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BME 5742 Bio-Systems Modeling 
and Control

Lecture 5
Extensions to the Logistic Model: 

Extinction and Predation 
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Extensions to the Logistic Model

•
 

Logistic Model with Extinction
•

 
Logistic Model with Predation
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Extinction

Population may become extinct
 

if size falls 
below a certain critical level:

•
 

Predators eliminate the last few members
•

 
Finding mates becomes more difficult

•
 

Lack of genetic diversity Increased 
susceptibility to epidemics.

How do we model “potential for extinction”
 mathematically?
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“Predator Pit”
 

Growth Rate Model
 (Extinction Threshold)
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Critical Size = θ, Carrying Capacity = K 
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Logistic Model with Extinction 
Threshold
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Growth rate is negative if 
y<θ

 
or if y>K
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Logistic Model with Extinction 
Threshold –

 
Phase-Plain Description
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Logistic Model with Extinction 
Threshold –

 
Sketch of Time Solution
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Logistic Growth Model with Predation
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A reasonable functional form for p(y) should 
show a low rate of predation if y is sufficiently 
small, and limited rate of predation if y is large
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Ludwig’s Predation Model (1978)

A = Predation threshold

B = Predation saturation
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Ludwig’s Predation Model
 

–
 

one of 
several plausible mathematical forms 
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Ludwig’s mathematical model –
 Parameters units explained

•
 

[A] = [K] = [y]
•

 
[a] = time-1

•
 

[B] = [y]·(time)-1

•
 

It appears that 4 
parameters a,K,A,B

 characterize the 
system; Actually, only 
two are needed! 
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The remaining slides may be 
skipped –

 
material is not essential
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It helps to express mathematical model 
equations in scaled

 
and non-dimensional 

terms. Advantages are:
•

 
Units become unimportant

•
 

“Small”
 

and “Large”
 

have definite relative 
meaning

•
 

Smaller number of relevant parameters 
are governing the solution behavior of the 
system

Scaling and Normalization is an art!!
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Ludwig’s Model  Scaled and 
Normalized: Choice of New Variables
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Define: (for the moment it may look like 
“black magic”. We’ll be more systematic 

later on)
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Ludwig’s Model  Scaled and 
Normalized: Substitution into Original 

Equation
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Ludwig’s Model  Scaled and 
Normalized
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All variables and parameters are non-
 dimensional



Dr. Zvi Roth (FAU) 17

Equilibria
 

of Ludwig’s Model
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Equilibria
 

Stability of Ludwig’s Model
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“Cusp Catastrophe”
 

Phenomenon

•
 

Number of equilibria
 depends on the 

parameters r,q
•

 
“Refuge equilibrium”

 = u1e

•
 

“Outbreak 
equilibrium”

 
= u3e

•
 

Application: Pest 
Control
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