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Bio-Systems Modeling and 
Control

Lecture 21
Enzymes

Cooperation in Enzymes 
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Enzymes with Multiple Binding 
Sites

•
 

Many enzymes have more than one 
binding site for substrate molecules.

•
 

Example: Hemoglobin (Hb), the oxygen-
 carrying protein in red blood cells, has 4 

binding sites for O2 molecules.
•

 
In such cases (as will be shown) reaction 
velocity may no longer be of the simple 
Michaelis-Menten

 
hyperbolic curve type. 

•
 

It may have a sigmoid
 

shape.
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Types of Enzyme-Substrates 
Interactive Behavior

•
 

Basic cooperation: Binding of substrate 
molecules to some of the active sites affect the 
binding of subsequent substrates molecules.

•
 

Allosteric
 

effect:
 

Binding one substrate (or other 
molecule) at one site can affect the binding of 
different type of substrate, at a different site of 
the same enzyme.

•
 

If a molecule enhances the binding of the other 
substrates, it is called activator

 
(or cofactor). 

•
 

If it decreases the subsequent activity, it is called 
an inhibitor.
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Why and How is Enzyme Activity 
Controlled?

•
 

Without any regulation of reaction rates, 
cellular metabolism would be 
uncoordinated and undirected, proceeding 
at rates varying from explosive to almost-

 nonexistent.
•

 
Control can be effected to both –

 
enzyme 

synthesis, as well as enzyme activity. In 
this lecture we focus on the latter.
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A few words about the Control of 
Enzyme Synthesis

•
 

The quantity of an enzyme in a cell depends on 
the balance between enzyme rate of destruction 
(due to temperature effect denaturing, or due to 
breaking down by other enzymes called 
proteolytic

 
enzymes), and rate of synthesis.

•
 

Normally, rate of enzyme synthesis is regulated 
by the rate of transcription of the gene encoding 
the creation of such an enzyme protein.

•
 

Often, enzyme is created only after an initial 
quantity of the substrate is sensed.
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Example: Regulation of Iron in the 
Blood

•
 

It is important to 
regulate the amount 
of iron (Fe) in the 
blood, which is 
transported in the 
blood by the protein 
“transferrin”.

•
 

Excess iron is stored 
in certain cells. It is 
bound to another 
protein “ferritin”.
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Example: Regulation of Iron in the 
Blood

•
 

The more 
transferrin

 
the 

more iron is 
there in the 
blood.

•
 

The more 
ferritin

 
(in 

certain cells) 
the less iron is 
there in the 
blood.
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Example: (Control of Enzyme Synthesis)
 Regulation of Iron in the Blood

•
 

The regulation of “transferrin
 

vs. ferritin”
 occurs via an “Iron Regulatory Protein 

(IRP)”. How?
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Blood Iron Regulation –
 

IRP and 
IRE

•
 

IRP can either bind to iron (Fe) or to an “Iron 
Response Element (IRE)”,

 
which is part of the 

RNA strands, for production of either ferritin
 

or 
transferrin

 
receptor.

•
 

Case 1: Iron deficiency
 

(low iron level in the 
blood) IRP has an increased affinity for 
binding to IRE’s {Whenever IRP binds to 
IRE on the transferrin receptor RNA, this 
stabilizes that RNA strand and causes increased 
synthesis of the transferrin receptor}
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Blood Iron Regulation –
 Case 1: Iron Deficiency

Low iron level in the blood IRP has an 
increased affinity for binding to IRE’s

{Whenever IRP binds to IRE on the 
transferrin receptor RNA, this stabilizes that 
RNA strand and causes increased synthesis of 
the transferrin receptor} and {Whenever IRP 
binds to the IRE on the ferritin RNA, this blocks 
the translation of that RNA strand into protein 
decreased synthesis of ferritin} Overall: Low 
iron increased production of transferrin
receptor, decreased production of ferritin.
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Blood Iron Regulation –
 Case 2: Iron Excess

