the weights in the subtables come from. This is the crux of memory-based systems
such as CMAC. For the cerebellar cortex, the “weights” are thought to evolve
from past experience. In this light, Albus [1,2] proposed an iterative teaching
scheme for CMAC that could loosely be described as learning from experience
by reinforcement and punishment. This technique, which is analogous to a simple
control system, uses proportional feedback to correct an error in the output of
the system. When CMAC generates an output, it is compared to a “desired” or
correct output, which may be thought of as a reference. The difference between
these two values is the error, and this is used to correct the values in the subtables.
The weights are adjusted according to the size of this error signal. As proposed
by Albus, the error is equally divided among and algebraically added to the
weights that were used to generate the output.

A totally empty or blank CMAC can learn very quickly because of generaliza-
tion. An input vector will access a number of weights to generate an output, and
the same set of weights will be corrected by the error feedback mechanism.
Theoretically, therefore, only a few experiences are needed to teach CMAC to a
level where, in general, it will respond with a reasonable output across the entire
input space. This phenomenon will be illustrated in a later example.

Two experiences close together in the input space would teach a large number
of the same weights. In each case, the weights would be adjusted to reach zero
error for the input in question, while possibly adversely affecting the result for
the other input. Thus, the learning could very well be oscillatory. This tendency
toward oscillatory learning may be reduced by multiplying the correction during
each learning experience by some gain, g. The gain will modify the effect that
each learning experience has on the particular set of groups that is being taught.
The correction applied to each weight involved in a learning experience would
be given by

A=g [(Desued output) — (CMAC output):l (5.200)

Q

where A is the weight correction, g is the teaching gain, and Q is the number of
quantizing levels.

Learning can be a continuous process as it is not expensive in terms of time
if a “correct” or reference output is readily available. In this way, systems that
change slowly, due to wear, for example, could automatically remain accurate
without the need for recalibration.

5.4.2.3 An Example Using CMAC To investigate the application of
CMAC to the solution of the inverse kinematic equations for a robot manipula-
tor, a simple example will be investigated. A two link arm with revolute joints
having parallel axes and a planar workspace was used. This geometry is similar
to that of a SCARA robot and is illustrated in Figure 5.7. To avoid multiple
solutions, the joint angles are constrained to
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Figure 5.7. Two link robot in the CMAC example.

—90° < 0, <90° (5.201)
0°< 6, < 180° (5.202)
and the workspace is limited to
2" <x < 14" (5.203)
2<y< 14 (5.204)

This definition simplifies the application of CMAC by keeping the input space
square and excluding the region defined by the loci of points (x* + y?)!/?, at
which the functions for 6, and 6, become discontinuous.

The inverse kinematic solution for this mechanism is easily determined and
may be written

6, = tan"*(y/x) — cos 1[(r* + 1Z — 13)/(2rl})] (5.205)
8, = cos'[(* — 12 — 2)/1,1,)] (5.206)

where r = (x* + y?)'/2
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From the point of view of CMAC, the problem is a two-input, two-output
mapping where inputs x and y range from 2 to 12.9. The input axes were divided
into 120 resolution units 0.1 in. wide, so that the CMAC input variables could
be expressed as integers from 0 to 119. These discrete CMAC input variables, iX
and iY, may be related to the cartesian variables by the equations

iX = nint[10(x — 2)] (5.207)
1Y = nint[10(y — 2)] (5.208)

where “nint” rounds a rational number to the nearest integer.
With this scheme for specifying the input vector, the mapping from input space
to output tables may be expressed as follows:

xM = int[(iX + Q — K)/Q] + 1 (5.209)
yM = int[(iY + Q — K)/Q] + 1 (5.210)

where “int” represents integer truncation and where xM and yM give the location
of the weight to be used in the output subtable K. The variable xM represents
the row number starting from the bottom row and yM is the column number
starting from the left column.

The choice for Q, the number of quantizing functions, is arbitrary and was set
at 10. This results in output subtables of size 12 x 12 and a memory requirement
of 1440 words for each output variable. A one to one mapping for the same
problem would require 14,400 words. Thus, the savings in memory is significant,
with CMAC requiring only 10%; of the memory required for a direct table lookup.

The outputs of the CMAC were calculated as follows:

Q
;=) WilxM,yM), i=1,2 (5.211)
K=1

where Wi(xM, yM) is the weight in subtable K pointed to by xM and yM. It
should be noted that there will be a different set of weights for each output, 6,.
Since the closed form solution for the inverse kinematic equations exists, this was
used to provide the reference output for teaching the CMAC. Only one output,
0,, will be examined although both were taught. The reasons for this are that 6,
is the more complicated function of x and y, and, as it turned out, 6, has worse
errors than 6, when computed by CMAC. Lastly, as a function of two variables
can be viewed as a plot, graphs are used to study the trends in teaching.

A few preliminary tests were made to examine the response of CMAC to
teaching. Starting with a set of blank weight tables, the system was taught the
functions for 6, and 0, at a few points distributed evenly throughout the input
space. Figures 5.8 through 5.11 show how rapidly 0, approached the shape of
the desired function, although the absolute errors are quite high. This set of
results is representative of many others that indicate that CMAC is potentially
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X-axis is normalized to 11.9
Y-gxis is normalized to 11.9
7-axis is normalized to 41.97
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Figure 5.8. Plot of analytical surface for 6, as a function of X and Y.

a viable technique for solution of the inverse kinematic equations, if the error
can be brought to within an acceptable bound.

In an effort to reduce the error, a random number generator was used to
compute a set of input vectors to be used both as teach and test points for CMAC.
In all the cases run, the teaching was considered successful when the CMAC was
able to compute 100 consecutive answers for 6, and 6, that were both within a
preset error tolerance. The seed for the random number generator was kept the
same so as to provide identical learning histories, with a maximum of 500,000
points being taught for all cases.

Two series of tests were conducted. In the first, the teach gain, g, was varied
from 0.1 to 2.0 while convergence to an error tolerance of 1.0° was observed.
Figure 5.12 shows that the fastest convergence occurs for teach gains in the range
of 1.0 to 1.3. For g < 1, the system reacts sluggishly and appears to learn very
slowly. For g > 1.3, the learning appears to be oscillatory, which also slows
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Figure 5.9. 6, surface generated by CMAC after being taught at 25 locations.

down the learning experience. Convergence did not occur within 500,000 experi-
ences for g > 2.0.

The second series of tests were run with the above results in mind. The teach
gain was set at 1.2 and the number of experiences required to reach a certain
error level was recorded. Figure 5.13 is a plot of these data and illustrates that
as the error tolerance decreases, the number of experiences required to meet the
tolerance increases asymptotically. Thus, we would expect that with infinite
teaching, the CMAC will converge to some minimum error, which will not be
zero.

It is important to note that errors in the output will arise from two basic
sources. First there is an error due to the quantization of the input space. This
component of the error will be referred to as discretization error. There is also
some error that is inherent in the CMAC process of locating and summing
weights, which we will refer to as CMAC error. In other words, if the actual
relationship between the input and output was discrete and there were no
discretization error, the CMAC model would still not yield a perfect relationship.
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Figure 5.10. 0, surface generated by CMAC after being taught at 114 locations.

In an effort to examine the relative magnitude of the quantization error and
the CMAC error, the following test was run. The maximum error for 6,, given
a CMAC error in 8,, that could be obtained while still keeping the linkage tip
inside a given input element was determined at a number of points distributed
over the input space. In other words, the maximum possible discretization error
in 8, was determined given the CMAC error in 8, for that input. Figure 5.14 is
an illustration of this maximum discretization error throughout the input space.
This plot shows only the maximum positive error. A similar plot exists for the
maximum negative error. It can be seen in Figure 5.14 that, for the most part,
the discretization error seems to be the same order of magnitude as the errors
inherent to CMAC. In this light, CMAC seems to be successful in this application.

CMAC seems to be a viable approximation method with reasonable accuracy
for the problem examined. The accuracy can be improved by increasing the
resolution of the workspace, which would require more memory. The above
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Figure 5.11. 0, surface generated by CMAC after being taught at 625 locations.
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Figure 5.13. Accuracy as a function of number of points taught.
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example indicates that an approach such as CMAC can be useful for robots
having only a few degrees of freedom. Its utility for more complicated geometries
or for higher resolutions is still an open question. Although topics such as
automated or one-step teaching and higher order CMAC:s are being investigated,
the ultimate utility of this approach is still very much in debate.
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5.5 CONCLUSION

This chapter presented a comprehensive treatment of model-based kinematic
accuracy compensation methods down to the smallest algorithmic details. The
methods vary in their computational complexity starting from a simplistic in-
verse Jacobian technique to a more complex optimal control strategy.

In comparison to model-based compensation methods, which have attained
a significant level of maturity, nonparametric methods, which are essential to the
addressing of nongeometric accuracy errors, are still at an early stage of develop-
ment. More development work is required before the applicability of these
methods will become well understood. This chapter presented an introduction
to the key ideas behind Shamma and Whitney’s inverse calibration methods that
use polynomial approximation functions. The use of CMAC was also demon-
strated for the inverse kinematics of a simple robot.

The actual implementation of the accuracy compensation phase may vary
from one robot to another depending on features of the machine control software.
Not every commercially available robot controller or control language allows
the modification of taught or preprogrammed joint commands. The same is true
about the robot forward or inverse kinematic models implemented as part of the
robot control software. The control software often consists only of the nominal
kinematic model. Calibration awareness when originally designing the manipu-
lator controller is important. A means should be included to allow the robot user
to adjust the parameters in the kinematic model and to implement user defined
accuracy compensation such as has been described in this chapter. Calibration
compensation awareness should also be exercised by robot users when pro-
gramming an application through implementation of joint level safety margins
near joint travel boundaries and robot singularity zones.
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CHAPTER 6

CASE STUDY

In this chapter, we will discuss the calibration of a PUMA 560 robot in a
laboratory environment. This robot is illustrated in Figure 6.1. The purpose of
this case study is to demonstrate the application of the techniques discussed in
Chapters 1 through 5 to an actual manipulator. We will begin this study by
developing a model for the robot. Both the modified Denavit—Hartenberg (DH)
and the zero reference position approaches will be demonstrated. The measure-
ment of pose data will then be described. The measurement system used is a small
coordinate measuring machine. The acquired pose data will then be applied in
a nonlinear least-squares identification procedure to determine the optimal set
of model parameters for both models being used. To assist in comparison of the
two models, the parameters identified for the zero reference position model will
be converted to the DH convention. The chapter concludes with an assessment
of the results of the calibration.

6.1 MODELING

The obvious first step in the modeling process is the selection of a valid model.
As long as the chosen model meets the criteria of completeness, proportionality,
and equivalence, the selection of a model is rather arbitrary. To illustrate this
idea, we will present both the modified DH model and the zero reference position
model for the robot under study.

