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Extensions to the Logistic Model

* Logistic Model with Extinction
* Logistic Model with Predation
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Extinction

Population may become extinct if size falls
below a certain critical level:

* Predators eliminate the last few members
* Finding mates becomes more difficult

» Lack of genetic diversity - Increased
susceptibility to epidemics.

How do we model “potential for extinction”
mathematically?
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“Predator Pit” Growth Rate Model
(Extinction Threshold)

dy

_dt _ oY Y
= a(s -

where 0<60<K

Critical Size = 0, Carrying Capacity = K
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Logistic Model with Extinction

Threshold
dy "7
dt y y
r=—=a(=-1){1--=
y (D=0
where_0<8<K o K

Growth rate is negative if
y<0 or if y>K
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Logistic Model with Extinction
Threshold — Phase-Plain Description

dy

_dt _ oY oY
r = y a(e (1 K)

where 0<fd<K

Unstable equilibrium y_=6
Stable equilibria y,=0 and
Yo=K
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Logistic Model with Extinction
Threshold — Sketch of Time Solution
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Logistic Growth Model with Predation

dy Y\
a—ay(l K) p(Y)

A reasonable functional form for p(y) should
show a low rate of predation if y is sufficiently
small, and limited rate of predation if y is large
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Ludwig’s Predation Model (1978)

A = Predation threshold

B = Predation saturation
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Ludwig’s Predation Model — one of
several plausible mathematical forms
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Ludwig’'s mathematical model —
Parameters units explained

Al = [K] = y]

2
al = time o(y) = By
B] = [y](time)" A +y°
t appears that 4 2
parameters a,K,A,B C_y — ay(l—l) _ 13)/ .
characterize the at K™ A"+y

system; Actually, only
two are needed!
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The remaining slides may be
skipped — material is not essential
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It helps to express mathematical model
equations in scaled and non-dimensional
terms. Advantages are:

* Units become unimportant

« “Small” and “Large” have definite relative
meaning

« Smaller number of relevant parameters
are governing the solution behavior of the
system

Scaling and Normalization is an art!!
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Ludwig’'s Model Scaled and
Normalized: Choice of New Variables
dy By*

y
— =a 1__ _
dt ( K) A° +y°

Define: (for the moment it may look like
“black magic”. We'll be more systematic
later on)

y Aa K Bt
A B A A
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Ludwig’'s Model Scaled and
Normalized: Substitution into Original

Equation
d By? Aa K Bt
—y_ay(l—l)— 2y > u=2 =02 4= E
dt K™ A°+y A B A A
Then (d_u) 1 dy
_B du ‘dt’ _ A dt
dr =—dt = =
dr (ﬂ) E
dt A
y, By’ Au.  BAZ’
ay(l— =) — A Y
_ y( K) A2+y2:aAU'(1 K~ A2+ A2 _
B B
2 Z
T L S P T S
K" or kdtddin Fhu) qg 1+u 15




Ludwig’'s Model Scaled and

Normalized
2
ﬂ_ay(l_l)_ sz > u:l r:E qZE Z'Iﬁ
dt K™ A"+y A B A A
Then
du u U’
—=ru(l--) :
T g l+u

All variables and parameters are non-

dimensional
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Equilibria of Ludwig’'s Model

2
d—u—0:> ru (1——9)— e =

dr g 1+u

= U, :O_or_r(l— )_1

-I-U
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Equilibria Stability of Ludwig’'s Model

s S\lan .cyw'/:ln’a
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“Cusp Catastrophe” Phenomenon

 Number of equilibria
depends on the
parameters r,q

+ “Refuge equilibrium’
= Uqe

* “Outbreak
equilibrium™ = u,,

» Application: Pest
Control
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