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Simple S| Epidemic Model
Assumptions

* Population consists only of susceptibles
and infected.

* A few infected species are assumed to be
introduced into a population of
susceptibles.

* Disease is contagious. It is spread by
contact between susceptibles and
infected.
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S| Model Assumption (cont'd)

* A susceptible, once infected, becomes
infective immediately and remains so
indefinitely.

« S—->| (a reasonable assumption to the
initial stage of many diseases).

* Assume that the population is fixed N:

S(t)+1(t)=N (That is, no deaths. Model is
valid over a short enough time).

Dr. Zvi Roth (FAU)



S| Model Equations

dS

dl
=—BIS  —=}IS
i P g P

 The parameter (3 is called the pairwise infectious
contact rate.

 We assumed that contact model is proportional
to the product of the populations.
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Equation for the Infected population

dl
S+1 =N — =[S =
dt P

di I
Daaﬁl('\' _I):('BN)I(l_ﬁ)

Infected model is the familiar Logistic Model,
with a=BN and K=N.

According to this model, everyone eventually
becomes infected: |>N.

« So far, no “recovery” was included in the model.
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SIS Model: S=212S

 Recovered individuals again become
susceptible. In such a case, we say that disease
remains endemic in the population.

* Most micro-parasitic infections leave behind
some measure of immunity. However, some
bacterial or parasite infections confer little or no
immunity - SIS model may be reasonable in
such cases.

* Again, assume S+I=N
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SIS Simple Model Equations

dS

d|
=S =S )

* The parameter [3 is the pairwise infectious
contact rate as before.

 The constant y is the recovery rate.

* |t looks like a version of a Predator-Prey model,
but there are constraints!
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Standard Normalizing of the SIS
Model Equations

dS dl
—=—0IS + — = fIS —
~ PIS + 1 ” pIS —
u—i V—L T=v-1

N N 4
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Resulting Normalized SIS Model

Equations
d—u:—(Rou—l)v ﬂ=(Rou—1)v
dr dr
S I ON
u=— V=— =yt R, =—
N N rt=y 0 ,
u+v=1 0<u<l 0<£v<l

* R, Is called the reproductive ratio .

* Recall: BN= rate at which a single infective is

iIntroduced into a population of size N. (1/y)=
expected duration that an infective remains

contagious. Dr. Zvi Roth (FAU)
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Disease dies out if R,<1:

dv

7

=(Ru-1)v=(R,1-v)-1v

YR, -na-—"

dr (
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Disease stays endemic if Ry>1:

dv

T

=(R,u-1)v=(R,(1—-Vv)-1)v

v

dv

dr

— (Ro _1) (1_
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SIR Epidemics

SIR = Susceptibles + Infected +
Recovered.

Infected individuals may recover.
Recovered species leave the Infected
group, presumably without coming back.

The Recovered play no further role in the
spread of the disease.

S—=212>R (Kermack & McKendrick, 1927)
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SIR Epidemics Model Assumptions

Duration of the epidemic is short
compared to the lifetime of its hosts.

Therefore, we can neglect birth and
disease-unrelated (and related) deaths.

Thus: N=S(t)+I(t)+R(t)
As in SIS model, we shall use the BIS

Susceptibles / Infected interaction, and a
vl, which this time describes |2 R.

Dr. Zvi Roth (FAU)
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Simple SIR Model Equations

dS di dR

T=AS = BIS—A s

* |Is system third-order?
* No, due to the constraint N=S+[+R

Dr. Zvi Roth (FAU)
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“Formal” Normalizing of the SIR
Model Equations

dS dl dR
—=—/LIS — = fIS — — =
dt P dt s =7 dt /
S I R
N N N 7
Equations become:
du dv dw
dr ° dr (R ) dr

u+v+w=1 0<u,v,w<l
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Actual Normalized SIR Model

du dv
—=-R,uv —=(R,u-1)v
dr ’ dr (Rolt =)

O<u<u, 0<v<l-w O0<w<l

« S(t) (represented by u) can never exceed S(0). It

can only decrease.

« Similarly, R(t) (represented by w) cannot
decrease.

* Let uyt+v,y=1 and wy=0.

