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BME 5742 Bio-Systems Modeling 
and Control

Lecture 8
Predator-Prey Models

An oscillating two-species model
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Multi-Species Systems

•
 

Single species models are unrealistic, as 
all species interact with some other 
species.

•
 

Growth rate of each species depends on 
the amount of inter-species interaction.

•
 

Simple model for the interaction of two 
species is a growth rate term proportional 
to the product of the two population sizes.
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Classes of two-Species Models

•
 

Predator-Prey Model:
 

Growth rate 
interaction term of species A increases 
while that of species B decreases (and 
vice versa).

•
 

Competition Model:
 

Interaction causes 
both growth rates to decrease.

•
 

Mutualism (Symbiosis) Model:
 

Interaction 
causes both growth rates to increase.
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Lotka-Volterra
 

Predator-Prey Model 
(1925-1926)

bxymy
dt
dy

axyrx
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dx

+−=

−=

•
 

Prey population = x
•

 
Predator population = y

•
 

Positive constants r,m,a,b.
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Predator-Prey Model explained

bxymy
dt
dy

axyrx
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+−=

−=

•
 

Prey population = x
•

 
Predator population = y

•
 

With no interaction (a=b=0), x tends to increase, 
whereas y tends to decrease.

•
 

Interaction decimates prey and enhances 
predator.
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Prey Model Assumptions

•
 

The prey, in the absence of any predation, 
grows unboundedly in a Malthusian way 
(this is the rx

 
term).

•
 

The effect of predation is to reduce prey’s 
per capita growth rate by a term –axy

 proportional to both populations product.
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Predator Model Assumptions

•
 

The predator, in the absence of any prey, 
decays exponentially (this is the -mx

 
term).

•
 

The effect of predation is to enhance 
predator’s per capita growth rate by a term 
+bxy

 
proportional to both populations 

product.
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Predator-Prey Model Equilibrium 
States

bxymy
dt
dy

axyrx
dt
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−==

0

0

There are two solutions x=y=0 and (x=m/b
 and y = r/a).
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Model Solution at arbitrary initial 
conditions

aryybmxx /)0(/)0( 00 ≠=≠=

axyrx
bxymy

dx
dy

−
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=

(Simultaneously)

Then:

These are closed curves in the x-y
 state-plane
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Predator-Prey State-Plane and 
Time Solutions

Not a limit cycle! In a limit cycle the amplitude 
and frequency are constant regardless of initial 
conditions.
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Normalization of the Predator-Prey 
Model

•
 

The four parameter model with {r,m,a,b} reduces 
to a single-parameter model, if we scale time, 
and normalize each of the populations: 4-1-1-

 1=1
•

 
Here is what seems to be a “tricky”

 
normalizing:

tr
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The resulting normalized Predator-
 Prey Model:

)1()1( −=−= uv
d
dvvu

d
du α

ττ
•

 
Equilibrium states are u=v=0 and u=v=1
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The resulting normalized Predator-
 Prey Model:

)1()1( −=−= uv
d
dvvu

d
du α

ττ

[Figures taken from Murray’s book]
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Meaning of the parameter α

•
 

The single parameter α
 

that controls the 
predator-prey model has the following 
meaning:

•
 

Parameter α=m/r
 

= 
(Predator’s death rate)/(Prey’s birth rate)

•
 

The normalization is actually not that 
tricky. Here is a step-by-step explanation 
of the process:
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Prey’s equation normalization

)1()1()( vrxy
r
arxayrx

dt
dx

−=−=−=

[r]=(time)-1

 
; [a]=[y]-1(time)-1

Therefore, ay/r is unit-less and we call it v (a 
normalized predator variable)
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Time Scale implied by the Prey’s 
equation

)1()1()( vrxy
r
arxayrx

dt
dx

−=−=−=

Now we see that by a time scaling (shown 
below) we can get rid of the last parameter in 
the prey’s equation.

rdtdrt =⇔= ττ
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Prey’s equation time scaled

)1()1()( vrxy
r
arxayrx

dt
dx

−=−=−=

rdtdrt =⇔= ττ

)1(1)1( vx
r

vrx
d
dt

dt
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d
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ττ
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Predator’s equation normalized

x
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Finally: Substitution of variables
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Predator-Prey oscillation solution

•
 

A closed path in the u-v
 

plane (or x-y
 

plane) 
represents an oscillation. That is, x(t) and y(t) 
are periodic, having the same period.

•
 

The predator-prey oscillation’s features 
(amplitude, period, shape of time signals) vary 
as the initial values of x and y vary.

•
 

This is not a limit cycle (a fixed oscillation to 
which the system converges from any initial 
conditions).



Dr. Zvi Roth (FAU) 20

Extended Predator-Prey Models

More realistic models must include some logistic 
growth limitation. Here is a general model:

),(),( yxyG
dt
dyyxxF

dt
dx

==

Prey equation Predator equation
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How to make prey models more 
realistic:

)()1(),(

),(

xyxR
K
xryxF

yxxF
dt
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−−=

=

We include a logistic prey’s growth model 
and a predation term. There are several 
possibilities for suitable predation models:
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Prey Logistic Model with Predation

)()1(),(

),(

xyxR
K
xryxF

yxxF
dt
dx

−−=

=



Dr. Zvi Roth (FAU) 23

More realistic Predator Equation

),( yxyG
dt
dy

=
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More possibilities for a  Predator 
Equation

),( yxyG
dt
dy

=

G= -d+eR(x), where d and e are 
positive constants, and R(x) is as in 
the prey’s equation.
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Many of the extensions to the 
standard Lotka-Volterra

 
model can 

lead to a stable limit cycle
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