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Bio-Systems Modeling and 
Control

Lecture 26
Analogous Electrical Circuit Models



Dr. Zvi Roth (FAU) 2

References:

•
 

Michael Khoo
 

“Physiological Control 
Systems”

 
Wiley / IEEE Press 1999.

•
 

Dr. Khoo’s
 

PowerPoint slides (USC, 
Biomedical Engineering Dept)



Dr. Zvi Roth (FAU) 3

Ohm’s Law

•
 

In a component called resistor
 

the voltage V 
(across the component) and the current I 
(through the component) obey Ohm’s Law 
V=IR, where R is the component’s resistance.

•
 

V represents the “effort”
 

and I represents the 
“flow”.

•
 

“Resistance”
 

concept applies to many other 
different types of physical systems –

 mechanical, fluid, heat and chemical.
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Generalized Ohm’s Law –
 Mechanical Systems

•
 

Piston of the dashpot moves at a velocity v 
(“I”)

 
that is proportional to the applied force F 

(“V”).
•

 
“Resistance

 
Rm

 

”
 

relates to the viscosity
 

of the 
fluid inside the dashpot. 
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Generalized Ohm’s Law –
 

Fluid 
System

•
 

Q is the volumetric flow (“I”)
 

through a rigid 
tube. ΔP is the pressure difference across the 
two ends of the tube (this is “V”).

•
 

Fluid resistance
 

Rf

 

is directly related to the 
viscosity of the fluid and the tube length, and 
inversely related to the tube’s cross section 
area.
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Generalized Ohm’s Law –
 

Heat 
Transfer System

•
 

Heat flow Q (“I”); Temperature difference Δθ
 (“V”).

•
 

Thermal resistance Rt

 

relates inversely to 
material thermal conductivity and thickness, 
and directly to material area.
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Generalized Ohm’s Law –
 Chemical Systems

•
 

Diffusion through a thin membrane.
•

 
Concentration difference is “V”, and flow Q 
through the membrane is “I”.

•
 

Diffusion resistance = (permeability)-1
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Electrical Capacitors
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•
 

A component is called capacitor
 

if current I 
through the component is proportional to the 
rate of change of voltage v across component. 
C is the capacitance.

•
 

Capacitor can store electrical charge q.
•

 
Voltage across C must be a continuous 
function of t –

 
it cannot jump instantly. 
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Generalized Capacitor –
 Mechanical Systems

For an elastic spring, the applied force F is 
“V”, the displacement x is “q”, the compliance

 Cm

 

is the inverse of the spring’s stiffness 
represented by its elastic modulus k.
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Generalized Capacitor –
 

Fluid 
system example

•
 

Fluid-filled elastic container
 

is a fluid 
capacitor. Compliance is determined both by 
the container’s elasticity and by the 
compressibility of the fluid.

•
 

ΔP is “V”
 

and change of volume is “q”.
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Generalized Capacitor –
 

Thermal 
system

•
 

Thermal capacitance
 

depends on the specific 
heat of the material and on the object’s 
dimensions.

•
 

Temperature difference is “V”; Stored heat -
 “q”
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Generalized Capacitance –
 Chemical system

•
 

Capacitance
 

is the volume of the fluid.
•

 
Concentration of the substance (in the fluid 
volume) is “V”; Substance’s mass is “q”.



Dr. Zvi Roth (FAU) 13

Other analogies to electrical 
concepts:

•
 

In a “resistor”
 

energy is dissipated; In a 
“capacitor”

 
energy is stored.

•
 

V·I=Power: Mech. Sys -
 

F·v=power; 
Fluid sys. –

 
Pressure x Flow rate = 

power, etc. It is consistent.
•

 
“Capacitor”

 
stores “static”

 
(potential) 

energy.
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Generalized Inductance
•

 
More common name is Inertance, which has 
to do with storage of kinetic energy.

•
 

An electrical inductance (inertance) is defined 
as V=L·di/dt.

•
 

Mechanical inertance: F=M·(dv/dt), which is 
Newton’s 2nd

 
Law. Mass is the inertance.

•
 

Fluids:
 

Inertance
 

relates to the relationship 
between  fluid acceleration and applied 
pressure differential.

•
 

No inertance
 

in thermal or chemical systems.
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Generalized Kirchoff’s Laws:
1. Algebraic sum of “across-variable” values 
around any closed circuit (loop) = 0
2.  Algebraic sum of “through-variable” values 
through a given node = 0
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Combinations of components 
(Electrical)

A: R’s in 
parallel

B: R’s in series

C: C’s in 
parallel

D: C’s in series
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Combinations of components 
(Electrical)
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Combination of mechanical 
componentsA: Both 

pistons are 
constrained to 
move at the 
same v: series 
connection!