High iron level in the blood IRP has a 
decreased affinity for binding to IRE’s

{Whenever less IRP binds to IRE on 
the transferrin receptor RNA, there is a 
decrease in the synthesis of the transferrin
receptor} and {Whenever less IRP binds to 
the IRE on the ferritin RNA, there is an 
overall increased synthesis of ferritin} 
Overall: Low iron decreased production 
of transferrin receptor, increased ferritin
production.
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Going back to Control of Enzyme 
Activity
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Enzyme with Two Active Sites
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•
 

Enzyme can exist in three states: Free molecule 
E, a complex with one occupied site C1

 

and a 
complex with two occupied sites C2

 

.
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Mass-Action Reaction Equations
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Initial 
conditions: 
s(0)=s0

 

, 
e(0)=e0

 

, 
c1

 

(0)=c2

 

(0)=
 =p(0)=0
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Similarly to previous derivations we 
obtain e+c1

 

+c2
 

=e0
 

and:
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Applying quasi-steady-state 
assumption dc1

 

/dt≈dc2
 

/dt≈0, yields:
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We can now find the speed of reaction V, from 
the dp/dt=k2

 

c1

 

+k4

 

c2  equation.
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Quasi-Steady-State for c1
 

,c2
 

: 
Reaction Velocity
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Reaction Velocity –
 

Extreme Case 
1

•
 

If active sites act independently and identically:
•

 
Then k1

 

=2k3

 

=2k+

 

, 2k-1

 

=k-3

 

=2k-

 

and 2k2

 

=k4 

•
 

The above factor of 2 occurs because two 
identical binding sites are involved in the 
reaction, doubling the amount of the reactant.
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Reaction Velocity –
 

No 
Cooperativity

•
 

If active sites act independently and identically:
•

 
Then k1

 

=2k3

 

=2k+

 

, 2k-1

 

=k-3

 

=2k-

 

and 2k2

 

=k4

•
 

Let K=k-

 

/k+

 

is the equilibrium constant for the 
individual binding site.

•
 

Reaction rate simply doubles.
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Reaction Velocity –
 

Extreme Case 
2 (Positive Cooperativity)

•
 

If binding of the first substrate is slow, but that 
with one site bound, binding of the second is fast 
–

 
this is called large positive cooperativity:

•
 

Then k1 0 (that is “very small”) , k3 ∞ (that is 
“very large”), while the product k1k3 stays 
constant. (other constants – fixed)

•
 

Then K2 0 and K1 ∞ while K1K2=Km
2 is 

constant.
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Reaction Velocity Extreme Cases
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In between the two exterme
 cases:

Hill Function
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Curve Fitted Hill Equation
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Km
n’

 
= K1

 

K2

 

…Kn’

 

(n’

 
equilibrium constants for an 

n’-site enzyme)
•

 
Positive cooperativity

 
is if n>1, No cooperativity

 if n=0, Negative cooperativity
 

is if n<1.
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Negative Cooperativity
•

 
Binding of the first 
substrate molecule 
decreases the rate of 
subsequent binding.

•
 

In such a case we 
usually have a small 
value of k3

 

.
•

 
Main effect: A 
decrease in the 
maximum speed. 
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Hill Plot (from Hill’s equation)

)ln()ln()ln(
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•
 

Vary s0

 

and measure V0

 

.
•

 
Plot ln(V0

 

/(Vmax

 

-V0

 

)) vs. ln(s0

 

) is expected to be a 
straight line of slope n.

•
 

The unknowns n, Vmax

 

and Km

 

are found by 
curve fitting.
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Hill Equation Applications

•
 

Even though, theoretically, n should be an 
integer, in practice, after doing the curve 
fitting, the resulting n is often non-integer.

•
 

Hill equation is often used in reactions 
whose detailed intermediate steps are not 
known, but for which cooperative behavior 
is suspected.
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Bottom Line Approximated Model 
for Cooperative Enzyme Reactions

•
 

The above approximation is for cases where 
there are multiple active sites for identical 
substrates.

•
 

Scientists often use such a model to represent a 
chain of enzyme reactions.
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