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Virus

A small infectious
agent that can
replicate only inside
the living cells of an
organism.
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Virions (Virus Particles)

Virus particles (known as virions) consist
of two or three parts:

the genetic material made from either DNA
or RNA, long molecules that carry genetic
iInformation:

a protein coat that protects these genes;
and in some cases

an envelope of lipids that surrounds the
protein coat when they are outside a cell.
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Replication Cycle of a Virus

e Attachmentis a
specific binding
between viral capsid
proteins and specific
receptors on the host
cellular surface.

Penetration follows
attachment: Virions
enter the host cell
(Viral Entry)
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Replication Cycle of a Virus

« Uncoating is a process in
which the viral capsid is
removed

« Replication of viruses
iInvolves primarily
multiplication of the
genome: synthesis of
viral mMRNA, viral protein
synthesis, possible
assembly of viral
proteins, then viral
genome replication.
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Replication Cycle of a Virus

* Following the self-
assembly of the virus
particles, some
modification of the
proteins often occurs.

* Viruses can be

a5 released from the
host cell by lysis, a
process that kills the
cell by bursting its
membrane and cell
wall if present
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Paper by Herz et al

Summary of main ideas
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Basic Three-Variable Viral Dynamic

Model
 Where
X(t)=population of

dx(t) uninfected cells,

g - AT XO-BOXOVD v y=population of
dy(t) infected cells,
TR SOX)V(L) —ay(t) v(t)=plasma
dv(t) B population of the virus

gt OYO-w . Constant influx A of

uninfected cells: d is
their death rate
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Basic Three-Variable Viral Dynamic
Model (Herz et al)

 Uninfected cells and
free virus produce
infected cells at a rate

%:z—dx(t)- BOXVE)  of BOXEV(L).
vt  |Infected cells produce
M _ BOX)V(t)—ay(t) free virus particles at
dt a rate of k(t) and die
o _ K(t)y(t) —uv(t) at a rate of a.
dt » Free virus particles

are cleared at rate u.
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Basic Three-Variable Viral Dynamic
Model (Herz et al)

dx(t » Effects of various
);(t = 20~ FOXOVO) drug therapies may
dy(t be modeled via time
S poxovo -ay® varying (0 and k(®
dv(t coefficients.
\(;(t - KOO =w(D) * For constant 3 and k
there are 2

equilibrium points.
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Tuckwell’'s Modification to Herz
Viral Dynamic Model

ax(t)
dt

w = BOX(HV() —ay(t)

= A —dx(t) = SOX(E)V()

% =K(0)y(t) —uv(t) - BOXEV(L)

* Tuckwell’s little modification is to claim reduction
in v(t) at the same time that x(t) decreases. Does

the model behavior change drastically due to this
modification?
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Basic Viral Dynamic Model
Equilibria if 8 and k are constant

dx, (1)
dt
dy. (t)
dt
dv, (1)
dt

=0=A-dx, — XV,

=0= /Bxeve o aye

=0=Kky, —uv,
How many equilibrium points are there?
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Basic Viral Dynamic Model
Equilibria if 8 and k are constant

0=A-dx,—pBxVv, >0=A-dx —ay, >V, :/I—adxe
O:lBXeVe_aye
O:kye_uve —V, :E/I_dXe
u d
kK A—dx,

OZIBXeVe_aye_)IBXe :ﬂ’_dxe

A
elza_)yelzo 9Ve1:0

u a

—> X

An equilibrium in which viruses and
Infected cells are eradicated
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Basic Viral Dynamic Model

Equilibria if 8 and k are constant

A —dx,
a

0=A-dx,—-px,v, >0=A-dx,—ay, > Y, =

0= /[))Xeve o aye

O:kye—uve—>vezk/l_dxe
u a
0= ﬂxeve_ayeﬁﬂxkﬂ dX /,i’_dxe
a
ua A du ki d
X TP Yo T N T
K a pk 7 ua B

An equilibrium in which there is steady
state population of viruses and infected
cells.
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Modified Viral Dynamic Model to
Incorporate the Virus Life-Cycle

d’;(tt) A—dX(t) = B()x()v(t)
% = f(t—7)X(t—7)V(t—7)e ™" —ay(t)
av®) _ -

. K®)y(t) —uv(t)

Virus production lags by a delay of t behind the
infection of the cell.

