BME 5742 Biosystems
Modeling and Control

Lecture 33

lon Movement across Cell Membrane
Interaction of Electrical and Osmosis Effects
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Recall: Cell Volume Control —
Osmosis and Pump Effects Only

Fluxes &€= f
Passive T \ o o
- + - K+

permeabilities<—>a o

fNa = aNa([Na+]i _[Na+]o)+ P
f =ax (KT —[K"],)—p
X

RHZOQ =—-KT([Na"]; +[K"], + —-—[Na"], - [K"],)
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Model Extension

 Need to add the
electrical effects.

« That’'s why it's N/\ \/

necessary to account (D
for Cl-ions and for the  «- Kt

associated with the
large macro-
molecules X%

negative charges s >
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Membrane Voltage and lonic
Currents Sign Convention

* Cell membrane —_— .
voltage v = v;-v, is
considered unknown.

* For each ionic
current, positive K =
direction is defined as .
outwards.
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lonic Currents

Recall:

S lon Current =
(membrane S
conductance) x (v — Eg)
+ S-pump current

S Is either Na*, K* or CI-. For Cl-though there
: : Dr. Zvi Roth (FAU) 5
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Sodium lonic Current

KT , [S’

TR O K K“\m/

lea:gNa(V_ENa)-l— 0( = Na* ~ . et } .

= gNa(V_ In([Na ]o )) o < \\: Kt = <)> K
q [Na'l

Since [Na*],>>[Na], the
potential E\,>0. As an
approximation, we

neglect the 3:2 pumping Pump Na current is

ratio, replacing it with positive (outwards) =
1:1. Dr. Zvi Roth (FAU_)'_pq 6
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Potassium lonic Current

KT . [S
E, =v,—v, =—In(=° r®—|
T Zq ([S-i): Nl\\/
=l =9 (V-E¢) - pg = \ <D

KT . [K*1, i o
= gy (V——=In( K ) Pq

Since [K*] <<[K"];the
potential E(<0. As an
approximation, we

neglect the 3:2 pumping Pump K current is
ratio, replacing it with negative (inwards) =
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Chloride lonic Current

Es=v,—-Vv, = Al In([S]O)

R R T ﬂm/
=" Na \ . N | CDI

=0q(V+Ey)=
KT  [CIT] S

= v+ —In(= 2
O (V+ 0 (C Bl )) .

Since [Cl],>>[CI]; the
potential E~ <0, because

z= -1. This potential is

opposite to the Na* and  There is no CI pump
K* potentials Current is opposite to

or. zviroth @@HUAI flow of (-) charges

= H_»O




Cell Membrane Capacitance

Cv=q(V[Na'] +V[K*] -V[CI"] _XZ)NR

Much of the charge is
either outside or inside
the cell. Only very little e
charge accumulates at

the membrane itself. We
denote the equivalent ion

voltage to each ion’s  “E|gctro-neutrality”
excess charge by v. assumption is to take C->0.
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Water Osmotic Flux

Osmotic water F—®7
positive direction is NX\ \
defined as outwards. ™ N

= >~ Na* » Na
K* - \: K+ = K+

CI~

It Is assumed that
iInternal and external o~
hydrostatic

pressures must be

equal.

X'(?.—_}

H,0 ~

P d = H:O

RioQ= KT ([Na'] +[K ] +[C1 ]+~ [Na], ~[K 1) ~[C1 L)
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Water Osmotic Flux — Large X#
effect?? -1
Let xz=N, where N is F—@T\/

the total number of hl\

negative charges - N
trapped in cell. Let e \ Cx = CDL .
z—2°,x20,xz=N=const.

<—->Small number of
large molecules but
each negative charge is
large.
Ry,0Q=—KT([Na'];+[K "] +[Cl] +V1—[Na+]o ~-[K*1,)-[CI"],)
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Water Osmotic Flux — Large X#

effect?? -2
Letz > ©, x>0, xz= F—®7
N = const. h}\ \
€ ThatswhyXeis L (T
typically not included in “~ ~ K = "
water osmotic flux cr~ cr

(since x is small), but it
iInfluences the excess
charge equation (due to
-XZ).