6.1.1 Modified Denavit-Hartenberg Model

The model development is begun by defining an appropriate set of coordinate
systems. A workspace coordinate system or base frame is defined first. This frame

266
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Figure 6.1. PUMA 560 robot.

should be located with only the constraints of the working environment in mind.
In this example, the measurement device is a small coordinate measuring ma-
chine (CMM) located along one boundary of the workspace. The CMM uses a
reference cube to define the origin of the workspace and, for consistency, the
workspace frame is located so that its origin is defined by the reference cube and
the coordinate axes are aligned with the axes of the CMM. A reading from the
CMM, therefore, locates a point in the workspace coordinate system. This frame
will be referred to as frame B and is illustrated in Figure 6.2. Frames 0 through
5 are assigned next according to the modified DH convention. The only parallel
axes are joint axes 2 and 3. The location of all frames, therefore, is determined
by the common normal between the axes as defined by the standard DH proce-
dure except for frame 2, which is located according to the modified DH conven-
tion described in Chapter 2. As also described in Chapter 2, it is important that
the end effector coordinate system be arbitrarily located. This means that six
parameters must be used to relate coordinate systems 5 and 6.
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Figure 6.2. Coordinate frame assignment.

In this model, therefore, there are three distinct forms for the link transforma-
tion matrices: the standard DH, the modified DH, and a full six parameter
transform. For convenience, we will refer to the standard DH as a Type 1
transformation. As described in Chapter 2, this matrix has four parameters
(r:, l;, 2, 0,) and is written as follows

cos; —sinf,cosa; sinf;sina; I cosb,
sinf cosf;cosa; —cosf;sina; Isin,

A= ) 6.1)
0 sina cosa r;

0 0 0 1
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TABLE 6.1 Nominal Parameters for PUMA 560

Parameter Number

Transformation  Type 1 2 3 4 5 6
B-0 1 32878 —15591  —90.000 0.000 — —
0-1 1 14.681 —0.000 —9%0.000 0.000 — —
1-2 2 17.000 0.000 0.000 0.000 — —
23 1 5.870 —0.800 90.000  0.000 — —
34 1 17.050 0.000 —90.000 0.000 — —
45 1 0.000 0.000 90.000  0.000 — —
596 3 0.000 0.000 2213  0.000 0.000 90.000

Since all of the joints of a PUMA 560 are revolute, the parameter 6, is the joint
variable for joint i and is specified by reading the joint transducer at each robot
pose. In this example, however, we will assume that there is a possibly significant
joint offset, 60;, on each joint and this will be included in the model. At each pose,
0, will be given by

0, = O, + 56, (6.2)

where @, is the value for the joint displacement given by the PUMA controller
and 60, is the constant joint offset that is to be identified. The four variables to
be determined for the Type 1 matrix, therefore, are r;, [;, o;, and 66;. The values
of these parameters for a perfect or nominal PUMA 560 are given in Table 6.1.
All of the transformations listed as Type 1 have four parameters as follows:

Parameter Type 1
Number Parameter Units
1 d; Inches
2 l; Inches
3 o; Degrees
4 60, Degrees

As mentioned earlier, joints 2 and 3 are very nearly parallel and the modified
DH convention should be applied. We will refer to this as a Type 2 transforma-
tion. As described in Chapter 2, this transformation also consists of four parame-
ters (r;, &;, B;, and 6,). The transformation matrix is given by

—50t38P5505 + cB3cO; —cass0;  saycfysO; + sPachy 1,0,
Sot38P3¢05 + cfys0 cozcly  —sazcfzcls + sfysl; 1,50,
3 =
—ca3sPs sotg caycPs 0
0 0 0 1

(6.3)
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where sa represents sin« and so on. The variable 6; is the joint variable in this
case also and, as before, we will assign a constant offset, 6, to be identified. The
nominal values for the PUMA 560 are listed for this transformation in Table 6.1
as well. The parameters for a Type 2 transformation are as follows:

Parameter Type 1
Number Parameter Units
1 Iy Inches
2 o3 Degrees
3 Bs Degrees
4 60, Degrees

The final transformation relates coordinate frame 6 to coordinate frame 5.
Since we do not wish to place any restrictions on the location of the end effector
coordinate frame (frame 6), the transformation relating frames 5 and 6 must
include six independent parameters. We will refer to this final transformation as
a Type 3 transformation. This transformation is constructed from the following
series of motions:

As = R(z,0,)R(y, 6,)R(x, 6,)T(dx,0,0)T(0,dy, 0)T(0, 0, dz) 6.4)

When combined, the rotations and translations expressed in Equation 6.4 may
be expressed as

c,c0, —cO,s0, + 50,50,c0, c0.50,c0, + 50,50, a4

cO,s0, cb.cO, + s0,.s6,s0, cO.s0,s0,—s0.c0, a
Ae=| " ’ ’ HEE

—s0, 50,.c0, co,ch, asq

0 0 0 1

where
a4 = dzc,56,c0, + dzs6,s0, — dycl,s0, + dys0,s6,c6, + dxcb,c, (6.6)
ay4 = dzc,50,50, — dzsb,c, + dycl,c0, + dys0,s0,s0, + dxcO,s0, (6.7)
a34 = dzc,cO, + dysf.c0, — dxs0, (6.8)
As indicated above, there are six parameters in the final transformation. Three
of the parameters, 0,, 0,, and 6,, describe the relative orientation of the two frames
and three parameters, dx, dy, and dz, describe the position of the origin of frame

6 with respect to frame 5. The nominal values of these parameters of the PUMA
560 are given in Table 6.1. The parameter numbers are as follows.
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Parameter Type 1

Number Parameter Units
1 dx Inches
2 dy Inches
3 dz Inches
4 0, Degrees
5 o, Degrees
6 0, Degrees

This completes the modified DH model for the PUMA manipulator. As
demonstrated in Table 6.1, the model has a total of 30 parameters. According to
the formula for completeness given in Chapter 2, this represents a complete model
and since we have used the modified DH approach, the model will exhibit
proportionality. It is important to note that this model does not include any
nongeometric effects such as link deflection or gear backlash. If the accuracy
enhancement provided by the model described above is not sufficient for the
intended application, it may be desirable to add some nongeometric components
to the model and attempt the calibration again.

6.1.2 Zero Reference Position Model

An alternative approach to modeling the PUMA manipulator is to use the zero
reference position method. As described in Chapter 2, this approach consists of
identifying a unit vector, w;, and a locating point, p;, for each joint axis, i. This
procedure is begun by placing the robot in the configuration in which each of
the joint displacements is zero. This “zero position” will serve as the reference
position from which all of the robot motions will be measured. Figure 6.3 is an
illustration of the PUMA manipulator in the zero position. While the zero
position may be defined arbitrarily, it is convenient in this example to use the
same zero position as defined by the DH procedure in the preceeding section.

Once a zero position has been determined, the workspace coordinate system
must be defined. The position and orientation of this coordinate system are
arbitrary and are usually located so as to meet the needs of the robot task. As
described in the previous section, the CMM that will be used for data acquisition
uses a reference cube to define the origin of its coordinate system. We will,
therefore, define the CMM coordinate system to also be the workspace co-
ordinate system. The location of the workspace coordinate system is illustrated
in Figure 6.3.

The vectors u; and p; may now be defined. Since the joint axes of the perfect
or nominal robot are aligned with the axes of the workspace coordinate system
when the robot is in the zero position, the values for u; and p; are easily specificed.
Table 6.2 lists the values of w; and p; for the nominal robot. In the table, the vector
p is given in inches and u is dimensionless.
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Figure 6.3. Zero reference position method.

TABLE 6.2. Zero Reference Position Parameters for Nominal PUMA

Joint u, u, u, Py p, D.
1 0 1 0 —15.00 14.70 33.60
2 0 0 -1 —15.00 14.70 27.73
3 0 0 —1 2.00 14.70 27.73
4 0 1 0 1.20 31.75 27.73
5 0 0 -1 1.20 31.75 27.73
6 0 1 0 1.20 31.75 27.73
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Since we are interested in variations of the actual robot from the nominal, a
set of variables must now be defined that reflect these variations. Variations in
the points p; that locate the joint axes in space are described by adding small
displacements in orthogonal directions that are parallel to the axis of motion.
For example, the axis of joint 1 is roughly parallel to the Y coordinate axis.
Variations in location of this axis may be described by adding a quantity, p,, in
the X direction and a quantity, p,, in the Z direction. The vector p, may then be
expressed as

P, = (prx — 15.00)i + 14.70j + (p,, + 33.60)k (6.9)

where i, j, and k are unit vectors in the X, Y, and Z directions. Variations in the
orientation of u may be expressed by specifying components of the vector along
the coordinates axes that are perpendicular to the nominal vector. Using this
approach, u; would be expressed as

u =i+ 1 —ud —udj+uk (6.10)

Extending this approach to all of the joint axes, the zero reference position
parameters for the actual robot may be expressed in terms of a set of unknown
values that is to be determined through the calibration process. These parameters
are given in Table 6.3.

As indicated in Table 6.3, there are 24 parameters associated with the vectors
u; and p;. Since a complete model for the PUMA will contain 30 parameters, we
must still identify six model parameters. As discussed in Chapter 2, these param-
eters are associated with the zero position of the manipulator. We have the
choice of establishing the desired zero position by specifying the T, matrix and
choosing six joint offsets as the additional unknowns or letting the six parameters
that define T, be the unknowns and have no joint offsets. As was stated in earlier
chapters, one of the goals of the calibration process is to ensure that the zero
position is independent of robot geometry and the same for all robots of a given
type. For this reason, we will choose to assign T, and let the additional six
unknowns be the joint offsets. In this example the value chosen for Ty is

0 -1 0 12
0 0 1 339
T, = 6.11)
~1 0 0 2773
0 00 1

where the upper left 3 x 3 partition indicates the desired orientation of the end
effector coordinate system in the zero position and the fourth column represents
the location of the origin. The 30 model parameters, therefore, are the 12 elements
of the vectors u;, 12 elements of the vector p;, and the 6 joint offests as given in
Equation 6.2.
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Figure 6.4. Experimental setup for measurement and evaluation.

6.2 MEASUREMENT

The experimental set-up consists of a PUMA 560 robot and a Mitutoyo Model
CX-D2 coordinate measuring machine (CMM) as illustrated in Figure 6.4. The
working volume of the CMM is a parallelpiped measuring 400 mm in width, 500
mm in length, and 800 mm in height. Clearly, this does not cover the entire
workspace of the PUMA manipulator and all measurements are restricted to the
intersection of the two working volumes. The CMM has a repeatability of 0.01
mm and a published accuracy of approximately 0.1 mm. Measurements are made
by manually moving the CMM one axis at a time until the touch probe mounted
on the CMM contacts an object to be measured. When the touch probe is
triggered, the X, Y, and Z coordinates of the probe are recorded on the CMM
display and stored in an internal buffer so that they may be transferred to a
recording device.