Dr. Zvi Roth (FAU)
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Equilibria of SIR Model

-gi:O:—va E\L:O:(Rou—l)v
dr dr
RV:EN- u+v+w=1

/4

O<u<u, O0<v<l-w O0O=<w<l

* There are infinitely many equilibrium points, with
v.,=0 and u_=const. No other equilibria.

* Reaching an equilibrium means that “Infected”
population disappeared: Disease eradicated.

* Does model reach equilibrium? Is point stable?
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What is trajectory’s direction at
(UO,VO)? ‘ SIR epidemic, R > |

Arrow must point to the left, as u must
decrease. If Ryuy>1 then arrow points up (v
starts to increase), and if Ryuy<1 then arrow
points down (v starts to decreases).

or. zui reth ;- FOM Britton’s book];



If Ry,<1: Disease dies out

SIR epidamic, F’.Dd
1

dv. 1 BN
d_ = 2 1 ¢ /\ From
U Rl ’ | Britton’s

1/ | book
Ro :ﬁ ) /fj/// PN

0
7/ 0 0 04 06 08 1
susceptible fraction

fective fractio

If Ry<1 then dv/du>0, and because (du)<O0 then
(dv)<0 always. In other words, | population
always decreases, if infection rate is lower than

recovery rate.
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If Ry>1: Disease spreads and
lingers longer

SIR epidemic, R.>1

o1 e
du Ryu \/\

5 04 ;
Ro = ] /f%
7/ 0 -flllf. %%

susceptible fraction

If R,>1 then u<0, and because (du)<0 then
(dv)>0 initially, till ufalls below 1/R,. Then v

begins to decrease.

Dr. Zvi Roth (FAU)
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SIR Model Follow Ups

One can now introduce more
complications to the basic SIR model:

Disease-related deaths,
Time delay between infection and death,

'ime delay between being infected and
being infective.

Immunization effects.

Dr. Zvi Roth (FAU)

22



Integrators only for S and I. R(t) is found
algebraically from S(t) and I(t).

5(0)=99 s
]
B! U1 u2) 1
Fcn Integrator Scope

I(0)=1

Lplcarurtruzruaru b L —I

5

Fcn Integrator
05
u(1)-1 +:|= @
_ @ = — U(S)-U(TU2)
Fcn2 Sign Stop Simulation =
10
1 gamma
iZonst
100
W
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A STOP block is picked up from the Sinks folder. If its input

signal becomes nonzero the whole simulation stops.

U1}

FenZ

Sign

Caonst

5
1
P -U(3UCTU(2) I =
Fcn Integrator
[(0)=1
1
Sluarunruziuaru) e 1 —
Fcn Integrator
05
; . beta
Stop Simulatian
10
gamima
100
I

Dr. Zvi Roth (FAU)
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A Sign block has output +1 if its input is positive, -1
iIf input is negative and O if input is O

U1}

FenZ

Sign

Caonst

]
Scope

S(0)=949
(0} 5
1
B -UEU ) W S
Fcn Integrator
[(0)=1
1
Sluarunruziuaru) e 1 —
Fcn Integrator
05
; j beta
Stop Simulatian
10
gamma
100
W
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We want to stop the simulation when S(t) < 1. Note that
when S(t)>1 the Sign block output is 1, and STOP block
input is zero. When S(t)<1, the input to STOP is -2.

5(0)=99 s
]
B! U1 u2) 1
Fcn Integrator Scope
If0)=1

|
Lplcarurtruzruaru b L —I

5

Fcn Integrator
05
| (1)1 +:|: @
@ = — U(S)-U(TU2)
. - ; ata
Fcn2 Sign Stop Simulation =
10
1 gamma
iZonst
100
W
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Comment about inserting STOP
blocks

e There is a need to add another STOP block
arrangement to stop the simulation when [(t) < 1.

 |f we allow the simulation to continue despite the
fact that some of the variable values no longer
make sense the results that are produced (about
the number of Recovered, or the time at which
the disease becomes defeated) may be in error.
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SIRD Model: Some of the Infected become Recovered and
some may die. When simulation stops the total number of
Dead shows up in the Display