Ry,0Q =—KT ([Na'], +[K"], +[CI ], +V1—[Na+]o -[K*1,)-[CI"],)
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Steady-State Relationships and

Approximations
KT . [Na'], 2
0=1,,=0,.(V- ] In([Na*]i ))+ pg K—\U\: \I/
L KT K] ks e .
0=1,=0,(v ; In([K+]i ))—pq \ Q)p

KT | dCr]

0=1l¢ =0q = -
o T8t e - ).
Cv=q(V[Na']; +V[K"]; -V[CI"]; - x2)

©C=0=0=[Na'], +[K'],—[CI ], _g

RHon=—KT([Na*L+[K+L+[cr]i+§—[Na+]o—[r<+]o)—[cr]o) o

<SR Q=0Xx>0=
Dr. Zvi Roth (FAU)
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Steady-State Equations

KT, [K*]

Five equations with 5 0=g, (Vv——In(>*—2)) - pq
unknowns — [Na*],, ‘ qg [K7]

[K*],, [CI],, vand V. 0= g (v+ KT In(:CI_:O))
ECF concentrations ~ e q [CI],

are assumed known.
[Na"],

ECF is assumed 0= gNa(V—Tl ([ Na'] )+ pq
electrically neutral:
Na'l+KD=ICo  0=[Na'] +[K '} -[C1 ] -

0=[Na"], +[K ], +[C1"], ~[Na"], ~[K ‘1) ~[CI ],
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Steady-State Equations — Solution

Approach

o Step 1: From first 0= gK(V_ﬁ|n(:K+:_o))_ 0g
three equations, q [K7]
express ICF KT, _[CI],
concentrations as 0=9q(V+—In(C==>))

- g Cl],
functions of v.

« Step 2: Substitute into 0= gNa(v——I (['\Ia 2 %))+ pg
the last two q  [Na’]
equations, and solve N N . N
for vand V. 0=[Na"J; +[K"J; =[CI"]; Vv

0=[Na"], +[K ], +[C1"], ~[Na"], ~[K ‘1) ~[CI ],
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Steady-State Equations — ICF
Concentration Expressions

[Na‘l, [Na'] - b
0= gNa(v——l ([I\| ]i))+pq:>[Na+]O—e
KT KTy K e
0=0g, (v . ln([K+]i)) pq:>[K+]o e
[CI7], [CI'], .5
0= gu(V"' 0 ([C| ] ) = [C|_]O =€

Dr. Zvi Roth (FAU)
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Steady-State Equations — ICF Concentration
Expressions with Simplified Notation

[CI]. e% __pq° pg?
= = W KT )

[Cl7], 4 Prna =€ ¥ Dy = eI

N v pg’ N

__Na I —e T 9KT _LINa'] _ PulNa'],

Na™], 4

- Qv _pg’ N

_.K+]i e KT O K] _ BdK7,

K], y

[CI_]i = 7/[CI_]0
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Steady-State Equations — Capacitance and
Water Osmosis Equations

Substitute: [CI"] =#[CI"]. =»([Na*], +[K*],)

[Na+]i _ ﬂNa[NaJr]o [K+ _ ﬂK[KJr]o

Into: /4 4

0=[Na’],+[K"], ~[CI], —g -

_, PulNa),  AlK ], =7/([Na+]o+[K+]o)+E
y y v

0=[Na'],+[K"],+[CI"], ~[Na'], ~[K*],)-[CI ], =

:ﬂNa[Sa ] IBK[K ] ﬁr(%,R%)QA\LIJ? ] +[K ]) O 5




Steady-State Equations — Capacitance and
Water Osmosis Equations (Simplified)

PralNa'ls | AelK]. =7/([N<31+]0+[K+]0)+E
y y 4
Pullady B8 L, g)(inay, +[K+\o) -0
Y Y
By
ﬂ: IBNa[Na+]o +IBK[K+]0 b — O
[Na'], +[K ], 2y 2
p - A L7 g
2V ([Na'], +[K"],) 2y 2
Dr. Zvi Roth (FAU)
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Recall variables physical meaning:

5= PulNa L +5K], it represents p, conductances

[Na™], +[K"], and ECF concentrations
N

N 2V ([Na*], +[K*],) Volume is represented by b
qv

eKT — y Voltage is represented by y
P 7 p-g
2y 2 - First, let us try to find y

voltage) in terms of f3.
y; N / ( ge) B

27/ 2 Dr. Zvi Roth (FAU) 20



A dead-end solution approach:
qv.
eKT — 7/

p 7/—1 O:>7/ —-27y+ =0
2y 2

= y=1x1-0

At this point, it's unclear which of the two
solutions is correct

Dr. Zvi Roth (FAU) 21



Alternate Steady-State Membrane Voltage
and Cell Volume Solution Approach

5= PulNa L +5K], it represents p, conductances

[Na™], +[K"], and ECF concentrations
N

N 2V ([Na*], +[K*],) Volume is represented by b
qv

eKT — y Voltage is represented by y
P 7 _p-g
2y 2~ ——_ Next letusfindy (voltage)