An IBM Industrial Personal Computer is used to record the manipulator
configuration, collect the CMM data, and perform some data reduction. Figure
6.5 illustrates the relationship of the various devices that comprise the experi-
mental set-up. In addition to the active devices, several fixtures are used in the
measurement process. The origin of the workspace coordinate system is defined
by one corner of a cube that is securely fixed in the working volume of the CMM.
The orientation of the workspace coordinate system is defined by the orientation
of the axes of the CMM. The CMM has a setting which allows the “zero” position
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Figure 6.5. Schematic of measurement equipment.

of any axis to be established when the touch probe is triggered. The origin of the
workspace coordinate system is established by successively touching the three
faces of the cube at the beginning of each data collection session. Several experi-
ments to test the repeatability of this approach were conducted. Repeated mea-
surements of the “zero” position were made over a period of several hours and
the origin was found to vary no more than one resolution unit (0.01 mm) in any
reading and to have a mean value of 0.00 mm. The other fixture used in the
measurement process is the end effector, which is illustrated in Figure 6.6. As
shown in the figure, the end effector consists of five tooling balls roughly posi-
tioned along the coordinates axes of the end effector coordinate system. The end
effector is equipped with five tooling balls so that at least three balls will always
be accessible to the CMM for any end effector pose that is within the working
volume of the CMM. After construction, the end effector was calibrated by using
the CMM to accurately determine the location of the center of each tooling ball
in the end effector coordinate system. In addition, a face plate for the manipulator
was designed with two dowel pins to allow removal and replacement of the
end effector without significantly changing the relationship between the end
effector and the robot. It is important to note that such a repeatable and
well-characterized tooling interface is vital if the results of a calibration are to
be useful for a number of different end effectors.

Given the various components described above, measurement of a robot pose
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End Effector Coordinate

System

Figure 6.6. End effector.

is accomplished in the following manner. At the beginning of the measurement
process, the PC prompts the operator to “zero” the CMM and asks the number
of measurements to be used on each tooling ball. Since the location of the tooling
ball center must be computed, a number of measurements on the surface of the
ball must be made to determine the location of the ball center. Obviously, a
minimum of three measurements must be made. More measurements, however,
will tend to minimize the influence of noise on the estimated ball position. Using
a least squares approach, the position of the ball center can be determined for
as many as 10 measurements. For the data reported here, four measurements
were used to locate each ball center. Once the number of measurements per ball
has been entered, the measurement process is begun. The PC prompts the
operator to move the robot to a new pose. When this is accomplished, the robot
joint angles are automatically recorded in the PC and the operator is asked which
ball will be measured next. If the operator wishes to begin with ball 2, he enters
this number and then moves the CMM so that the touch probe triggers on four
points on the surface of ball 2. The location of the center of ball 2 in the workspace
coordinate system is then estimated and stored as X,,, where the w subscript
denotes the coordinate frame and the b2 represents the ball number. The process
is continued until three balls have been measured. This information is then used
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to determine the end effector pose as given by the transformation matrix T,,,. We
will use the symbol T,, to denote the homogeneous transformation from co-
ordinate system a to coordinate system b. The following relationship may be
written for each ball measured.

Xpiw = Twexbie (6'12)

where the subscript e denotes the end effector coordinate system. Recall that the
values of x,;, were recorded during the end effector calibration. As an example,
assume that measurements were made for balls 2, 3, and 5. The location of a
fictional fourth ball may be defined as

Xe = (Xp3 — Xp2) X (Xps — Xp2) + Xp2 (6.13)

Since this definition of x, will be valid in any coordinate system, the following
relationship may be written.

[(Xo2ws Xb3ws Xbsws Xbtw] = Twe[Xb2es Xb3er Xoser Xote ] (6.14)

which yields

Tue = [Xb2w> Xb3w> Xb5w>Xotw] [Xb2e> Xb3es Xbser Xore ] | (6.15)

After the end effector pose is determined from Equation 6.15, it is stored in a
data file with the joint displacements. The measurement process is continued
until a predetermined number of poses have been acquired.

To determine the repeatability of the pose estimation process described above,
the manipulator was placed in an arbitrary pose in the approximate center of
the CMM workspace. The pose was measured 50 times and variations of the
estimated pose were examined. For each measured pose, the following matrix
was determined

ATest = T;ell Twei (616)
where T, is the first measured pose and T,.; is the ith measured pose. The
matrix Ar,,, represents the small variation between the ith and the first pose.

Treating At as a differential transformation, the following characterization is
valid

1 -8 5 d,
A = L4 6.17)
Test — _ 5y 6x 1 i .
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where the §; values represent differential rotations about the coordinate axes and
the d; values are small displacements along the coordinate axes. Since the first
pose was chosen as the reference values, the mean of the distribution of the
differential motions should not be meaningful, but the variance indicates the
repeatability of the pose estimation procedure. Figures 6.7 and 6.8 show the
distributions of &, and d. Aside from the mean values, the forms of the distribu-
tion for all of the rotation parameters were similar as were the distributions for
the displacements. Table 6.4 gives the standard deviation for each of the variables.
As shown in the table, the measurement system has a position repeatability with
a standard deviation of about 0.05 mm in every direction and an orientation
repeatability with a standard deviation of 0.0006 mm in each direction. Given
the repeatability of the robot and the design of the CMM, these numbers are
quite acceptable.

. While repeatability of the measurement system is important, the key perfor-
mance measure is accuracy. Unfortunately, in this case study, no more precise
system was available with which to study the accuracy of the CMM. The
published accuracy of the system is 0.1 mm over the entire working volume,
which is suitable for the calibration model proposed.

Using the measurement system described above, two data sets containing 50
poses each were collected. The poses were collected by roughly positioning the
origin of the end effector coordinate system on the points ofa 3 x 2 x 2 grid in
the workspace of the CMM. The 12 points of this grid are illustrated in Figure
6.9. At each point, pose measurements were taken with the manipulator in the
“left arm,” “right arm,” “elbow up,” and “elbow down” configurations as illus-
trated in Figure 6.10. The orientation of the end effector was varied randomly
by the operator so that a range of different configurations was measured in each
data set. The data were acquired in this manner so as to ensure that each joint
moved through as large a range as possible during the measurement process.
Since we are attempting to identify the position and orientation of the revolute
axes, each joint must be rotated through a range that is large enough to ensure
proper identification of the axis. Assume, for example, that a revolute joint
undergoes three rotations of 5° and that the end effector location is measured
after each rotation. As isillustrated in Figure 6.11, the measured points are nearly
colinear and any small measurement error can significantly effect the estimated
position of the rotation axis. If, however, each rotation is 120°, the measured
points form a circle and measurement errors have much less effect.

The two data sets were collected by manually moving the CMM to measure
the end effector locations and about 4 hr were required to acquire one set of 50
poses. Although the data proved to be suitable for robot calibration, the manual
approach to data acquisition was tedious and time consuming. An automated
approach based on one of the systems described in Chapter 3 would be much
more desirable in a production rather than a laboratory environment.
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TABLE 64. Estimated Standard Deviations of the
Measurement Errors

Variable Standard Deviation
Oy 0.000506 (radians)
d, 0.000592 (radians)
0, 0.000621 (radians)
d, 0.05024 (mm)
d, 0.04364 (mm)
d, 0.05654 (mm)

Figure 6.9. Mcasurement grid for data acquisition.

6.3 IDENTIFICATION

Having developed two suitable models and acquired several data sets, we may
now proceed to the identification of the model parameters. Although most of the
techniques described in Chapter 4 would be suitable for this process, a gradient
based Levenberg-Marquardt algorithm (Section 4.4.2) was chosen. This particu-
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Figure 6.10. Measurement configurations.

lar algorithm was chosen primarily on the basis of ease of use. As described in
Chapter 4, a FORTRAN subroutine that executes this algorithm is available in
the IMSL Library. To implement this algorithm, therefore, one needs only to
develop an associated subroutine that computes a performance index based on
the current estimate of the model parameters. The ISML routine (ZXSSQ)
numerically estimates a gradient and generates an improved estimate of the
parameters until a convergence criterion is reached. Since there are 30 model
parameters, the estimation of the gradient causes this algorithm to be quite slow.
Since deviation of an analytical gradient for either model is a tedious and
time-consuming process, it was decided to use the numerical procedure. Again,
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Figure 6.11. Effect of measurement error on axis location.

since speed is not of paramount importance in a laboratory environment, it was
decided that the numerical approach would suffice. If a calibration procedure is
intended to be part of a manufacturing process or the final phase of robot
construction, a faster method for both measurement and identification must be
used. The measurement process may be speeded up by use of an automated and,
hence, more expensive data acquisition system. The identification algorithm may
also be enhanced by including an analytical expression for the identification
Jacobian or the gradient. As mentioned above, derivation of the Jacobian or
gradient is a time-consuming process. If, however, the application needs dictate
a fast identification step, this price must be paid.
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Figure 6.12. Identification algorithm.

6.3.1 Identification Algorithm

A schematic of the identification algorithm is given in Figure 6.12. As shown in
the figure, the algorithm consists of three main components. The first component
is the entry point in the program where the measured data are read in, the initial
values of the model are defined, and the various parameters required by the
identification subroutine are initialized. The second primary component is the
identification subroutine ZXSSQ. This subroutine iteratively estimates the gra-
dient and uses it to produce an updated approximation of the model parameters.
The process is continued until one of several convergence criteria is met. The
final component is the subroutine that takes the current estimate of the model
parameters and computes an error between the model prediction and the mea-
sured data. This error is used by ZXSSQ to determine both the gradient and a
performance index. Each of these components will be discussed in more detail in
the following paragraphs.

The entry point or “main program” for the identification step serves to
initialize the necessary variables. Figure 6.13 is a more detailed flowchart of this
part of the program and a complete source listing is given in Appendix A. As
illustrated in the figure, the first action is to open the measurement data file and
read in the poses and associated joint displacements. Next, the parameters that
are passed to subroutine ZXSSQ are initalized. This includes the vector of
changes to the model parameters. Since we wish to use the nominal model as the
initial guess, the vector, x, containing the changes to the model parameters is
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opportunity to converge, this is set to 1000 iterations. The argument iopt specifies
the particular version of the algorithm that is to be used. This is set to 0 indicating
Brown’s algorithm without strict descent. The parameter parm is a vector used
if iopt is set to 2. In this example, therefore, all four elements of parm are set to
0. The vector x has 30 elements that are initially set to 0. On return, this vector
contains the modifications to the model coefficients. The argument ssq is returned
with the sum of the squared errors of all the poses using the model coefficients
that caused the algorithm to meet the convergence criterion. The parameter f is
a vector with m (300) elements that is returned with the errors between the
predicted and measured pose components computed with the final values of the
model coefficients. The m (300) by n (30) array xjac is returned with an estimate
of the Jacobian. The arguments ixjac, xjtj, and work indicate the specified
dimension of xjac and provide work areas for the subroutine. The final two
arguments, infer and ier, return indications as to which convergence criterion
was used and indicate any errors that may have occured.

