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Virus
A small infectious 
agent that can 
replicate only inside 
the living cells of an 
organism.
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Virions
 

(Virus Particles)

•
 

Virus particles (known as virions) consist 
of two or three parts: 

•
 

the genetic material made from either DNA 
or RNA, long molecules that carry genetic 
information; 

•
 

a protein coat that protects these genes; 
and in some cases 

•
 

an envelope of lipids that surrounds the 
protein coat when they are outside a cell. 
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Replication Cycle of a Virus

•
 

Attachment is a 
specific binding 
between viral capsid

 proteins and specific 
receptors on the host 
cellular surface.

•
 

Penetration follows 
attachment: Virions

 enter the host cell 
(Viral Entry) 
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Replication Cycle of a Virus
•

 
Uncoating is a process in 
which the viral capsid

 
is 

removed
•

 
Replication of viruses 
involves primarily 
multiplication of the 
genome: synthesis of 
viral mRNA, viral protein 
synthesis, possible 
assembly of viral 
proteins, then viral 
genome replication.  
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Replication Cycle of a Virus
•

 
Following the self-

 assembly of the virus 
particles, some 
modification

 
of the 

proteins often occurs.
•

 
Viruses can be 
released from the 
host cell by lysis, a 
process that kills the 
cell by bursting its 
membrane and cell 
wall if present  
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Paper by Herz
 

et al

Summary of main ideas
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Basic Three-Variable Viral Dynamic 
Model 
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•
 

Where 
x(t)=population of 
uninfected

 
cells, 

y(t)=population of 
infected

 
cells, 

v(t)=plasma 
population of the virus

•
 

Constant influx λ
 

of 
uninfected cells; d is 
their death rate
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Basic Three-Variable Viral Dynamic 
Model (Herz

 
et al)
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•
 

Uninfected cells and 
free virus produce 
infected cells at a rate 
of β(t)x(t)v(t).

•
 

Infected cells produce 
free virus particles at 
a rate of k(t) and die 
at a rate of a.

•
 

Free virus particles 
are cleared at rate u.



Dr. Zvi Roth (FAU) 11

Basic Three-Variable Viral Dynamic 
Model (Herz

 
et al)
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•

 
Effects of various 
drug therapies may 
be modeled  via time 
varying β(t) and k(t) 
coefficients.

•
 

For constant β
 

and k 
there are 2 
equilibrium points.
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Tuckwell’s
 

Modification to Herz
 Viral Dynamic Model
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•
 

Tuckwell’s
 

little modification is to claim reduction 
in v(t) at the same time that x(t) decreases. Does 
the model behavior change drastically due to this 
modification?
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Basic Viral Dynamic Model 
Equilibria

 
if β

 
and k are constant
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How many equilibrium points are there?



Dr. Zvi Roth (FAU) 14

Basic Viral Dynamic Model 
Equilibria

 
if β

 
and k are constant
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An equilibrium in which viruses and 
infected cells are eradicated
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Basic Viral Dynamic Model 
Equilibria

 
if β

 
and k are constant
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An equilibrium in which there is steady 
state population of viruses and infected 
cells.
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Modified Viral Dynamic Model to 
Incorporate the Virus Life-Cycle 

)()()()(

)()()()()(

)()()()()(

tuvtytk
dt

tdv

tayetvtxt
dt

tdy

tvtxttdx
dt

tdx

−=

−−−−=

−−=

−αττττβ

βλ

Virus production lags by a delay of τ
 

behind the 
infection of the cell.
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Modified Viral Dynamic Model to 
Incorporate the Virus Life-Cycle 
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Recruitment of virus-producing cells is 
determined by cells that got infected at time t-τ

 and are still alive at time t.
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Modified Viral Dynamic Model to 
Incorporate the Virus Life-Cycle 
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A constant death rate α
 

is assumed for infected 
but not yet virus-producing cells. The probability 
of surviving from time t-τ

 
to time t is exp(-ατ).
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Non-Trivial Equilibrium using Pre-
 Treatment constant β