Dr. Zvi Roth (FAU) 16



Modified Viral Dynamic Model to
Incorporate the Virus Life-Cycle

d’;(tt) A—dX(t) = B()x()v(t)
% = f(t—7)X(t—7)V(t—7)e ™" —ay(t)
% = K()Y(t) - uv(t)

Recruitment of virus-producing cells is
determined by cells that got infected at time t-t
and are still alive at time t.
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Modified Viral Dynamic Model to
Incorporate the Virus Life-Cycle

d’;(tt) A—dX(t) = B()x()v(t)
% = f(t—7)X(t—7)V(t—7)e ™" —ay(t)
% = K()Y(t) - uv(t)

A constant death rate a is assumed for infected
but not yet virus-producing cells. The probability
of surviving from time t-t to time t is exp(-ar).
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Non-Trivial Equilibrium using Pre-
Treatment constant 3 and k Rates

% = A —dx(t) - BOXMV(D)
% = B(t-T)X(t—7)V(t - 7)™ —ay(t)
S k-
au A . du Ky,
X, =——¢€ Yo=—& ——  Vo=——
K a /X .

These will now serve as initial conditions
for studying treatment strategies.
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Example: HIV-1 Treatment by
Reverse Transcriptase Inhibitors

d);(tt) A—dx(t) for t>0
dy(ty 0 _for O<t<z
dt  —ayt) for t>r

ot =K(®)y(t)—uv(t)

In HIV-1 reverse transcriptase inhibitors

block the infection of uninfected cells.
Dr. Zvi Roth (FAU)
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Example: HIV-1 Treatment by
Reverse Transcriptase Inhibitors

d);(tt) A—dx(t) for t>0
dy(ty 0 _for O<t<z
dt  —ayt) for t>r

it =K(®)y(t)—uv(t)

In the model it means that [3(t) is strongly

reduced once treatment sets in at time t=0.
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Example: HIV-1 Treatment by
Reverse Transcriptase Inhibitors
ax(t)

dt

=A—-dx(t) for t>0

it =K(®)y()—uvt)

For simplicity the paper assumes that the drug
has 100% effectiveness - [(3(t)=0
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Example: HIV-1 Treatment by
Reverse Transcriptase Inhibitors

dy(ty 0 _for O<t<rt
dt  —ay(t) for t>r

For O <t< t cells that are virus producing at time t
were infected at time t- 1 < 0; that is, before the
drug was administered.

Until t = t both y and v remain at their pre-
treatment steady-state. Thereafter the drug
begins to block further infections.
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Example: HIV-1 Treatment by
Reverse Transcriptase Inhibitors

d’é(tt) A—dx(t) for t>0
dy(t) _ 0 for O0<t<rt
dt —ay(t) for t>r
&8 k) -wo
v, for 0<t<r
Svt)={ v,

[ae ™" —ue?™ 7] for t>71

a—u
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Example: HIV-1 Treatment by
Reverse Transcriptase Inhibitors

V, for 0<t<r
v(t)=1{ Vv,
a—u

—u(t-7)

[ae —ue ] for t>r

The same time lag that exists between
infection of the cell and emission of viral

particles, shows up at the drug-treated
response.

Measurements have confirmed that u > a.
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Similar Example: HIV Treatment by
Protease Inhibitors

* Protease inhibitors of HIV block the
production of new infectious virus v, from
already infected cells.

* Only non-infectious virus is generated.

* One can model the treatment by using
k(t)=0.

* For t>0 infectious viruses decay according
to dv|(t)/dt=-uv,(t).
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Paper by Tuckwell et al

Summary of main ideas
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General Two-Component Effector-
Virus Model

* Anderson & May,
1991

da « Model describes the
=S— A+ &V immune system

dt attack on disease-

dV causing particles

—=rV - 7@V  a(t) = effectors (such

dt as CD4+ T-cells), v(t)
= virus population
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General Two-Component Effector-
Virus Model

 Effectors production
rate = s = const.

da  Effectors per-capita
— G — Iua + caV death rate = |

dt  More effectors are
produced at a rate of

dv cav by interaction with
=TIV —-7aVv the viral population

dt * Virion production rate
= r, virion removal
rate = yav
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General Two-Component Effector-
Virus Model Equilibria

da * The eigenvalues
. =S—pa+é&av associated with P, are
dv (sy/p).
PR + If s=0 then P, is an
s unstable saddle point.
P =(—.,0) e If s#0, then P, is an
H unstable saddle if sy
_ <ry and an
r ur—s
P, =(—, e 7/) asymptotically stable
y & node if sy > ru
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General Two-Component Effector-
Virus Model Equilibria

da_ o a+av ﬂ—rv—yfolv
a -~ -t

S § F—S
P =(=,0) P =(,2—%
H y &

1

ds = -Wiw +4r2(5)—dur’}

* The eigenvalues associated with P, are shown
above.