The final component of the identification algorithm is the subroutine that
takes the current estimates of the model parameters and determines the errors
between the predicted and the measured poses. In this example, the subroutine
is named PIndex. A flowchart of PIndex is given in Figure 6.14. The subroutine
receives the parameters x, m, and n from ZXSSQ and returns the vector f. f is
the vector of errors between the current pose estimates and the measured poses.
As described above, each of the 50 poses will contain three position and three
orientation errors. The dimension of f, therefore, is 300. The first action in this
subroutine is to use the current model coefficient modifications stored in the
vector x to update the model parameters. This is accomplished by calling sub-
routine Par. This subroutine uses the information in x to modify the matrix
Param that contains the current estimate of the model parameters. Since we have
two different models, there are two different implementations of Par and Param.
Both of these are given in Appendix A. Once the coefficients have been updated,
a loop is entered where the current model parameters are used to estimate the
pose for each data collection configuration. This is accomplished by calling
Forward, which computes the forward kinematic model. Again, there are two
versions of Forward, one for each model being used. The subroutine Forward
returns a homogeneous transformation matrix, Tr, which describes the estimated
pose. This matrix is inverted and multiplied by the measured pose, Tm, to obtain
a differential error matrix, Delta. The six components of Delta representing the
position and orientation error are added to the total error vector, f, and the loop
is continued. Since the error between the estimated and measured pose should
be small, the product of the inverse of the estimated pose and the measured pose
should have the following form:

1 —0z by dx
— oz 1 —éx dy 618
r 'Tm ~ .
-0y Ox 1 dz (6.18)

0 0 0 1
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Plndex

Receive x(i)
from ZXSSQ

!

Call par()
to
initialize param(i, j)

Do 1
to
Npose
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!

Call forward
to
compute Tr{i, )

!

Call matinv
to
invert Tr(i,j) —>tri(i,)

i
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to
compute
delta = Tri() Tm()

|

f() = Components of delta

Return

Figure 6.14. Subroutine PIndex.

The orientation errors, therefore, are given by elements [1,2], [1,3], and [2, 3]
and the position errors are given by [1,4], [2,4], and [3, 4]. These errors will be
squared so the sign is unimportant. When the loop has completed, the current
coefficient vector, x, is printed out to indicate the progress of the algorithm.

6.3.2 Identification Results—Modified DH Model

The modified Denavit—Hartenberg model was used to compute the forward
kinematics in the algorithm described above for each of the acquired data sets.
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TABLE 6.5. Modified DH Parameters from Data File 1

1 33.632 —15.022 —90.121 0.086 — —
1 14.047 —0.000 —89.981 1.962 — —
2 17.038 0.062 —0354 —0.109 - —
1 5.939 —0.807 90.397 0.735 — —
1 17.055 0.005 —90.025 —0.512 — —
1 —0.015 —0.004 89.986 —1.443 — —
3 —0.001 0.024 2.211 —0.019 0.140 87.901

TABLE 6.6. Modified DH Parameters from Data File 2

1 33.635 —15.021 —90.132 0.103 — —
1 14.048 0.001 —89.974 1.959 — -
2 17.034 0.069 —0.337 —0.098 — —
1 5915 —0.796 90.310 0.691 — —
1 17.054 0.003 —89.978 —0.527 — —
1 —0.014 —0.005 89.983 —1.442 — —
3 —0.009 0.020 2212 —0.006 0.208 87.907

The algorithm met the convergence criterion for each data set and the results are
given in Tables 6.5 and 6.6.

As shown in the tables, each of the data sets produced approximately the same
modified parameters. It is interesting to note that although there is only a slight
difference between the modified parameters, there is a significant difference
between the modified and the nominal parameters.

6.3.3 Identification Results-——Zero Reference Position Model

The zero reference model was also used to compute the forward kinematics in
the algorithm described above. The algorithm met the convergence criterion for
each data set and the results are displayed in Tables 6.7 and 6.8.

The tables show that both data sets produced very similar parameter sets with
one significant exception. The joint offsets for joints 4 and 6 from data set 1 are

TABLE 6.7. Zero Reference Position Parameters from Data File 1

Joint u, u, u, Dy Py D,
1 —0.001 1.000 —0.002 —15.044 14.70 33.601
2 —-0.003 —0.002 —1.000 —15.063 14.014 27.73
3 —0.010 —0.001 —1.000 1.926 14.690 27.73
4 0.006 1.000 0.006 1.229 31.75 27.716
5 0.407 0.002 —0.913 1.228 31.752 27.73
6 0.000 1.000 0.002 1.224 31.75 27.729

Joint 1 2 3 4 5 6

Offset 1.773 2.061 —1.889 24.054 —1.040 —26.122
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TABLE 6.8. Zero Reference Position Parameters from Data File 2

Joint U, u, u, j Py D,
1 -0.002 1.000 —0.002 —15.048 14.70 33.601
2 —0.004 —0.002 —1.000 —15.067 14.010 27.73
3 —0.010 —0.001 —1.000 1.919 14.691 27.73
4 0.006 1.000 0.004 1.224 31.75 27.707
5 0.158 0.004 —0.987 1.224 31.751 27.73
6 0.000 1.000 0.004 1.220 31.75 27.721

Joint 1 2 3 4 5 6

Offset 1.747 2.073 —1.921 9.138 —1.104 —11.209

distinctly different from those produced by data set 2. If we observe more closely,
however, we see that although these offsets are different, the difference between
the joint 6 offset and the joint 4 offset for each of the two data sets is approx-
imately 2.07°. Since joint 4 and joint 6 are almost aligned in the zero position,
this suggests that the joint 5 axis is rotated to a different position when the robot
is at zero for each data set. This is verified by observing the axis alignment for
joint 5 in the zero position as shown in Tables 6.7 and 6.8. Table 6.7 gives us as
0.407i + 0.002j — 0.913k. This implies that the axis is rotated approximately
—24° about the Y axis, which matches the assigned joint offset. Table 6.8 gives
u, as 0.158i + 0.004j — 0.987j, which implies a —9° rotation. Again, this matches
the given joint offset. The obvious question here is which set of joint offsets is
correct? The answer lies in the fact that the model we used requires that the end
effector have a specific pose when the robot is in the zero position. If we had a
“perfect” robot with a nominal geometry, the alignment of axis 5 in the zero
position could be arbitrary without affecting the end effector pose. Since the
geometry of our robot is close to nominal, the actual joint offsets for joints 4 and
6 have little effect on the total accuracy as long the difference between the
joint offsets is 2.07° and the zero position for axis 5 reflects the chosen offsets.
This will be demonstrated in Section 6.4 where the accuracy of the identified
models is compared.

6.3.4 Comparison of Identified Model Geometry

Having identified parameters for both modified DH and zero reference position
models with two different data sets, it is interesting to consider the differences
between the two models for a given data set. Since there are undoubtedly some
unmodeled effects in the actual robot, it would seem reasonable to assume that
the DH model may predict a slightly different geometry than the zero reference
position model. This would imply that the DH model responds to unmodeled
effects in a slightly different manner than the zero reference position model.
Although it is impossible to say which might be better at this point, any differ-
ences would be interesting.
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i-2

\
Figure 6.15. Conversion from zero reference to DH parameters.

To investigate any such differences, it is possible to use the zero reference
position model parameters to compute the Denavit—Hartenberg parameters.
The computed DH parameters can then be compared to the DH parameters
obtained from the actual identification process and differences observed. To
accomplish the conversion from zero reference position parameters, consider two
consecutive joint axes, i — 1 and i. The orientation of each of these joint axes is
defined by a unit vector u;_; and u; in the zero reference model. The position
is likewise defined by points p;_, and p,. We will identify the DH parameters by
beginning at the base coordinate system and determining the location of the
common normal between the axes. This will then allow us to locate the next
coordinate system according to the DH formalism and, therefore, determine the
DH parameter set. To illustrate, we will assume that the DH coordinate system
for axis i — 1 has been determined. This is illustrated in Figure 6.15. Initially, the
vector u; and point p; are defined in the base coordinate system. The first step is
to use the homogeneous transformation matrix locating the axis on joint i — 1,
A,;_,, to transform u; and p; into the axis coordinate system. This is accomplished
as follows:

Pi= AP (6.19)
u; = R,-_zlli (620)
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where p! and u; are the vectors after transformation and R;_, is only the rotation
component of A;_,. Having made the indicated transformations, the following
expressions hold:

p:=a,;k +r + a,u; (6.21)
r-k=0 (6.22)
ru=0 (6.23)

where a,, a,, and r are defined in Figure 6.15. Equation 6.21 through 6.23
represent five equations in five scalar unknowns (r,,7,,7,,a;, and a,). Equation
6.22 implies that r, is zero. Equation 6.23 may be used to relate the remaining
components of r as follows:

r,=——r, (6.24)

When this result is substituted into Equation 6.21, the following set of linear
scalar equations results:

10 u ||~ .
== 0 wila =P (6.25)
0 1 uila, p:

Solving these equations yields values for a,, a,, and r. To continue, we normalize
r to get r,. Now the X axis of the next DH coordinate system will be given by
r, and the Z axis is given by u}. The Y axis, therefore, will be given by u; x r,,.
The next DH transformation, therefore, may be written as

Ay = : (6.26)

()
[
(=]
—

Using the various elements A,_;, the DH parameters may be written as follows:

9, , = tan™* <Z—Zi) 6.27)
11

%, = tan™! <ﬁ3> (6.28)
ass

r_y =a, (6.29)

I, =|r| (6.30)
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Axis i-1
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i—2 T~

Figure 6.16. Conversion from zero reference to modified DH parameters.

The approach outlined above may be used for all axes where the standard
DH model is applied. For those axes that are nearly parallel and the modified
DH model is used, the following procedure may be used. As before, we begin by
transforming w; and p; into the DH coordinate system defined for axis i — 1. If
the transformed vectors are designated as u; and p}, the following equations hold:

I+ au; =p; (6.31)
rk=90 (6.32)
where r and «a are as illustrated in Figure 6.16. Solving Equations 6.31 and 6.32

for r and a and then normalizing r to get r, allows us to write the tranformation
matrix A;_; as follows:

a11 uzrny ux rx
a ur, u, r
21 z'nx y ¥y
ai_l = , , , 0 (6.33)
ayq u r,,y — uyrnx u,
0 0 0 1

where a, ,a,,,and a5, are chosen so as to ensure that the matrix is orthonormal.

ayy = —a3303; T d33d;; (6.34)
ay; = —0ay3033 1 dy303; (6.35)

a3y = —0ay3d3; + A1,0d;53 (6.36)
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TABLE 6.9. Comparison of DH Parameters for Data File 1

Converted DH Identifed DH
Parameters Parameters
Joint (Type) 1 2 3 1 2 3
1(1) 33.632 —15.022 —90.120 33.632 —15.022 -90.121
2(1) 14.048 0.000 —89.983 14.047 0.000 —89.981
3(2) 17.038 0.066 —0.353 17.038 0.062 —0.354
4(1) 5939 —0.807 90.393 5.939 —0.807 90.397
5(1) 17.060 0.005 —90.025 17.055 0.005 —90.025
6(1) —-0.015 —0.004 —89.987 —0.015 —0.004 —89.986

The modified DH parameters may now be written as

L, = Jr| 6.37)
o, = sin~'(as,) (6.38)
Bi-y = tan™! < —ai> (6.39)
Q33
6,_, = tan™" (fﬁ) (6.40)
a4

The algorithm described above was applied to convert the zero reference
position parameters to modified DH parameters for both data sets. The results
are given in Tables 6.9 and 6.10.