 
and k Rates 
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These will now serve as initial conditions 
for studying treatment strategies.
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Example: HIV-1 Treatment by 
Reverse Transcriptase Inhibitors
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In HIV-1 reverse transcriptase inhibitors 
block the infection of uninfected cells.
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Example: HIV-1 Treatment by 
Reverse Transcriptase Inhibitors
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In the model it means that β(t) is strongly 
reduced once treatment sets in at time t=0.
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Example: HIV-1 Treatment by 
Reverse Transcriptase Inhibitors
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For simplicity the paper assumes that the drug 
has 100% effectiveness β(t)=0.
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Example: HIV-1 Treatment by 
Reverse Transcriptase Inhibitors
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For 0 <t≤
 

τ
 

cells that are virus producing at time t 
were infected at time t-

 
τ ≤ 0; that is, before the 

drug was administered.

Until t = τ
 

both y and v remain at their pre-
 treatment steady-state. Thereafter the drug 

begins to block further infections.
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Example: HIV-1 Treatment by 
Reverse Transcriptase Inhibitors

τ

τ

τ
τ

λ

ττ >−
−

≤<
=→

−=

>−
≤<

=

>−=

−−−− tforueae
ua

v
tforv

tv

tuvtytk
dt

tdv
tfortay

tfor
dt

tdy

tfortdx
dt

tdx

tatu __][

0______________
{)(

)()()()(
__)(

0__0
{)(

0__)()(

)()(0

0



Dr. Zvi Roth (FAU) 25

Example: HIV-1 Treatment by 
Reverse Transcriptase Inhibitors
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The same time lag that exists between 
infection of the cell and emission of viral 
particles, shows up at the drug-treated 
response. 

Measurements have confirmed that u > a.
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Similar Example: HIV Treatment by 
Protease Inhibitors

•
 

Protease inhibitors of HIV block the 
production of new infectious virus vI

 

from 
already infected cells.

•
 

Only non-infectious virus is generated.
•

 
One can model the treatment by using 
k(t)=0.

•
 

For t>0 infectious viruses decay according 
to dvI

 

(t)/dt=-uvI

 

(t).
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Paper by Tuckwell
 

et al

Summary of main ideas
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General Two-Component Effector-
 Virus Model

avrv
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•
 

Anderson & May, 
1991

•
 

Model describes the 
immune system 
attack on disease-

 causing particles
•

 
a(t) = effectors (such 
as CD4+ T-cells), v(t) 
= virus population
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General Two-Component Effector-
 Virus Model
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•
 

Effectors production 
rate = s = const.

•
 

Effectors per-capita 
death rate = μ

•
 

More effectors are 
produced at a rate of 
εav

 
by interaction with 

the viral population
•

 
Virion

 
production rate 

= r, virion
 

removal 
rate = γav
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General Two-Component Effector-
 Virus Model Equilibria
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The eigenvalues

 associated with P1 are 
λ1

 

= -μ
 

and λ2

 

= r-
 (sγ/μ).

•
 

If s=0 then P1

 

is an 
unstable saddle point.

•
 

If s≠0, then P1

 

is an 
unstable saddle if sγ

 ≤
 

rμ
 

and an 
asymptotically stable 
node if sγ

 
> rμ
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General Two-Component Effector-
 Virus Model Equilibria
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•
 

The eigenvalues
 

associated with P2 are shown 
above. 

•
 

If s=0 then λ1,2

 

=±j(μr)1/2 P2 becomes a center.
•

 
If sγ

 
> rμ

 
then P2

 

is a saddle. 
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General Two-Component Effector-
 Virus Model Equilibria
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•
 

If sγ
 

< rμ
 

then P2

 

is a stable node if (4r2/(sγ)2)[μr-
 γs] ≤

 
1

•
 

If sγ
 

< rμ
 

then P2

 

is a stable focus if (4r2/(sγ)2)[μr-
 γs] > 1

•
 

If sγ
 

= rμ
 

then the nature of P2

 

cannot be 
determined by a linearization. 
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General Two-Component Effector-
 Virus Model Equilibria
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If sγ