» If s=0 then A, ,=%j(ur)"2 > P, becomes a center.
* If sy > ry then P, is a saddle.
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General Two-Component Effector-
Virus Model Equilibria

da_o_ a+av ﬂ—rv—yfolv
a -~ -t

S § F—S
P =(=,0) P =(,2—%
H y &

s == s (8 4T ()= g
 If sy <ruthen P, is a stable node if (4r2/(sy)?)[ur-
vys] < 1
 If sy <ruthen P, is a stable focus if (4r?/(sy)?)[ur-
ys] > 1
* If sy = ry then the nature of P, cannot be

determined by a lingarization. .



General Two-Component Effector-
Virus Model Equilibria

da e Ifsy>rythenP,is

g oo HaTey stable and P, does

4 not exist. In such a

v _ rv—sav case the effector

dt annihilates the virus.
_ /S * Ifsy<rpthenP,is

ik (ﬂ 0) unstable and P, is

stable = virus
P, =( r , A= 57/) becomes endemic.
)4 er
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F10. 1. Examples of phase portraits for the Anderson-May two-component model for viral-antibody dynamics.
Top part. Here there is just one critical point—a stable node P;. All solutions end up at P regardless of the initial
values. The viral population is driven to extinction. Parameter valees: A = 15, u = lLLe = 1,r =1,y =1,
which pats P at (0, 3/2). Middle part. There are two critical points but only the one in the positive quadrant is
stable and this is a spiral point. Parameter valves: A = 2, u = 2, € = |, r = 2, y = 0-5, putting the two critical
points at (0, 1) and (3/2, 4). Bottom figure. There are two critical points, but again only onc is asymptotically
stable and a node. Parameter values: A = 3, u = 10, € = 0-2,r = 1, y = 3 with equilibrium points (0, 0-3) and

(5, 1/3)-
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Two-Component Model for HIV-1

dx « Bonhoeffer et al, 1997
=S — ,UX kXy * X(t) = uninfected
dt CD4+ T-cells, y(t) =

infected CD4+ T-cells

ﬂ _ kxy —ay * Rate of infection by

dt - virus = kxy
* The other
parameters: s =
Similar results as in production rate of
previous case such cells; Death
rates=u,a
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Three-Component Model for HIV-1

% =S— 1 — kvx  Modification of Herz's
dt model.
dy * The model includes
E = kvX—ay the virus population.
* |t will soon turn out,
av_ ey — W — kvx using realistic
0 numerical values, that
the modification is
insignificant.
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HIV-1 Model Equilibria
dx

=S — 1X — KvX * P4=((s/n),0,0)

dt « P=((ay)/(k(c-a),(s/a)-

dy (YM)/(k(c-a)),s(c-

at = kvx—ay a)/(ay)-(u/k))

dv « According to Herz
model one has:

gt~ Y TR P, =((ay)/(kc),(s/a)-
(YM)/(kc)),(sc/(ay))-
(M/K))
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HIV-1 Model Equilibria

ax

a0 S — pX — kvx  Typical coefficients

C (Phillips, 1996):

ay _ KVX — a2y s=0.272/day/mms3, y =
at 0.00136/day/mm?3,

dv k=0.00027/day/(virion
C—ZCy—W—kVX /mm3),

a=0.33/day/mm?3,

P,=(49.21,0.6214,15.43) €0 virion/CD4/day,
vy=2.0/day

P,’=(48.89,0.6228,15.57)
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F1G.2. Computed solutions for the 3-component HIV-1 model using the standard parameter se, @ = 0:33, A =
0272, p = 0-00136, k = 000027,y = 2,c = 50 and x(0) = 200, y(0) = 0 and v(0) = 4 x 10~7, where
%.y. v are in mm™3, a. The virion density for the first 50 days, showing a primary peak of ebout 3000 mm™> &t
sbout 27 days after initial infection. b. The time course of the virlon density over days 50-2000, showing peaks of
diminishing amplitude as solutions approach the asymptotically spiral polmt 7. c. Phase diagram of the solution
in which uninfected CD4-+ T-cell density is plotted against virion density for the first 2000 days.
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