As shown in the tables, the converted parameters compare very closely with
the identified parameters. This is important because it indicates that each model
converges to the same physical geometry for each data set. In other words, both
models respond the same to unmodeled effects and there are no advantages in
using a particular model. It should also be noted that joint offsets were not

TABLE 6.10. Comparison of DH Parameters for Data File 2

Converted DH Identified DH
Parameters Parameters
Joint (Type) 1 2 3 1 2 3
1(1) 33.635 —15.021 -90.132 33.635 —15.021 —90.132
2(1) 14.048 0.001 —89.977 14.048 0.001 —89.974
3(2) 17.034 0.071 -0.336 17.034 0.069 —0.337
4(1) 5916 —0.796 90.313 5915 -0.796 90.310
5(1) 17.059 0.003 —89.977 17.054 0.003 —89.978

6(1) —0.014 —0.005 —89.979 -0.014 —0.005 —89.983
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compared. This is primarily because the zero reference model was constrained
to have a particular zero position and the modified DH model is allowed to take
an arbitrary zero position. The joint offsets, therefore, should not be expected to
compare.

6.4 ASSESSMENT OF CALIBRATED ROBOT

To compare the accuracy of each of the identified models, a set of 10 poses that
span the reachable volume of the CMM was chosen. For each of these poses, the
end effector pose was measured with the CMM and the joint angles as given by
the robot controller were recorded. Each model as well as the nominal model
were then used to predict the measured pose. Errors between the predicted pose
and measured pose were quantified in the following manner. The ith measured
pose, P,;, is inverted and multiplied by the predicted pose, P,;. This product is
assumed to have the form given in Equation 6.18. A position and orientation
error is then defined as

80 = \/8x? + 6y® + 622 6.41)
or = Jdx? + dy* + dz* (6.42)

There errors are used to evaluate the accuracy enhancement given by each of the
identified models.

Since two data sets were used to identify the parameters for each model, the
question arises as to which set of parameters should be used. For the modified
DH model, the differences between the two parameter sets are small and the
choice is somewhat arbitrary. It was decided to use the average of the two
parameter sets to evaluate the accuracy of the model. The parameters used are
listed in Table 6.11.

The zero reference parameter sets compared closely in every aspect but the
joint offsets for joints 4 and 6. As above, the average of the parameters from each
data set was used for all parameters except those related to the joint offsets for
axes 4 and 6. The offset for joint 4 was arbitrarily chosen to be 5° and the offset
for axis 6 as well as the orientation of u5 was chosen to be consistent with this
selection. The chosen parameters are listed in Table 6.12.

TABLE 6.11. Modified DH Parameters Used in Accuracy Test

1 33.634 —15.022 —90.127 0.095 _ —
1 14.048 —0.001 —89.978 1.961 — —
2 17.036 0.066 —0.346 —0.104 — —
1 5927 —0.802 90.354 0.713 — —
1 17.055 0.004 —90.002 —0.520 — —
1 —0.015 —0.005 89.986 —1.443 — —
3 —0.005 0.022 2212 —0.013 0.174 87.904
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TABLE 6.12. Zero Reference Position Parameters used in Accuracy Test

Joint u, u, u, Dx Py D
1 —0.002 1.000 —0.002 —15.046 14.70 33.601
2 —0.004 —0.002 —1.000 —15.065 14.012 27.73
3 —0.010 —0.001 —1.000 1.923 14.691 27.73
4 0.006 1.000 0.005 1.227 31.75 27.712
5 0.087 0.003 —0.996 1.226 31.752 27.73
6 0.000 1.000 0.003 1.222 31.75 27.725

Joint 1 2 3 4 5 6

Offset 1.760 2.067 —1.905 5.000 —1.072 —~7.07

TABLE 6.13. Accuracy of Various Models

Zero Reference

Nominal Modified DH Position
Pose o0 or 60 or 60 or
1 3.831 0.854 0.062 0.007 0.163 0.022
2 3.810 1.034 0.138 0.014 0.175 0.010
3 4,091 1.137 0.263 0.024 0.242 0.023
4 3.855 1.292 0.179 0.023 0.248 0.022
5 2.657 0.926 0.254 0.023 0.351 0.024
6 1.115 1.489 0.220 0.022 0.236 0.011
7 3.033 0.753 0.155 0.022 0.062 0.040
8 4.153 1.063 0.262 0.022 0.374 0.028
9 2.996 1.215 0.144 0.018 0.060 0.010
10 5.589 1.681 0.543 0.029 0.440 0.025

The nominal parameters as well as the parameters given in Tables 6.11 and
6.12 were used to predict the 10 selected poses. The results of this test are listed
in Table 6.13. The values for 6 are in degrees and the values for dr are in inches.

6.5 CONCLUSION

The purpose of this chapter has been to demonstrate the use of some of the
techniques presented in earlier chapters in this book. Two models, the modified
DH and the zero reference position model, were used to model a PUMA 560
robot. A measurement system based on a small, manually operated CMM was
used to acquire two sets of 50 poses. The models and data were then used in an
identification procedure based on the Levenberg—Marquardt algorithm. The
resulting parameter sets were compared and used in a test to demonstrate the
level of accuracy enhancement.
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As Table 6.13 indicates, both models represent a significant enhancement over
the nominal model. Of course, the large levels of both position and orientation
error in the nominal model reflect the fact that no significant effort was made to
determine the exact location of the robot in the workspace coordinate system
for the nominal model. Since these parameters are obtained as a part of the
calibration process, there is no need to obtain a precise initial estimate of the
manipulator’s position and orientation. Other tests with the robot and measuring
system described above (see Mooring and Padavala [1]) indicate that even with
precise initial location of the robot, the nominal model still yields position errors
on the order of 0.400 in. and orientation errors on the order of 2.3°. Since the
largest position error indicated in Table 6.13 is 0.040 in., it is safe to say that the
calibration procedure has improved the accuracy by at least a factor of 10. Since
the repeatability of the manipulator is reported to be 0.005 in., it is reasonable
to assume that further improvements in accuracy are possible with the addition
of nongeometric parameters to the models and the use of more precise equipment
fog data collection.
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CHAPTER 7

. PERFORMANCE EVALUATION

In the previous chapters of this book, we examined techniques to enhance the
performance of a manipulator. Little attention, however, has been paid to the
various means of quantifying robot performance. An understanding of perfor-
mance metrics is important for the initial acquisition of a new manipulator
system and for determining the suitability of an available machine for a proposed
application as well as evaluating the effectiveness of a calibration procedure. In
this chapter, we will review several robot performance standards that are cur-
rently available or are under development. This will be followed by discussions
on several performance indices that are currently in use.

7.1 PERFORMANCE STANDARDS

Little formalism exists in the literature of robot performance standards due to
the newness of the subject. Manufacturers generally provide sparse information
about their products beyond a single valued quote of repeatability perhaps even
stated as an estimate of accuracy. Industrial companies using large numbers of
robots, including perhaps a wide range of models from different manufacturers,
have established their own acceptance procedures that evaluate measures likely
to be of importance to their proposed application. Examples of such evaluation
tests are provided by Kochan [11] and include Ford Motor Company’s Robotics
and Automation Application Consulting Center (RAACC) and the Robotics
Evaluation Center at the Industrial Technology Institute, Ann Arbor, Michigan.
As might be expected, the National Bureau of Standards (NBS—recently
reorganized and renamed the National Institute of Standards Technology, NIST)
has been active for some time in the evaluation of machine tools and robot

298
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manipulators. Like robot calibration, the determination of robot performance
requires accurate measurements of various parameters, although the data are
not usually used to identify a set of model parameters, but to express errors from
some desired objective as shown by Busch et al. [4]. Researchers at NIST have
developed and evaluated several experimental methods directed at position
measurements, one of the principal performance measures. Several of these
techniques have been described in Chapter 3 of this book, but the work of Lau
et al. [12] provides a comprehensive review.

A central axiom on which this book is based is that accuracy errors mainly
depend on differences between the actual manipulator kinematics and the kine-
matics of the model used by the robot controller. Although it is plausible that
static pose may be the most important metric, it is not clear that kinematic
discrepancy is the sole cause of error. In this chapter we will define performance
primitives that need to be considered before matching a particular manipulator
with a specific task. These primitives are as follows:

* Resolution

* Repeatability

* Accuracy

* Path control

* Speed

» Payload

» Temperature sensitivity
+ Compliance.

It will be noted that the list is probably not complete and that most of these
measures are coupled. For example, the repeatability is a function both of speed
and payload. In addition, some of these measures must be qualified by other
parameters that are not in themselves performance primitives. Examples of these
qualifiers are

* Approach direction

* Location in workspace where measurement was taken
» Closeness to singularities

» Control system gains and other parameters.

These qualifiers are necessary since, for example, the ability of a robot to
execute accurate straight line motion will be severely degraded if the requested
path passes through a kinematic singularity.

A further axiom underlying the material presented in this book has been to
improve performance through deficiency compensation rather than engineering
elimination. This philosophy may be applied to some of the performance mea-
sures so that, for example, inaccuracy due to temperature fluctuations may be
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reduced if a suitable thermal model can be formulated and identified through
experimental measurements.

Although there are no definitive formal standards available at the present time
that address robot performance measures, considerable work is presently being
done to establish comparative testing methods both in the United States and at
the international level. In the United States, the Robotics Institute of America
(RIA) began to address the standards issue in the early 1980s with the establish-
ment of committees to review the following aspects of performance:

R15.01—Electrical Interface
R15.02—Human Interface
R15.03—Mechanical Interface
R15.04—Communications/Information
R15.05—Performance

R15.06—Safety

Prange and Peyton [21] provide an update on the work of these committees
as of early 1988, although only that of R15.05 dealing with performance will be
dealt with in any detail here.

The RIA R15.05 draft standard on robot performance [2] attempts to define
how to compare different manipulator systems based on six criteria: accuracy,
cycle time, repeatability, overshoot, settling time, and compliance. To do this,
the document defines standard test paths and measurement points within the
path, with alternatives for robots that cannot access the standard locations due
to kinematic constraints. Performance classes dealing with nominal tests, and
tests intended to optimize cycle time, repeatability, and other custom criteria are
then defined and assessed using the six basic criteria. Although robot testing and
calibration are different processes they share many of the requirements used to
make precise measurements. In this regard the RIA standard is less specific. It
does not indicate which measurement system should be used to measure the
robot in the standard locations, or the relationship between the accuracy of the
measuring system and the expected confidence in the results. Prior to testing the
standard requires the user to “match the test equipment coordinate system with
the robot base coordinate system,” which as earlier chapters of this book have
indicated, cannot be done reliably. The Standard does however define standard
paths and locations against which to compare robots, but fails somewhat in
addressing the rather more important issues of how to measure rather than what
to measure.