iIn terms of b (volume).
'B+y—1:0

27/ 2 Dr. Zvi Roth (FAU) 22




Unique voltage solution (dependent on
volume)

eKT =y

PV ho0= 2 +2by—f=0=
2y 2

— y=—btb?+ 8= y=—b+b>+p

The variable b=N/(2[CI-],V) is positive. Now, it
IS obvious which of the two solutions here is
to be adopted, as y must not be negative.

Dr. Zvi Roth (FAU)
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Unigque volume solution

7:—b+\/b2+,6’<:>£: Db+ 5

14 p

'B+7—1:O:>\/b2+,8:1:>
2y 2

=b=41-70

From the osmotic balance equation we get
the solution for b, which leads to the volume
formula

Dr. Zvi Roth (FAU)
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Steady-State Cell Volume Solution

— ﬁNa[NaJr]o +ﬂK[K+]o

[Na"], +[K™], _
N ) N b = \/1_ ,3

P N(Na,+ KT VIO,

p

— N Cell Volume
2[C| _]o\/l_ V;; Solution

V

It is necessary that 3<1, or cell swells until it bursts

Dr. Zvi Roth (FAU) 25



Properties of (3

pq° pg°

B = BualNa"], + B [K™], _ [Na+]oe_gNaKT +[K+]Oe9KKT

[Na"], +[K™], [Na"], +[K™],

* We see that as function of the pump rate p
B(0)=1 and [()=<>.
« Because we must have <1, it's important that

dB/dp< 0 at p=0. Then there exist a range of

pump rates p, for which cell volume can be

controlled. |
Dr. Zvi Roth (FAU) 26



More properties of 3

’ 2

IB_IBNa[Na 1, + B K™, [Na+]oe_gNaKT +[K+]Oe9KKT
[Na” I, +[K” 1 [Na+]o+[K+]O

C'_IB_(,JI(_[Na],BNa [K* ],gK):>

dp Ona J«

:d_ﬁ(o):a(—[NaJr]O _I_[K+]0)

dp Na gK

The constant a is independent of p.

Dr. Zvi Roth (FAU) .



Finite Cell Volume Condition

2 2

g PulNa'l + A K], _[Nale ™7 +[K Je™
[Na™], +[K™], [Na™], +[K™],

9 0y =a-Nade  IK Ly o,

dp Na gK

[Na'], _ [K'],
gNa gK

—

Necessary condition for controlled cell volume. If
condition is not satisfied, then 3>1 for all p.
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Optimum Pumping Rate

2 2

__Pqg Pq
5= Bu.INa*], + B [K*], [Na‘]e =" +[K*] e%" -1
[Na™], +[K™], [Na™], +[K™],
[Na'], | [K'L,
gNa gK

KT 0.9

-2 INaJIK +
d_ﬂ:O:ﬂ:ﬂminC:)popt: q In([Na_; ]OgK)
dp gNa+gK [K ]ogNa

For 3=f,,, we have V=V _. . It turns out that
sensitivity of V to p is low when p is near p,.

Dr. Zvi Roth (FAU) 29



Cell Volume Dependencies

:'BNa[Na+]o+IBK[K+]o \V = N

P INa], +IK 1, oACI 1.1/

 If p is constant, then V depends on N (the
number of trapped negative charges)

» Recall: 2[CI] =[Cl],+[Na*],+[K*], . This is the
total ECF ions concentration. If it becomes
smaller, then V increases.

* The constant B depends on [Na*] /[K*],. If ratio

reduces, V increases.
Dr. Zvi Roth (FAU) 30



Membrane Voltage Unique Solution

7/=—b+\/b2+ﬂ b:\/l—ﬂ

:>7/:1—\/1—,B

Now we know what the correct sign is.

From here we can write the membrane
voltage—> Dr. Zvi Roth (FAU)
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Membrane Voltage Solution

y=1-J1-8
:v_ﬁlny_—ln(l J1- )

G

« Because y<1 we have that v< 0!

* The negative animal cell membrane potential is
a by-product of the mechanism that regulates
cell volume.

Dr. Zvi Roth (FAU)
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