SO0
1 1]
P Uy . o
Fen Integrator Scope
=
|
1
——{ uzruiruziuaruziueru) e <
Fecn Integrator R
1
| uAru) e
u(1-1 --:|= ¢ ] @ 002 dRidt R(0)=0
- beta_infection
Fen2  Sign Stop Simuation = I [ B I BT | N —
5
01
dDidt D{0)=0 Display
1 gamma_recovery
Const el L(11+0(2) I:l
100
S+ Scopel
I
02

mu_death_rate
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One of the four variables (S, I, R, D) should be treated as
redundant. For instance, we can replace the integrator for
R by Fcn block that computes N-S-I-D

SO0
1 1]
P Uy . o
Fen Integrator Scope
=
|
1
——{ uzruiruziuaruziueru) e <
Fecn Integrator R
1
| uAru) e
u(1-1 --:|= ¢ ] @ 002 dRidt R(0)=0
- beta_infection
Fen2  Sign Stop Simuation = I [ B I BT | N —
5
01
dDidt D{0)=0 Display
1 gamma_recovery
Const el L(11+0(2) I:l
100
S+ Scopel
I
02

mu_death_rate
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The diagram below is still correct, but only because R(0)=0.
The summation and scope on the lower right hand side
checks consistency — do all the variables add up to N?

SO0
1 1]
P Uy . o
Fcn Integrator Scope
= |
1
) w2 ) (Y 1
Fecn Integrator R
1
| uAru) e
— U1} -I'-:|: @ @ 0.02 dRidt R{0}=0
- beta_infection
Fen2  Sign Stop Simuation = I [ B I BT | N —
5
01
dDidt D{0)=0 Display
1 gamma_recovery
Const el L(11+0(2) I:l
100
S+ Scopel
I
02

mu_death_rate
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In this SIRD model we created two versions of |: Regular
I(t) and a Delayed I(t-T). Both are available for the various

Fcn blocks

Inteqrator

I10)=10 |

L {1 U205 ui3)u(7ui3) I o J_L.D%i

Fcn Integrator

U131 -h:|: N @

Fcn2 Sign Stop Simulation
1

uf2)-1

Fcn3

Constl

Transport
Delay =2
0.002

beta_infection

0.025

gamma_recovery

1000

M

0225

mu_death_rate

Scope

Display Rend

usruE e 2
dR{dt R{0y=0
u7rud e 2
ddt D{0)=0
LTI+

S+

Display Dend

[ ]

Scope’




In the simulation below note that u(3) (the delayed |) was
used for the recovered and dead terms, but a regular | is
used for the infection term

Fecn

I
L {1 U205 ui3)u(7ui3) I o J_L.D%i

W LU o

Inteqrator

I{0)=10 I

5

Fcn Integrator

uf13-1 -IP:|:
FcnZ Sign
1

iZonst
u(2)-1 -b:|:
Fon3 Sign

1

Constl

Stop Simulation

Stop Simulation

Transport
Delay =2
0.002

beta_infection

0.025

Scope

gamma_recovery

1000

Display Rend

M

0225

mu_death_rate

Uiy u3) %
dR/dt Ri0)=0
: 1

U7y u(3) =
dDydt D=0
LTI+
S+

Display Dend

[ ]

Scope’




In the Transport Delay block we may assign the delay
parameter internally (as done here), or externally using a

CONST block.

Inteqrator

I10)=10 |

L {1 U205 ui3)u(7ui3) I o J_L.D%i

Fcn Integrator

U131 -h:|: N @

Fcn2 Sign Stop Simulation
1

uf2)-1

Fcn3

Constl

Transport
Delay =2
0.002

beta_infection

Scope

0.025

gamma_recovery

1000

Display Rend

M

0225

usruE e 2
dRidt R(0)=0
u7rud e 2
dDidt D(0)=0
LTI+

SH

mu_death_rate

Display Dend

[ ]

Scope’




Pulse Generator is added to allow implementation of simple
Immunization Strategies