On a worldwide basis, the International Standards Organization (ISO) based
in Europe has Technical Committee 184 covering Industrial Automatic Systems
with Subcommittee SC2 addressing Robots for Manufacturing Environments.
In the United States, the ISO is represented by RIA and it is likely that RIA
R15.05 will be the U.S. contribution toward the ISO/TC184/SC2 discussions.

In the remaining sections of this chapter the performance measures will be
dealt with in turn. Methods by which each primitive may be measured and the
appropriate qualifiers for the primitive will be indicated.
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7.2 RESOLUTION, REPEATABILITY, AND ACCURACY

These three performance measures are grouped together because they are all
measures of static quantities, and in many cases the same experimental apparatus
may be used to assess each variable. Although these quantities have been in-
troduced in previous chapters, it is worth representing repeatability and accuracy
graphically as an indication of how an experiment might be designed to measure
them. Figure 7.1 indicates a target, the center of which represents a defined (not
taught) point, and the dots indicate the locations of the robot when repeatedly
requested to go to the defined point and then move away. Note that repeatability
and accuracy are three-dimensional vectors in the work area of the robot and
that the graphs shown represent their worst values in one plane only. Figure 7.1a
represents the case of high repeatability and high accuracy, Figure 7.1b represents
high repeatability with low accuracy, and Figure 7.1c represents low repeatability
with high accuracy.

Such tests, in which the robot places a stylus or pen on a piece of paper, are
superficially appealing and would undoubtedly give some estimate of perfor-
mance. Questions quickly arise, however, to cloud the value of the results. One
might first ask where the target should be placed in the workspace, should the
plane of the target be vertical, horizontal, or at some oblique angle, is the target
always approached from the same direction or from different directions, and at
what speed with what payload? More interestingly, if the robot base coordinate
system is “inside” the body of the robot, how do we accurately know the

H | |

(a) L Target point () L Target point (c) t Target point

—_—— — ——— —

Figure 7.1. Repeatability versus accuracy. Reprinted with permission of the Society of
Manufacturing Engineers, Dearborn, M1
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coordinates of the center of the target? It is not surprising that attempts to
formalize the process (such as RIA R15.05) appear overly complex, and that
manufacturers avoid the accuracy issue altogether and provide repeatability data
only. It can be seen from Figure 7.1 that repeatability may be related to the spatial
distribution of the test data on the plane, the larger the standard deviation, the
poorer the repeatability. It is not clear therefore what is meant when the quoted
repeatability of a particular manipulator is 0.005 in. Does it mean that 60%, of
the test points were within 0.005 in. of the sample set or 90% or 95%, were? Such
figures need clarification. Manufacturers rarely quote orientation repeatability,
usually only position.

Whatever the measured repeatability, it will never be smaller than the resolu-
tion of the robot, which is defined as the smallest incremental move of which the
machine is capable of sensing. Although this is determined solely by the in-
dividual joint servo systems that are fixed for a given machine, the resulting
endpoint displacements resulting from the smallest incremental motion of any
single joint will depend on the instantaneous arm configuration, and may be
estimated through the manipulator Jacobian. Since resolution varies over the
workspace and repeatability is a function of resolution, it is expected that
repeatability will also vary throughout the workspace. This may be observed
through simulation by adding random noise of a fixed Gausian or uniform
distribution to each joint angle and using the forward kinematic model of the
manipulator to “place” the manipulator repeatedly at various locations in the
workspace. Calculating the mean and standard deviations of the results (in a
three-dimensional sense) will indicate different values of repeatability in different
regions of the work volume.

Measuring some form of repeatability is usually fairly simple. A nominal
location in the workspace is selected for testing and a sensor-equiped fixture is
located there. The robot is then placed in the fixture a number of times and the
sensor data are recorded. The sensor may record one, two or three components
of position together with other information enabling orientation information to
be calculated. Such a fixture, which uses six LVDT position transducers, is shown
in Figure 7.2, and enables both position and orientation data to be derived.

Similar devices of varying degrees of complexity are to be found in the
literature and include the Ranky test aparatus [22], the IPA method [24], and
the Ford Motor Company robot test station [23].

Based on the arguments of the previous paragraphs, it is reasonable to ask
where a fixture such as the one shown in Figure 7.2 should be placed to perform
the repeatability tests. Mooring and Pack [18] define a “position index” that
indicates the sensitivity of endpoint movement to each joint motion through a
Jacobian formulation. It is then suggested that the “average” repeatability could
be obtained by locating the measuring fixture in a region of workspace where
each joint position index is close to its mid-range value.

As indicated earlier, and in previous chapters in this book, accuracy is difficult
to measure due to the lack of a well-defined and accessable base coordinate frame
for the manipulator. If, as in the case of the PUMA, this frame is defined by the
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Figure 7.2. Repeatability fixture.

manufacturers to be inside the body of the arm, it is difficult to make measure-
ments with respect to it. Usually the solution to the problem is to define an
external and, therefore, measurable frame that ideally is fixed to the robot
structure. In Chapter 6 dealing with the detailed case study the coordinate frame
representing the base happens not to be fixed to the robot but coincident with
the world frame of the system. In the ideal case in which the user robot world
frame is attached to the manipulator structure, the fixed transformation between
the user and manufacturers world frames would be identified as part of the
calibration process as indicated in Chapters 2 and 4. Like the kinematic param-
eters, this transformation would be considered constant unless disturbed by
collisions or dismantling the robot structure. Unless an external reference frame
1s defined and identified, absolute accuracy measures are meaningless. Here we
define absolute accurac Y to be accuracy measured with respect to the robots (user)
base frame. Another measure of accuracy sometimes used is relative accuracy [5],
which is accuracy measured with respect to a frame other than the user base
frame. As such, relative accuracy may be assessed for robots that do not have an
external user frame. These definitions are graphically shown in Figure 7.3.
Similar to measures of repeatability, accuracy may be defined in terms of one,
two, or three position coordinates and/or orientation depending on the sophisti-
cation of the measuring system. If, as in the instance of the case study, we are able
to measure both position and orientation, we would command the manipulator
tomove to a defined pose measured with respect to the manufacturers base frame.
Knowing the transformation between the manufacturer and user base frames
obtained through the calibration process, the pose with respect to the user frame
may be calculated, and checked directly with the measuring system. Relative
accuracy measures may be made in a similar fashion except that mesurements
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Figure 7.3. Definition of (a) absolute and (b) relative accuracy. Reprinted with permission
of the authors [5].

with respect to the task frame, rather than the user base frame, are made. An
example of relative accuracy assessment is given by Pathre [20] and uses a simple
one-dimensional test fixture shown in Figure 7.4. The manipulator is com-
manded to move a given distance between the angle brackets. The exact distance
is then measured with the dial gauges and compared with the commanded
distance. Use of the fixture indicated that the relative accuracy was of the same
order of magnitude as others had measured the absolute accuracy to be for the
robot under study.

In some instances relative accuracy may be measured with respect to a
precision template. These techniques have been widely used for testing co-
ordinate measuring machines since these have integral position read-out data,



7.3 PATH CONTROL 305

Cylindrical %

tool ———>

Right angle bracket

Magnetic feet

Hole for dial gauge

Figure 7.4. Fixture used to measure relative accuracy. Reprinted with permission of the
author [20].

and orientation performance is rarely required. Examples of this technique
include the calculation of the spacing of holes in a bar [3], and the ability of the
machine to follow an exact circular template place in different orientations
[9, 10]. These tests are interesting since the orthogonality of the machines axes,
the location and orientation of the test piece, and the shape of the circular path
traced by the machine allow the principal sources of kinematic error to be
identified directly from the test results without resorting to an identification
procedure. It is assumed that the shape of the template is known to at least one
order of magnitude better than the required precision of the calibration process
itself. Readers are encouraged to review other works dealing explicitly with
measurement methods [13] that may be used both for static and dynamic
position determination.

7.3 PATH CONTROL

Sometimes referred to as dynamic accuracy, this measure indicates the ability of
a manipulator to follow a predetermined path. All of the performance qualifiers
indicated at the beginning of the chapter will influence the actual path of the
manipulator, together with other performance primitives such as payload, com-
pliance, and, in particular, speed. Again, few standards are available (RIAR15.05
deals exclusively with static performance), although French researchers [15]
have proposed measurement methods. Typical industrial tests usually require
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the robot to follow a planar rectangular path or follow a circular trajectory with
the performance measure being calculated in the form of a relative accuracy
(deviation from ideal) as a function of speed and/or payload. Examples include
the Ford Motor Company tests [26] where a rectangular path and a circular
path are traced in each of three orthogonal planes at 10%;, 50%, and 100%, rated
speed, maximum rated payload with the machine warmed up. Specific tests for
Scara machines have also been proposed [16].

Precise, dynamic measurement of robot end effector position is very challeng-
ing. Measurement techniques for assessing dynamic accuracy include direct
tracing of paths by a pen held by the robot gripper, although better methods
incluce the use of fixed cameras [11, 16] or high-precision, high-speed tracking
devices [6,14] capable of following true three-dimensional motion. Other
methods for measuring path accuracy [16] include the specification of the
boundary width for a single linear movement.

7.4 SPEED

Speed may be specified in several ways. The most common method used by
manufacturers [1] is to provide the maximum joint velocities, since this requires
knowledge only of the servo motor characteristics and the gear drive. Some
specifications may also provide information on the maximum speed of the tool.
This requires computation of the forward kinematics, or Jacobian for instantan-
eous velocities, and will again be a function of the location of the trajectory in
the workspace. Some manipulator manufacturers argue correctly that cycle time
is a better measure of speed than simple end point velocity, since it takes into
account the acceleration and deceleration phases of the motion. Although this
test will provide information on the effectiveness of the control system on the
transient portion of the motion, the path over which the cycle time is measured
is difficult to define since it may bias the results for manipulators with certain
kinematic configurations. A further refinement would be to specify a path that
was unnatural to the robot, so that the computational efficiency of the controller
could be assessed. Examples of such paths would be circular in nature for
Cartesian configurations, or straight line motion for cylindrical machines. Again
any measured speed should be qualified by the factors previously mentioned and
other performance primitives, perhaps the most important of which would be
payload, closeness to singularities, and workspace location.

7.5 PAYLOAD

Representative manipulator payload to weight ratios are in the region of 5-10%,,
which is relatively poor compared to the humans 50% figure. This can be
attributed to the fact that for a fixed compliance (see later section) and a maxi-
mum end point error, the maximum allowable payload is a linear function of the
manipulator characteristic length, r, which may be thought of as the moment
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arm from the payload to the base. The mass of the manipulator arm, however,
will vary as r>. Humans outperform machines in this area due to their ability to
vary compliance automatically with the task they are performing.