Thus Req is 
sum of two 
R’s
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Combination of mechanical 
componentsB: Same 

force is 
applied to 
both pistons : 
parallel 
connection!

Thus Req is 
R1 ||R2
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Combination of mechanical 
componentsC: Same 

speed in both 
springs : 
series 
connection!

Thus Ceq is 
C1 || C2 which 
leads to a sum 
of the springs 
moduli
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Combination of mechanical 
componentsD: Same 

force applied: 
parallel 
connection!

Thus Ceq is 
C1 + C2 which 
leads to a an 
overall spring 
constant 
smaller than 
each constant 
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Example: Linear Model of Respiratory Mechanics
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Respiratory mechanics: Fluid model 
resistances

• Lung mechanics – 
airways are divided 
into two categories: 
The larger (central) 
airways, and the 
smaller (peripheral) 
airways.

• Each airway has a 
fluid resistance RC ,RP
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Respiratory mechanics – Fluid 
model capacitances

• Air that enters the 
alveoli produces an 
expansion of chest- 
wall cavity by the 
same volume.

• This is represented by 
a connection of the 
lung CL and chest-wall 
CW compliances in 
series.
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Respiratory mechanics – more about 
capacitances

A small fraction of the 
air volume that enters 
the respiratory system 
is shunted away from 
the alveoli as a result 
of compliance of the 
central airways and 
gas compressibility 
(represented by CS )
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Respiratory mechanics model – 
applications and significance

The shunted air 
volume is normally 
very small, but it 
becomes more 
substantial if a disease 
leads to peripheral 
airway obstruction (an 
increased RP ) or a 
stiffening of the lungs 
or chest-wall 
(decreased CL or CW )
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Respiratory mechanics – pressures in 
a fluid model are like voltages in an 

electrical model
• Pressures: Pa0 =at 

airway opening, Paw = 
in central airways, PA = 
in the alveoli, Ppl = in 
the pleural space 
(between lung 
parenchyma and chest 
wall).

• Reference pressure is 
P0 =ambient (set to 0)
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Pressure and Flow Units and Typical 
Values:

• Pressures’ unit is typically [cmH2 O]
• Typical pressure amplitudes in the 

respiratory system are in the order of 
magnitude of a fraction of to a few 
[cmH2 O].

• Flow rates are typically measured in liters 
per second [L/s].



Dr. Zvi Roth (FAU) 29

Resistance and Capacitance Units 
and Typical Values:

• Resistance’s units are therefore 
[cmH2 O·s/L].

• Order of magnitude of normal RC and RP 
are a fraction of to a few [cmH2 O·s/L].

• Capacitance’s unit is [L/cmH2 O].
• Typical values for CL and Cw is around 0.2.
• CS may be normally 1/40 of CL .
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Respiratory mechanics – fluid flow 
rates are like electrical currents

• Let the volume flow-rate of 
air entering the respiratory 
system be Q at a pressure 
of Pa0 , either one can be 
input.

• Need to find the 
relationship between Q(t) 
and Pa0 (t).

• Use Kirchhoff’s laws to 
derive the differential 
equations.
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Respiratory mechanics – applying 
Kirchhoff’s laws

• Recall: Q is “I” and P 
is “V”.

• Apply KCL at node 
Paw :

• Q-QA =CS (dPaw /dt)
• Also: QA =Ceq (dPA /dt) 

where Ceq
-1=CL

-1+CW
-1

• Now KVL: Pa0 =QRC + 
QA RP +PA
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Respiratory mechanics – How do set 
up a Simulink model?

• Q-QA =CS (dPaw /dt)
• QA =Ceq (dPA /dt) 
• How do we proceed 

systematically?
• Need to set a “state- 

variable model” (that 
is, a system of 
independent first-order 
differential equations)

In a RC circuit, 
capacitor voltages 
(that can be initialized 
independently) can be 
states
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Respiratory mechanics – Setting up a 
state-variable model

• Q-QA =CS (dPaw /dt)
• QA =Ceq (dPA /dt) 
• Let PA and Paw be the 

state variables.
• Represent QA in terms 

of PA and Paw : 
• (Paw -PA )/RP =QA

In a RC circuit, 
capacitor voltages 
(that can be initialized 
independently) can be 
states
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Respiratory Mechanics – the 
resulting state equations
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How do we find the relationship between Pa0 and 
Q?



Dr. Zvi Roth (FAU) 35

Respiratory Mechanics – the resulting model: 
state equations and output equation (Scenario 

1 – Q is input)
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In general, an output variable is a linear combination of 
the state variables and the input
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Respiratory Mechanics – the resulting model: 
state equations and output equation (Scenario 

2 – Pa0 is input)
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Scenario: An intensive care unit patient hooked up to a 
ventilator with a given peak pressure.
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