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BME 5742 Bio-Systems Modeling 
and Control

Lecture 15
Models for Spread of Infectious 

Diseases
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Theory References

•
 

Nicholas F. Britton, “Essential 
Mathematical Biology”, Springer 2003

•
 

Edward K. Yeargers
 

et al, “An Introduction 
to the Mathematics of Biology”, Birkhauser

 1996.
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Simple SI Epidemic Model 
Assumptions

•
 

Population consists only of susceptibles
 and infected.

•
 

A few infected species are assumed to be 
introduced into a population of 
susceptibles.

•
 

Disease is contagious. It is spread by 
contact between susceptibles

 
and 

infected.
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SI Model Assumption
 

(cont’d)

•
 

A susceptible, once infected, becomes 
infective immediately and remains so 
indefinitely.

•
 

S I (a reasonable assumption to the 
initial stage of many diseases).

•
 

Assume that the population is fixed N:
S(t)+I(t)=N (That is, no deaths. Model is 
valid over a short enough time).
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SI Model Equations

IS
dt
dIIS

dt
dS ββ =−=

•
 

The parameter β
 

is called the pairwise
 

infectious 
contact rate.

•
 

We assumed that contact model is proportional 
to the product of the populations.
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Equation for the Infected population
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•
 

Infected model is the familiar Logistic Model, 
with a=βN and K=N.

•
 

According to this model, everyone eventually 
becomes infected: I N.

•
 

So far, no “recovery”
 

was included in the model.
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SIS Model: S I S

•
 

Recovered individuals again become 
susceptible. In such a case, we say that disease 
remains endemic

 
in the population.

•
 

Most micro-parasitic infections leave behind 
some measure of immunity. However, some 
bacterial or parasite infections confer little or no 
immunity SIS model may be reasonable in 
such cases.

•
 

Again, assume S+I=N 
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SIS Simple Model Equations

IIS
dt
dIIIS

dt
dS γβγβ −=+−=

•
 

The parameter β
 

is the pairwise
 

infectious 
contact rate

 
as before.

•
 

The constant γ
 

is the recovery rate.
•

 
It looks like a version of a Predator-Prey model, 
but there are constraints!
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Standard Normalizing of the SIS 
Model Equations

t
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Resulting Normalized SIS Model 
Equations

10101
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•
 

R0

 

is called the reproductive ratio
 

.
•

 
Recall: βN= rate at which a single infective is 
introduced into a population of size N. (1/γ)= 
expected duration that an infective remains 
contagious.
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Disease dies out if R0
 

<1:
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Disease stays endemic if R0
 

>1:
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SIR Epidemics

•
 

SIR = Susceptibles
 

+ Infected + 
Recovered.

•
 

Infected individuals may recover. 
Recovered species leave the Infected 
group, presumably without coming back.

•
 

The Recovered play no further role in the 
spread of the disease.

•
 

S I R (Kermack & McKendrick, 1927)
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SIR Epidemics Model Assumptions

•
 

Duration of the epidemic is short 
compared to the lifetime of its hosts.

•
 

Therefore, we can neglect birth and 
disease-unrelated (and related) deaths.

•
 

Thus: N=S(t)+I(t)+R(t)
•

 
As in SIS model, we shall use the βIS 
Susceptibles

 
/ Infected interaction, and a 

γI, which this time describes I R.
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Simple SIR Model Equations

•
 

Is system third-order? 
•

 
No, due to the constraint N=S+I+R

I
dt
dRIIS

dt
dIIS

dt
dS γγββ =−=−=
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“Formal”
 

Normalizing of the  SIR 
Model Equations
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Equations become:
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Actual Normalized SIR Model
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•
 

S(t) (represented by u) can never exceed S(0). It 
can only decrease.

•
 

Similarly, R(t) (represented by w) cannot 
decrease.

•
 

Let u0

 

+v0

 

=1 and w0

 

=0.
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Equilibria
 

of SIR Model
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•
 

There are infinitely many equilibrium points, with 
ve

 

=0 and ue

 

=const. No other equilibria.
•

 
Reaching an equilibrium means that “Infected”

 population disappeared: Disease eradicated.
•

 
Does model reach equilibrium? Is point stable? 
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What is trajectory’s direction at 
(u0

 

,v0
 

)?
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Arrow must point to the left, as u must 
decrease. If R0

 

u0

 

>1 then arrow points up (v 
starts to increase), and if R0

 

u0

 

<1 then arrow 
points down (v starts to decreases). 