The ability of the joint servos and the manipulator structure to support a
payload depends on the instantaneous kinematic configuration [1], and the
speed with which the manipulator is moving. These factors, together with the
repeatability and accuracy (static and dynamic), are related through complex,
nonlinear equations. Any quoted payload figure must be assumed to represent
the value consistent with the other performance measures provided by the
manufacturer such as expected repeatability within a defined workspace. Exceed-
ing the payload figure may, at best, lead to poor static and dynamic performance
and at worst damage the drive components due to high acceleration/deceleration
of the arm. It must be remembered that payload is anything attached to the end
point of the manipulator, and includes the weight of the end effector and inertial
loading,

7.6 THERMAL SENSITIVITY

The effects of temperature on manipulator performance may be subdivided into
two mechanisms: the initial warm-up period of the device and the subsequent
environmental changes following warm-up. Although manufacturers should spe-
cify the warm-up time for their products, the user may consider performing a
repeatability test from a cold start. The actual warm-up period will then be the
time required for repeatability measure to stabilize, since during the warm-up
phase considerable drift in the global repeatability measure will be observed.
Such a test was performed by Mooring et al. [17] with a hydraulic robot. Since
the temperature of the working fluid changes rapidly from a cold start, hydraulic
machines tend to exhibit stronger thermal sensitivity than electric drives and the
proximity of hoses to the structure of the machines may produce local thermal
expansion phenomena. Mooring et al. [17] found that the repeatability changed
significantly during the warm-up period of about 20 min. Such tests are, in fact,
measures of robot accuracy since variations relative to the world frame are
measured.

The problem is not limited to hydraulic drive machines. Stauffer [23] in-
dicated that with a particular electric drive machine, repeatability errors were
two to five times the stated values, and other performance specifications could
not be met until 10-12 min had elapsed from initial start-up. In addition,
performance was adversely affected when the robot was inactive for 15 min, and
if the machine was shut down for more than 30 min, it was then considered cold.
Most of these problems were found to be caused by friction, particularly at the
joint seals. It is well known that friction, and stiction in particular, are very
sensitive to temperature.

Once the manipulator system has warmed up, temperature changes in the
operating environment can produce significant positional errors. As indicated
by Lau et al. [14], Juberts [8] measured a 0.0015 in. change in repeatability when
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the room temperature changed by 7°F. Stauffer [23], however, found that the
intermittent operation of an air conditioning system changed robot positioning
accuracy by 0.010 in., leaving the repeatability relatively unchanged.
Steady-state temperature effects may be calibrated in much the same way as
kinematic perturbations, although it is usual to use only simplified, linear models,
and is more commonly applied to coordinate measuring machines (CMMs) than
industrial manipulators [3]. Zhang et al. [7] performed a compensation experi-
ment on a CMM in which temperature and kinematic modeling were under-
taken. Since they were principally interested in position compensation in the
orthogonal X, Y, and Z directions, the thermal model takes the form of

AX;=a,XT (7.1)

where AX ; is the positional correction in the X direction, X is the scale readout
value, T is the temperature, and o, is an experimentally measured thermal
expansion coefficient. Similar expressions applied to the Y and Z directions,
although different thermal expansion coefficients are needed because variations
in stiffness, materials, and construction constraints produce different expansions
for the same change in temperature. The value of a,, for example, was calculated
by experimentally measuring the scale error AX; at different positions, X, for
varying temperature T. An example of one of their experimental graphs is shown
in Figure 7.5. They conclude that although more complex thermal models were
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Figure 7.5. Effect of temperature on scale error.



7.7 COMPLIANCE 309

investigated, there was negligible improvement over the linear model indicated
above. Once identified, the thermal expansion coefficients may be used to calcu-
late the positional corrections required for each axis, although real time measure-
ment of temperature is required.

It may be seen that this process of thermal calibration is performed in the
Same manner as kinematic calibration by modeling (Equation 7.1), measurement
(Figure 7.5), parameter identification (slope of line in F igure 7.5), and compensa-
tion (AX ;).

7.7 COMPLIANCE

Compliance is defined as the deflection of an elastic structure divided by the force
causing the deflection, and is therefore the inverse of stiffness. The problem of
manipulator compliance manifests itself when gravitational and payload forces
displace the end point from the desired location thereby causing unwanted
displacements of the tool. In general, there are three elements of a manipulator
that may be regarded as compliant: the joint servo system, the joint transmission
system, and the arm structure itself.

All joint servo systems have a natural stiffness since their basic feedback
algorithm detects an angular displacement error and corrects this by applying a
joint torque causing the error to diminish. In many manipulators this stiffness
can be felt directly by manually displacing the joint a small amount and “feeling”
the servo attempting to reduce the sensed error to zero. The error caused by joint
compliance depends on the sophistication of the controller. It is known that a
simple proportional controller, for example, has finite error for a constant load
torque, such as gravity, whereas integral control eliminates this error.

Stiffness in the joint transmission systems leads to end point position errors
irrespective of the type of joint control system employed. Figure 7.6 shows, for
example, the major components of the drive system for the wrist roll axis of a
PUMA manipulator.

It can be appreciated that since the angular position sensor (encoder) for this
joint is located at the motor end of the transmission, a load torque might cause
roll rotation of the tool to occur due to torsional compliance of the transmission
components, particularly the connecting rod, without a rotation being detected
by the encoder. Although the location of the drive motor remote from the wrist
reduces in inertial loading on other drives, the errors due to transmission com-
pliance are significant, and have ultimately led to the design of direct drive
manipulators [23].

The drive components shown in F igure 7.6 are housed within the manipulator
structure, which is usually a load bearing beam, or box-frame construction.
Under gravitational loading this structure is also compliant, and may lead to
unwanted positioning errors. Deformations will depend on the particular kine-
matic configuration of the manipulator as well as the design of the structure.
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Figure 7.6. Wrist roll axis of PUMA manipulator. Adapted from reference [12]. Re-
printed by permission of John Wiley & Sons, Inc.

Some research indicates experiments aimed at determining manipulator com-
pliance and its significance on positioning errors. Whitney et al. [25] performed
a static deflection test on a PUMA as shown in Figure 7.7

In this test, forces (weights) were applied at F, and F, and deflections were
measured at locations 1-7. From these tests it was concluded that structural
stiffness was negligible compared with joint stiffness, which could be modeled
with a linear torsional spring. Mention was made of observed joint angle changes,

T,
?’Wé 4 o

Figure 7.7. Deflection test on PUMA arm. Adapted from reference [12]. Reprinted by
permission of John Wiley & Sons, Inc.
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which indicated servo, as opposed to transmission, compliance. Whitney et al.
further concluded that stiffness effects dominated errors caused by errors in
kinematic parameters, which is in contrast to the findings of Mooring and
Padavala [19]. It appears that in some manipulators, stiffness dominates kine-
matic errors while in others the reverse is true.

Compliance is certainly a problem in some industrial applications. In one
known case, a large manipulator uses a variety of tools such as drills, countersink
drills, and debur tools to process large aircraft structures. Although each tool
operates sequentially on a fixed location, the difference in weight of each tool
causes the manipulator to move to what appear to be separate positions. This
must be remedied by reteaching the manipulator a different location depending
on which tool is held by the robot. A similar example is the case of a robot being
used for spot welding where the cable to the welder is heavy and stiff. Experience
showed that simply rearranging the cable necessitated reteaching critical task
points. Clearly these are cases for compliance compensation.

7.8 CONCLUSION

In this chapter we have attempted to demonstrate both the importance of good
performance measurements and the difficulty of developing a standard for the
evaluation of manipulator performance. Although a uniform testing standard for
all manipulators would benefit both the users and manufacturers of robot mani-
pulators, the complexity of such a general standard mabkes its development and
universal acceptance a difficult task. Many companies, therefore, have resorted
to the establishment of internal performance or acceptance standards that are
tailored to their needs.
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APPENDIX A

PARAMETER IDENTIFICATION
PROGRAM

Implicit Real*8 (a-h,o-z)

Real*8 Tew(60,4,4), Joint(60,6)

Real*8 parm(4), x(30), £(360), xjac(360,30), xjtj(465)
Real#*8 work(1335)

Character Fname*15

External PIndex
Common/benl/ Tew, Joint, Npose, Niter

Niter = 0

write(*,'(A\)') ' Please Input the Data File Name --> !
read(*,'(A15)') Fname

open(10, file = Fname, status = 'OLD')

Do 2 i =1, 60
Read(10,*,end = 3) (Joint (i, j),j=1,6)

Read(10,*) (Tew(i,1,k), k = 1, 4)
Read(10,*) (Tew(i,2,k), k = 1, 4)
Read(10,*) (Tew(i,3,k), k = 1, 4)

Tew(i,4,1) = 0.0d0

Tew(i,4,2) = 0.0do

Tew(i,4,3) = 0.0d0

Tew(i,4,4) = 1.0d0
2 Continue

It

3 Npose i-1
m

n
nsig
eps
delta
maxfn
iopt
ixjac

npose * 6
30

4

0.0do
0.0do0
1000

L 1 TR T}

w o

60

0.0do
0.040
0.0do
0.0do

parm(1)
parm(2)
parm(3)
parm(4)

[ '}
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Do 4 i =1, 30
x(i) = 0.0do
4 Continue

Call zxssq(PIndex, m, n, nsig, eps, delta, maxfn, iopt, parm,

& x, ssq, £, xjac, ixjac, xjtj, work, infer, ier)
Write(*,'(//,'' IER = '',15,//,'' SSQ = '',E15.5)') ier, ssq
Do 5 i =1; 30
write(*,' ("'  x('',I2,'') = '',F25.6)') i, x(i)
5 Continue

Open(10,File = 'NewPar.dat',status='New')
(o *%%* Write Out New Data File **x
Do 6 i = 1, 30
write(10,'('' x('',I2,'') = '',F25.6)') i, x(i)
6 Continue

Close(10)

Stop
End

Subroutine PIndex(x, m, n, f)

Implicit Real*8 (a-h,o-2)

Real*8 x(n), f(m), Param(7,6), Offset(6)
Real*8 Tew(60,4,4), Joint(60,6)

Real*8 Tr(4,4), Tm(4,4), Tri(4,4), Delta(4,4)
Real*8 Theta(6)

Common/benl/ Tew, Joint, Npose, Niter

Pi = Datan(1.0d0) * 4.0d0
Dr = Pi / 180.0d0

Call Par ( x, Param, Offset )
Do 300 icnt = 1, Npose
Do 3i=1, 6
theta(i) = Joint(icnt,i) + Offset(i)
3 Continue
Call Forward( Param, theta, Tr)
Call Matinv( Tr, Tri)
Do 4 i=1, 4
Do 4 j =1, 4
™m(i,j) = Tew(icnt, i, 3Jj)
4 Continue

Call Mamult(Tri, Tm, Delta)

index = (ient - 1) * 6

f(index + 1) = Delta(1,2)
f(index + 2) = Delta(1,3)
f(index + 3) = Delta(2,3)
f(index + 4) = Delta(1,4)
f(index + 5) = Delta(2,4)
f(index + 6) = Delta(3,4)
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300 Continue

niter = niter + 1
write(*,'(//,'' Iteration Number '*,I5)') niter

write(*, ' (' '',6E13.3) ') x(1), x(2), x(3), x(4), x(5), x(6)
write(*, (¢ '',6E13.3) ") x(7), x(8), x(9), x(10), x(11), x(12)
write(#*,' (" '',6E13.3) ") x(13),x(14),x(15),x(16),x(17),x(18)

write(*, ' (¢ '',6E13.3) ") x(19),x(20),x(21),x(22),x(23),x(24)
write(*,'('' "' 6E13.3)?) x(25),x(26),x(27),x(28),x(29),x(30)