 
> rμ

 
then P1

 

is 
stable and P2

 

does 
not exist. In such a 
case the effector

 annihilates the virus.
•

 
If sγ

 
< rμ

 
then P1

 

is 
unstable and P2

 

is 
stable virus 
becomes endemic. 
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Two-Component Model for HIV-1
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Bonhoeffer

 
et al, 1997

•
 

x(t) = uninfected 
CD4+ T-cells, y(t) = 
infected CD4+ T-cells

•
 

Rate of infection by 
virus = kxy

•
 

The other 
parameters: s = 
production rate of 
such cells; Death 
rates=μ,α

Similar results as in 
previous case
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Three-Component Model for HIV-1
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Modification of Herz’s
 model.

•
 

The model includes 
the virus population.

•
 

It will soon turn out, 
using realistic 
numerical values, that 
the modification is 
insignificant.
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HIV-1 Model Equilibria
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P1

 

=((s/μ),0,0)
•

 
P2

 

=((αγ)/(k(c-α),(s/α)-
 (γμ)/(k(c-α)),s(c-

 α)/(αγ)-(μ/k))
•

 
According to Herz

 model one has: 
P2

’=((αγ)/(kc),(s/α)-
 (γμ)/(kc)),(sc/(αγ))-
 (μ/k))
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HIV-1 Model Equilibria
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Typical coefficients 
(Phillips, 1996): 
s=0.272/day/mm3, μ

 
= 

0.00136/day/mm3, 
k=0.00027/day/(virion

 /mm3), 
α=0.33/day/mm3, 
c=50 virion/CD4/day, 
γ=2.0/day

P2

 

=(49.21,0.6214,15.43)

P2

 

’=(48.89,0.6228,15.57)



Dr. Zvi Roth (FAU) 39


	Bio-Systems Modeling and Control
	References
	Virus
	Virions (Virus Particles)
	Replication Cycle of a Virus
	Replication Cycle of a Virus
	Replication Cycle of a Virus
	Paper by Herz et al
	Basic Three-Variable Viral Dynamic Model 
	Basic Three-Variable Viral Dynamic Model (Herz et al)
	Basic Three-Variable Viral Dynamic Model (Herz et al)
	Tuckwell’s Modification to Herz Viral Dynamic Model
	Basic Viral Dynamic Model Equilibria if β and k are constant
	Basic Viral Dynamic Model Equilibria if β and k are constant
	Basic Viral Dynamic Model Equilibria if β and k are constant
	Modified Viral Dynamic Model to Incorporate the Virus Life-Cycle 
	Modified Viral Dynamic Model to Incorporate the Virus Life-Cycle 
	Modified Viral Dynamic Model to Incorporate the Virus Life-Cycle 
	Non-Trivial Equilibrium using Pre-Treatment constant β and k Rates 
	Example: HIV-1 Treatment by Reverse Transcriptase Inhibitors
	Example: HIV-1 Treatment by Reverse Transcriptase Inhibitors
	Example: HIV-1 Treatment by Reverse Transcriptase Inhibitors
	Example: HIV-1 Treatment by Reverse Transcriptase Inhibitors
	Example: HIV-1 Treatment by Reverse Transcriptase Inhibitors
	Example: HIV-1 Treatment by Reverse Transcriptase Inhibitors
	Similar Example: HIV Treatment by Protease Inhibitors
	Paper by Tuckwell et al
	General Two-Component Effector-Virus Model
	General Two-Component Effector-Virus Model
	General Two-Component Effector-Virus Model Equilibria
	General Two-Component Effector-Virus Model Equilibria
	General Two-Component Effector-Virus Model Equilibria
	General Two-Component Effector-Virus Model Equilibria
	Slide Number 34
	Two-Component Model for HIV-1
	Three-Component Model for HIV-1
	HIV-1 Model Equilibria
	HIV-1 Model Equilibria
	Slide Number 39

