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Bio-Systems Modeling and 
Control

Lecture 23
Enzymes

Inhibition and Activation
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Controlling Enzyme Activity

•
 

The activity level of many enzymes can be 
enhanced or decreased by certain 
molecules, acting either as activators

 
or 

inhibitors.
•

 
The therapeutic effects of many drugs 
depend on their ability to inhibit specific 
enzymes, thereby blocking metabolic or 
physiological processes involved in a 
disease.
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Example: Enzyme Inhibition associated 
with an Antidepressant Drug

•
 

The enzyme monoamine oxidase
 

(MAO) 
breaks down serotonin.

•
 

High levels of serotonin in the brain are 
associated with “positive mood”.

•
 

The antidepressant drug tranylcypromine
 (Parnate) inhibits the MAO enzyme.

•
 

By inhibiting MAO, the level of serotonin in 
the brain increases, and mood improves.
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Irreversible Enzyme Competitive 
Inhibition

•
 

Inhibitor molecules may form stable 
covalent bonds with groups inside the 
enzyme’s active site, thereby blocking 
formation of E+S complexes.

•
 

Some toxins (cyanide and many nerve 
gases) fall into this category.

•
 

For normal cell function, we need 
reversible

 
inhibition.
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(Reversible)
 

Competitive Inhibition

•
 

It is caused by molecules that have similar 
shape as that of the substrate, which 
compete with the substrate molecules  
interacting with enzyme active site.

•
 

Inhibition can be reversed, if substrate 
concentration is increased. This may even 
cause a displacement of the inhibiting 
molecules out of the enzyme’s active site. 
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Competitive Inhibition Illustrated
 

[based on 
Eckert’s Animal Physiology]
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Noncompetitive Inhibition
•

 
This type of enzyme inhibition is caused by 
molecules (other than the substrate) that bind to 
regions in the enzyme outside the substrate 
active site.

•
 

More common name to such inhibition is 
allosteric

 
inhibition

 
(“allosteric”

 
= from Greek: 

“another solid”).
•

 
Such inhibition effect cannot be reversed by 
changing substrate’s concentration –

 
only by 

dilution or removal of inhibitor.
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Allosteric
 

Inhibition and Activation Illustrated
 [based on Eckert’s Animal Physiology]
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Allosteric
 

Interactions Explained

•
 

An activator or inhibitor molecule, as it 
combines with the enzyme, at its allosteric

 site, may cause configuration alteration of 
the enzyme’s molecule.

•
 

Allosteric
 

Inhibitor causes the active site 
(that normally fits a substrate) to “shrink”

 (or lose its compatibility in other ways).
•

 
Allosteric

 
Activator enables the active site 

(which is normally disabled).
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Recall: The Lineweaver-Burk Plot 
of Simple Enzyme Kinetics
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•
 

Km

 

and Vmax

 

are the unknowns.
•

 
Only two experiments (with two different values 
of s0

 

) are needed –
 

we then find the unknowns 
from the x-axis and y-axis intercepts of the line.
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Effect of Competitive Inhibition on the 
Lineweaver-Burk Plot: Slope=Km

 

/Vmax

 increases (to be proved soon)

•
 

Competitive inhibition increases Michaelis
 constant Km

 

, but does not change Vmax.
•

 
Only x-intercept is affected. Y-intercept 
unchanged.
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Effect of Allosteric
 

Inhibition on the 
Lineweaver-Burk Plot: Slope=Km

 

/Vmax

 increases (to be proved soon)

•
 

Allosteric
 

inhibition decreases Vmax

 

but does not 
alter Km

 

. Reduction of Vmax

 

is equivalent to 
reduction of enzyme concentration e0

 

.
•

 
Only y-intercept is affected. 
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Mathematical Details of 
Competitive and Allosteric

 Inhibition

Reaction Rate Equations, using 
Michaelis-Menten

 
quasi-steady-

 state relationships
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Competitive Inhibition of Enzyme 
Activity
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•
 

Inhibitor is I. Assume that k1

 

’=k1

 

and k-1

 

’=k-1

 

. 
That is, reaction rates for E,S are not affected by 
I. Rates k3

 

and especially k-3

 

may depend on s.
•

 
C1

 

is the substrate-enzyme complex, whereas 
C2

 

is the inhibitor-enzyme complex.
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Competitive Inhibition Reaction 
Rate Equations
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Initial 
conditions: 
s(0)=s0

 

, 
e(0)=e0

 

, 
i(0)=i0

 c1

 

(0)=c2

 

(0)=
 =p(0)=0
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Again e+c1

 

+c2

 

=e0

 

and we can eliminate the 
e equation and look later at p equation
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We already know, by Michaelis-Menten
 

theory that 
c1

 

and c2

 

quickly reach quasi-steady-state. 
Therefore we apply dc1

 

/dt≈dc2

 

/dt≈0 and get:
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We can now find the speed of reaction V, from  
dp/dt=k2

 

c1
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Quasi-Steady-State for c1
 

,c2
 

: 
Reaction Velocity
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Competitive Inhibition Reaction 
Velocity Explained

•
 

We see that Michaelis-Menten
 

constant is 
increased from Km

 

to Km

 

(1+i/Ki

 

).
•

 
We also see that the maximum velocity Vmax

 
does not change.