[From Britton’s book]
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If R0
 

<1: Disease dies out

γ
βNR

uRdu
dv

=

−=

0

0

11

If R0

 

<1 then dv/du>0, and because (du)<0 then 
(dv)<0 always. In other words, I population 
always decreases, if infection rate is lower than 
recovery rate.

From 
Britton’s 
book
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If R0
 

>1: Disease spreads and 
lingers longer

γ
βNR

uRdu
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If R0 >1 then dv/du<0, and because (du)<0 then 
(dv)>0 initially, till u falls below 1/R0

 

. Then v 
begins to decrease.
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SIR Model Follow Ups

•
 

One can now introduce more 
complications to the basic SIR model: 

•
 

Disease-related deaths,  
•

 
Time delay between infection and death, 

•
 

Time delay between being infected and 
being infective.

•
 

Immunization effects.
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Integrators only for S and I. R(t) is found 
algebraically from S(t) and I(t).
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A STOP block is picked up from the Sinks folder. If its input 
signal becomes nonzero the whole simulation stops.
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A Sign block has output +1 if its input is positive, -1  
if input is negative and 0 if input is 0
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We want to stop the simulation when S(t) < 1. Note that 
when S(t)>1 the Sign block output is 1, and STOP block 

input is zero. When S(t)<1, the input to STOP is -2.
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Comment about inserting STOP 
blocks

•
 

There is a need to add another STOP block 
arrangement to stop the simulation when I(t) < 1.

•
 

If we allow the simulation to continue despite the 
fact that some of the variable values no longer 
make sense the results that are produced (about 
the number of Recovered, or the time at which 
the disease becomes defeated) may be in error.
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SIRD Model: Some of the Infected become Recovered and 
some may die. When simulation stops the total number of 

Dead shows up in the Display
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One of the four variables (S, I, R, D) should be treated as 
redundant. For instance, we can replace the integrator for 

R by Fcn
 

block that computes N-S-I-D



Dr. Zvi Roth (FAU) 30

The diagram below is still correct, but only because R(0)=0. 
The summation and scope on the lower right hand side 
checks consistency –

 
do all the variables add up to N?
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In this SIRD model we created two versions of I: Regular 
I(t) and a Delayed I(t-T). Both are available for the various 

Fcn
 

blocks
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In the simulation below note that u(3) (the delayed I) was 
used for the recovered and dead terms, but a regular I is 

used for the infection term
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In the Transport Delay block we may assign the delay 
parameter internally (as done here), or externally using a 

CONST block. 
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Pulse Generator is added to allow implementation of simple 
Immunization Strategies
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•
 

How to use the 
Pulse generator 
to implement 
immunization?

•
 

1 second = 1 
time unit in the 
simulated 
system (say 1 
day)

•
 

Phase delay = 
when we start 
the 
immunization
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•
 

How to use the 
Pulse generator 
to implement 
immunization?

•
 

If we choose a 
large period (the 
one shown is 
larger than the 
simulation final 
time) Step 
function

•
 

It makes more 
sense to 
immunize 
periodically
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•
 

How to use the 
Pulse generator 
to implement 
immunization?

•
 

Say that we start 
after 3 days and 
we immunize 10 
people per day:

•
 

Amplitude = 10
•

 
Period = 1

•
 

Pulse Width = 
50%

•
 

Phase Delay = 3
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In Summary: Examples to SIRD and SISD 
(based on correspondence with Claude 

Lieber
 

MD)
•

 
Once one has and recover from TB, there is 
decent immunity to it SIRD

•
 

Once one has had meningococcal meningitis, 
there is immunity to the bacteria (if one recover, 
since mortality is high) SIRD

•
 

Parasites like Trypanosomes (Malaria) or 
Schstisomomes

 
(Schistosomiasis

 
-

 
really 

prevalent in the Nile basin as well as India, 
China, SE Asia, etc.): In these parasitic 
diseases, infection is curable with appropriate 
drugs but re-infection is common SISD
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In Summary: Examples to SIRD and SISD 
(based on correspondence with Claude 

Lieber
 

MD)
•

 
There really is no immunity to the above 
parasitic diseases. That is why it has been 
so difficult to develop a vaccine for these 
diseases. 

•
 

For TB, there is a vaccine BCG (widely 
used in some European countries)

•
 

For meningococcal meningitis FAU and all 
other universities require all students to 
show immunization to be admitted. 
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