Return
End
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SUBROUTINES ASSOCIATED WITH
MODIFIED DENAVIT-HARTENBERG
METHOD

Subroutine Par(x, Param, Offset )
Real*8 x(30), Param(7,6), Offset(6)

Param(1l,1) = 32.87840 + x(1)

Param(1,2) = -15.591d0 + x(2)

Param(1,3) = =-90.000d0 + x(3)

Param(1,4) = 0.00040 + x(4)

Param(2,1) = 14.681d0 + x(5)

Param(2,2) = 0.000d0 + x(6)

Param(2,3) = =-90.00040 + x(7)

Param(2,4) = 0.00040 + x(8)

Param(3,1) = 17.000d0 + x(9)

Param(3,2) = 0.00040 + x(10)
Param(3,3) = 0.00040 + x(11)
Param(3,4) = 0.000d40 + x(12)
Param(4,1) = 5.87040 + x(13)
Param(4,2) = -0.800d0 + x(14)
Param(4,3) = 90.000d0 + x(15)
Param(4,4) = 0.00040 + x(16)
Param(5,1) = 17.050d0 + x(17)
Param(5,2) = 0.000d0 + x(18)
Param(5,3) = -90.00040 + x(19)
Param(5,4) = 0.00040 + x(20)
Param(6,1) = 0.000d0 + x(21)
Param(6,2) = 0.000d0 + x(22)
Param(6,3) = 90.00040 + x(23)
Param(6,4) = 0.000d40 + x(24)
Param(7,1) = 0.00040 + x(25)
Param(7,2) = 0.00040 + x(26)
Param(7,3) = 2.213d0 + x(27)
Param(7,4) = 0.00040 + x(28)
Param(7,5) = 0.000d0 + x(29)
Param(7,6) = 90.0004d0 + x(30)

Do1li=1, 6
Offset (i) = 0.040
1 Continue

Return
End

316



SUBROUTINES ASSOCIATED WITH MODIFIED DENAVIT-HARTENBERG METHOD 317

Subroutine Forward( param, theta, T )

Implicit Real*s (a-h,o0-2)
Real*8 param(7,6), theta(6), T(4,4), 1
Real*s8 A0(4,4), Al1(4,4), A2(4,4)

Do1i=1, 2
Do 2 3 =1, 4
A0(i,j) = 0.0do

2 Continue
AO(i,i) = 1.0do
1 Continue

Do 10 jt = 1, 7

If ((jt.ne.3).and.(jt.ne.7)) then

r = param(jt,1)
1 = param(jt,2)
alpha = param(jt,3)

If ( jt .eq. 1 ) then
th = 0.0d0 + param(1,4)
else

th
endif

theta(jt-1) + param(jt,4)

Call Harden( r, 1, alpha, th, A1)
Go to 100

Endif

If ( jt.eq.3 ) then

1 = param(jt,1)
alpha = param(jt,2)
beta = param(jt,3)

th = theta(jt-1) + param(jt,4)
Call Modden( 1, alpha, th, beta, Al )
Go to 100

Endif

If ( jt.eq.7 ) then

X = param(jt,1)
Yy = param(jt,2)
z = param(jt,3)
tx = param(jt,4)
ty = param(jt,5)
tz = theta(jt-1) + param(jt,6)

Call Trans( x, y, z, tx, ty, tz, A1)
Go to 100
Endif
100 Call Mamult( A0, Al, A2 )
Do 101 i =1, 4
Do 102 j = 1, 4
A0(i,3) = A2(4,3)
102 Continue
101 Continue

10 Continue
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Do 201 i =1, 4
Do 202 §j =1, 4
T(i,3) = Ao(i,]J)

202 Continue
201 Continue
Return
End

Subroutine Harden( r, 1, alpha, theta, A )

Implicit Real#*8 (a-h,o0-2)
Real*8 1, A(4,4)

Pi = 4.0d40 * datan(1.0d0)
Dr = pi/ 180.0d0
sa = dsin(alpha*Dr)
ca = dcos(alpha#*Dr)
st = dsin(theta*Dr)
ct = dcos(theta*Dr)
A(1,1) = ct

A(1,2) = -st*ca
A(1,3) = st*sa
A(1,4) = 1l*ct
A(2,1) = st
A(2,2) = ct*ca
A(2,3) = -ct*sa
A(2,4) = 1*st
A(3,1) = 0.040
A(3,2) = sa

A(3,3) = ca
A(3,4) = r

A(4,1) = 0.0d40
A(4,2) = 0.0d0
A(4,3) = 0.0doO
A(4,4) = 1.0d0
Return

End

Subroutine Modden( 1, alpha, theta, beta, A )

Implicit Real*8 (a-h,o0-2)
Real*8 1, A(4,4)

Pi = 4.040 * datan(1.0d0)
Dr = pi/ 180.0d0

sa = dsin(alpha*Dr)

ca = dcos(alpha*Dr)

sb = dsin(beta#*Dr)

cb = dcos(beta*Dr)

st = dsin(theta*Dr)

ct = dcos(theta*Dr)

A(1,1) = -sa*sb*st + cb*ct
A(1,2) = -ca*st

A(1,3) = sa*cb*st + sb*ct
A(l,4) = 1l*ct

A(2,1) = sa*sb*ct + cb*st
A(2,2) = ca*ct

A(2,3) = -sa*cb*ct + sb#*st
A(2,4) = 1l¥st

A(3,1) = —-ca*sb

A(3,2) = sa

A(3,3) = ca*cb

A(3,4) = 0.0d0
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A(4,1)
A(4,2)
A(4,3)
A(4,4)

Return
End

[ ]

0.0d0
0.0do
0.0do
1.0do

Subroutine Trans( x, y, z, tx, ty, tz, A )

Implicit Real*8 (a-h, o-z)
Real*8 A(4,4)

Pi = 4.0d0 * datan(1.0d0)
Dr = pi / 180.0d0

sx = dsin(tx * Dr)

cx = dcos(tx * Dr)

sy = dsin(ty * Dr)

cy = dcos(ty * Dr)

sz = dsin(tz * Dr)

€z = dcos(tz * Dr)

A(1,1) = CY*CZ

A(1,2) = -CX*SZ + SX*SY*CZ

A(1,3) = CX*SY*CZ + SX*S7

A(1l,4) = -Y*CX*SZ + Y*SX*SY*CZ + CX*SY*CZ*Z + SX*SZ2*7Z + CY*CZ*X
A(2,1) = CY*SZ

A(2,2) = CX*CZ + SX*SY*SZ

A(2,3) = CX*SY*SZ - SX*CZ

A(2,4) = Y*CX*CZ + Y*SX*SY*SZ + CX*SY*SZ*Z — SX*CZ%*Z + CY*SZ+X
A(3,1) = -sy

A(3,2) = SX*CY

A(3,3) = CX*CY

A(3,4) = Y*XSX*CY + CX*CY*Z - SY*X

A(4,1) = 0.0d0

A(4,2) = 0.0d0

A(4,3) = 0.0d0

A(4,4) = 1.0do

Return

End
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SUBROUTINES ASSOCIATED WITH ZERO REFERENCE POSITION METHOD

SUBROUTINE VECROT(U,P,THETA,A)

This subroutine computes a homogeneous transformation matrix

based on the point-unit vector approach. The vector U is dimensioned

U(3) and represents the unit vector about which the body will rotate.
The vector p is dimensioned P(3) also and it contains the coordinates
of a point through which the rotation axis passes. THETA is the angle
of rotation about U. The resulting matrix A is the 4x4 transformation
matrix that is passed back to the calling program. All arguments are

double precision.

REAL*8 U(3),P(3),THETA,A(4,4),ST,CT,VT,DR
Define constants PI, ST, CT, and VT

DR=4.0D0 * DATAN(1.0DO) / 180.0DO

ST= DSIN(THETA*DR)

CT= DCOS (THETA*DR)

VT= 1.0D0-CT

Assign values in matrix

A(1,1) = U(1) * U(1l) * VT + CT
A(1,2) = U(1) * U(2) * VP - U(3) * ST
A(1,3) = U(1) * U(3) * VT + U(2) * ST
A{2,1) = U(2) * U(1) * VT + U(3) * ST
A(2,2) = U(2) * U(2) * VT + CT

A(2,3) = U(2) * U(3) * VT - U(1) * ST
A(3,1) = U(3) * U(1) * VI - U(2) * ST
A(3,2) = U(3) * U(2) * VT + U(1l) * ST
A(3,3) = U(3) * U(3) * VT + CT

A(4,1)=0.0DO
A(4,2)=0.0D0

A(4,3)=0.0D0

A(4,4)=1.0D0

A(1,4)=(1.0D0 - A(1,1)) * P(1) - A(1,2) * P(2) - A(1,3) * P(3)
A(2,4)=-A(2,1) * P(1) + (1.0D0 - A(2,2)) * P(2) - A(2,3) * P(3)
A(3,4)=-A(3,1) * P(1) ~ A(3,2) * P(2) + (1.0D0 - A(3,3)) * P(3)
RETURN

END
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GENERAL PURPOSE SUBROUTINES

SUBROUTINE MAMULT (Al,A2,A3)

C
C -
C
[ This subroutine multiplies two 4x4, double precision matrices
[of (Al and A2). The resulting product is the double precision
C matrix A3.
C
c
C
REAL*8 A1(4,4),A2(4,4),A3(4,4)
DO 100 I=1,4
DO 100 J=1,4
A3(I,J)=0.0D0
DO 100 K=1,4
100 A3(I,J)=A3(I,J)+A1(I,K)*A2(K,J)
RETURN
END
SUBROUTINE MATINV(A1l,A1INV)
C
C
[o
c This subroutine determines the inverse of a 4x4 double precision
o] homogeneous transformation matrix, Al. It returns the inverse in
C the double precision matrix A1INV.
C
o
C
REAL*8 Al(4,4),A1INV(4,4)
A1INV(4,1) = 0.0DO
AlINV(4,2) = 0.0DO
Al1INV(4,3) = 0.0DO
AlINV(4,4) = 1.0DO

DO 100 I=1,3
DO 100 J=1,3
ALINV(I,J) = A1(J,I)
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100 CONTINUE

A1INV(1,4)=-(A1(1,1)*A1(1,4)+A1(2,1)*A1(2,4)+A1(3,1)*A1(3,4))
A1INV(2,4)=-(A1(1,2)*A1(1,4)+A1(2,2)*A1(2,4)+A1(3,2)*A1(3,4))
A1INV(3,4)=-(A1(1,3)*A1(1,4)+A1(2,3)*A1(2,4)+A1(3,3)*A1(3,4))

RETURN
END
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