° ]
P LU (2 u(3) %
Fcn Integratar Scope
1 If0)=1
B LU U200 ul2)-ul T u(2) il |
Fon Integrator
s R
P..um.;z)+u(3+ 1 [ —
Pulse S
(1)1 +:|: ) @ Generator | 0.04 dRidt R(0)=0 Display R
- eta_infection D
Fcn? SIQH StOp Simulation + U(?)*U(QII + % b :
0.1
1 dDidt D(0)=0 Display D
gamma_recovery
B 1000
Fcn3 N
02

mu_death_rate




L] Source Block Parameters: Pulse Generator Strat. B B=10 T=1 [E|

Fulze Generator

Output pulzes:

if [t == Phazelelay] &% Pulze iz on
Y] = Amplitude

elze
Tt =10

end

Pulze type determines the computational fechnigue used.
Time-bazed iz recommended for use with a vanable step zalver, while Sample-based i=
recommended for uge with a fixed step solver or within a discrete portion of a model uzing

a varnable ztep salver.

Farameters

Fulze type: TirnE: bazed

Time [t): !Llse gimulation time vi
:-i-‘-:_mplituu:le:

1 |
_I_:'_ericu:l [zecz]:

40 |
EI_JISE Width [% of penod]:

D |
Fhaze delay [zecs]:

L |

Interpret wector parameters az 1-0

ak. H Cancel ” Help l

How to use the
Pulse generator
to implement
Immunization?

1 second = 1
time unit in the
simulated
system (say 1
day)

Phase delay =
when we start
the
Immunization
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L] Source Block Parameters: Pulse Generator Strat. B B=10 T=1 [E|

Fulze Generator

Output pulzes:

if [t == Phazelelay] &% Pulze iz on
Y] = Amplitude

elze
Tt =10

end

Pulze type determines the computational fechnigue used.
Time-bazed iz recommended for use with a vanable step zalver, while Sample-based i=
recommended for uge with a fixed step solver or within a discrete portion of a model uzing

a varnable ztep salver.

Farameters

Fulze type: TirnE: bazed

Time [t): !Llse simulation time ¥
:-’?‘-:_mplituu:le: _
1 I
_F'_erin:u:l [zecz]: _
40 I
.|.::I.J|SE-' Width [% of penod]: _
D |

Fhaze delay [zecs]:
i |

Interpret wector parameters az 1-0

ak. H Cancel ” Help

|

How to use the
Pulse generator
to implement
immunization?

If we choose a
large period (the
one shown Is
larger than the
simulation final
time) = Step
function

It makes more
sense to
Immunize

periodically .



L] Source Block Parameters: Pulse Generator Strat. B B=10 T=1 [EI

Fulze Generator

Output pulzes:

if [t == Phazelelay] &% Pulze iz on
Y] = Amplitude

elze
Tt =10

end

Pulze type determines the computational fechnigue used.
Time-bazed iz recommended for use with a vanable step zalver, while Sample-based i=
recommended for uge with a fixed step solver or within a discrete portion of a model uzing

a varnable ztep salver.

Farameters

Fulze type: TirnE: bazed

b
Time [t); |Use simulation time 1|

:-i-‘-:_mplituu:le:

1 I
_I_:'_ericu:l [zecz]:

40 I
EI_.JISE Width [% of penod]:

D |
Fhaze delay [zecs]:

I I

Interpret wector parameters az 1-0

ak. H Cancel ” Help l

How to use the
Pulse generator
to implement
Immunization?

Say that we start
after 3 days and
we immunize 10
people per day:
Amplitude = 10
Period = 1

Pulse Width =
50%

Phase Delay = 3
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In Summary: Examples to SIRD and SISD
(based on correspondence with Claude
Lieber MD)

* Once one has and recover from TB, there is
decent immunity to it 2> SIRD

* Once one has had meningococcal meningitis,
there is immunity to the bacteria (if one recover,
since mortality is high) = SIRD

* Parasites like Trypanosomes (Malaria) or
Schstisomomes (Schistosomiasis - really
prevalent in the Nile basin as well as India,
China, SE Asia, etc.): In these parasitic
diseases, infection is curable with appropriate
drugs but re-infectign.ig««emmon - SISD 38



In Summary: Examples to SIRD and SISD
(based on correspondence with Claude
Lieber MD)

* There really is no immunity to the above
parasitic diseases. That is why it has been

so difficult to develop a vaccine for these
diseases.

* For TB, there is a vaccine BCG (widely
used in some European countries)

* For meningococcal meningitis FAU and all
other universities require all students to
show immunization to be admitted.
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