•
 

This explains the Lineweaver-Burk plots that we 
saw earlier.  An increase in s may cause      
Ki

 

=k-3

 

/k3

 

to increase.
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Bottom Line Simplified Model for 
Competitive Inhibition

•
 

Where s(t) and i(t) are the two process inputs
•

 
Can i be replaced by some constant ieq

 
representing some steady-state value of i(t)?

•
 

If k3

 

>> k-3

 

then c2

 

(t) approaches the value i0
 

very quickly and then i(t) 0 quickly, which 
partially defeats the inhibition action.

•
 

It is important that k-3

 

is not too small!
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How to Model Allosteric
 

Inhibition?

•
 

Possible idea: Same rate equations, as for 
Competitive Inhibition, except that we now 
assume that the inhibitor is capable of 
altering the reaction rates k1

 

and k-1

 

.
•

 
Method chosen:

 
Assume the existence of 

a transitory complex (EIS) and develop 
equations for rates of change of all 
complexes (ES,EI and EIS)



Dr. Zvi Roth (FAU) 22

Plausible Model of Allosteric
 

Inhibition of 
Enzyme Activity
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C1

 

is the substrate-enzyme complex, C2

 

is the 
inhibitor-enzyme complex and C3

 

is the inhibitor-
 substrate-enzyme complex.
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Allosteric
 

Inhibition Reaction Rate
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Initial conditions: 
s(0)=s0

 

, e(0)=e0

 

, 
i(0)=i0
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(0)=c3

 

(0)
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Total amount of enzyme: e+c1

 

+c2

 

+c3

 

=e0

 Define: Ks

 

=k-1

 

/k1

 

and Ki

 

=k-3

 

/k3

The above equations represent a strong 
assumption that complexes’

 
concentrations 

quickly reach equilibrium [according to book by 
Keener and Sneyd]
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Results of Quasi-Steady-State Analysis
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We can now find the speed of reaction V, 
from  dp/dt=k2

 

c1
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Approximated Allosteric
 

Inhibition 
Reaction Velocity

•
 

We see that Michaelis-Menten
 

constant Ks

 remains unchanged. It is only an approximation!
•

 
However the maximum velocity reduces from 
Vmax

 

to Vmax

 

/(1+i/Ki

 

) .
•

 
This explains the Lineweaver-Burk plots that we 
saw earlier.
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Bottom Line Simplified Model for 
Allosteric

 
Inhibition
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• Again, can i be replaced by a constant value?

•
 

Like in competitive inhibition it is important that 
the affinity of I to E is not too strong (that is k3

 should not be much larger than k-3

 

)

• The larger k-3

 

the larger is ieq

 

approaching i0
 

.
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Allosteric
 

Activation

•
 

With activation, the enzyme molecule can 
host both the substrate and the activator.

•
 

Need to take into account different types 
of complexes, as in the above Allosteric

 Inhibition model.
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Plausible Model of Allosteric
 

Activation of 
Enzyme Activity
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C1

 

= SE, C2

 

= EA, C3

 

= SEA . C1

 

can come only 
out of C3

 

. We assume that k1 = 0.
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Simplified Model of Allosteric
 

Activation of 
Enzyme Activity
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For simplicity let us neglect the rates k-1

 

, k-3

 

, k-4

 

, 
k-5

 

. One can later repeat the derivation without 
such an assumption.
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Allosteric
 

Activation Reaction Rate
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Allosteric
 

Activation Constraint
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Michaelis-Menten
 

Quasi-Steady-State 
Relationships for Allosteric

 
Activation
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Allosteric
 

Activation: Extreme Case 1
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Allosteric
 

Activation: Extreme Case 2
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Allosteric
 

Activation Simplified Model
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It seems that the main influence of A is to 
make Km

 

smaller, however Vmax

 

gets slightly 
smaller as well.
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Comment about the activation 
model

•
 

As in the discussion of inhibition models, it 
is important that a(t) does not go to zero.

•
 

In the previous derivation we neglected 
both k-3

 

and k-5

 

which works against the 
activation action.

•
 

One of the above reverse reaction rates 
must be sizeable enough.

•
 

Need to rederive
 

the model accordingly.
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What restricts accumulation of the 
Product?

•
 

In all the models that we have seen thus 
far, the accumulation of product P has no 
effect on the reaction rate.

•
 

Need to regulate reaction rate by 
accumulation of end product.

•
 

In many metabolic pathways, end product 
P acts as inhibitor

 
to one of the reaction’s 

enzymes.
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End Product Feedback Inhibition

•
 

Many reactions are multi-step enzymatic 
reactions.

•
 

Often, the first enzyme (E1

 

above) acts as a 
regulatory enzyme. P often acts as allosteric

 inhibitor of E1

 

. 
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