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Bio-Systems Modeling and 
Control

Lecture 25
Glucose and Insulin Dynamics: The Minimal 

Model
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Reference:

•
 

Michael C. Khoo, “Physiological Control 
Systems –

 
Analysis, Simulation and 

Estimation”, IEEE/Wiley 1999 (Sections 
3.6 and 5.5).

•
 

Robert Northrop, “Endogenous and 
Exogenous Regulation and Control of 
Physiological Systems”, Chapman & Hall, 
2000 (Chapter 7)
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The “Minimal Model”

•
 

The model involves only two 
compartments:

•
 

Blood Glucose compartment
•

 
Blood Insulin compartment

•
 

More complicated models introduce more 
compartments: Glucose & Insulin: in the 
Liver, GI system, Kidneys, “peripherals”

 
& 

typically one compartment for Blood 
Glucagon
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Why is Glucose Important?

•
 

Glucose is the principal source of energy 
for cell metabolism.

•
 

There are other biochemical pathways 
whereby other sugars, starches, fats and 
proteins in the diet can be converted to 
glucose.
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Glucose Sinks, once it is in the 
circulatory system:

•
 

It is stored in the liver (and to a lesser degree in 
muscle cells) as glycogen (a high molecular 
weight polymer)

•
 

It can be lost in the urine
 

if blood glucose 
concentration rises above a threshold of about 
1.8 g/l

•
 

It diffuses into insulin-sensitive cells
 

(such as 
muscle cells). Insulin assist in the diffusion by 
binding with a receptor and by that activating a 
glucose transport protein residing on the cell 
membrane. This increases glucose permeability 
up to 10-20 times.

•
 

It diffuses into non-insulin-sensitive cells
 

such as 
nerves.
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Glucose Sources

•
 

Dietary intake
•

 
Gluconeogenesis

 
–

 
biochemical entities 

such as glycerol, lactate and many more 
are converted in complex multistep 
enzymatic processes to glucose

•
 

Breakdown of liver glycogen
 

to glucose
–

 
The last two groups of processes are 
stimulated by the pancreatic hormone 
glucagon
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The Glucoregulatory
 

System

•
 

Regulated by two hormones
 

–
 

Insulin and 
Glucagon

•
 

It has one external input
 

(diet) and 2 
internal inputs

 
(from the liver and through 

gluconeogenesis)
•

 
It has four sinks

 
(liver, urine system, 

insulin-sensitive cells, non-insulin-sensitive 
cells)



Dr. Zvi Roth (FAU) 8

Hormones vs. Enzymes

•
 

All enzymes are proteins. Hormones could 
be proteins or other chemicals.

•
 

Enzymes are produced in all the cells to 
facilitate chemical reactions happening in 
the cells.

•
 

Hormones are produced in special glands 
(called the endocrine glands) and travel 
through the blood to effect physiological 
control actions at specific locations.
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Regulation Qualitative Description

•
 

When plasma glucose level is elevated, insulin 
hormone secretion in the pancreas is stimulated.

•
 

As blood insulin level rises, the uptake of blood 
glucose by some tissues increases.

•
 

The increased outflow of glucose from the blood 
and interstitial fluid leads to a decrease of blood 
glucose concentration, which produces 
reduction in insulin secretion and increase in the 
secretion of another hormone called glucagon.

•
 

Insulin and glucagon work in opposite ways.



Dr. Zvi Roth (FAU) 10

Initial Assumptions
•

 
The total volume of blood and interstitial fluids is 
represented by a single large compartment 
(Volume is around 15L in a normal adult).

•
 

We denote the blood glucose concentration as x.
•

 
[x]=mg/ml.

•
 

Many people are more used to [x] = mg/dl 
(creating figures that are 100 times larger than 
the ones used in this lecture).

•
 

Steady state: x=const. The total inflow of 
glucose into the compartment must equal the 
total outflow from the compartment.
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The Regulation process:
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Glucose Intake

•
 

Glucose enters the 
blood through 
absorption from the 
gastrointestinal tract, 
or through production 
by the liver.

•
 

Denote input flow rate 
as QL

 

[mg/h].
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Glucose elimination from the blood 
through the kidneys

•
 

When x is larger than 
a certain threshold θ, 
glucose is excreted 
by the kidneys at a 
rate proportional to 
the gradient between 
x and θ.

•
 

Renal Loss Rate = 
μ(x-θ) if x > θ, or 0 if x 
≤ θ.
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Glucose Elimination from the Blood going to 
cells through facilitated diffusion

•
 

Glucose leaves the 
blood to enter most 
cells through 
facilitated diffusion. 

•
 

In some tissues the 
rate of glucose 
utilization depends 
only on the 
extracellular-to-

 intracellular 
concentration 
gradient. 
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Glucose Elimination from the Blood going to 
cells through facilitated diffusion

•
 

In most 
circumstances we can 
ignore the ICF 
glucose 
concentration.

•
 

Tissue Utilization 
Rate (insulin-

 independent) ≈ λx
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Glucose Elimination from the Blood going to 
cells through insulin facilitated diffusion

•
 

In certain type of 
cells, such as muscle 
and adipose tissue, 
insulin helps to 
stimulate the 
facilitated diffusion 
process.

•
 

Rate of glucose 
uptake is proportional 
to x and the blood 
insulin concentration 
y.
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Glucose Elimination from the Blood going to 
cells through insulin facilitated diffusion

•
 

Rate of glucose 
uptake is proportional 
to x and the blood 
insulin concentration 
y.

•
 

Tissue Utilization rate 
(insulin-dependent) ≈

 νxy
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Blood Glucose Mass Balance
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θυλ
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•
 

Above is obtained by equating the inflow to the 
sum of the three outflows.

•
 

There is a “built-in”
 

negative feedback: If QL is 
constant, then an increase of x causes a 
decrease of y, and vice versa.
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Steady-State Relationship between 
x and y (from Glucose compartment)
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•
 

Insulin steady-state concentration y is related to 
glucose steady-state concentration x via two 
continuous hyperbolic curves.
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Summary of Nonlinear Effects seen 
so far

•
 

Threshold effect in the kidneys
•

 
Product effect in glucose absorption in 
insulin-dependent cells

•
 

Non-negativity of x and y
•

 
Soon one more threshold effect will be 
introduced related to the production of 
insulin.
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Insulin Production
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•
 

If blood glucose level x falls below a certain 
threshold φ, insulin production (at the pancreas) 
ceases.

•
 

Insulin is produced at a rate that depends on 
plasma glucose level.
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Insulin Destruction

yRatenDestructioInsulin α=__

•
 

Insulin is destroyed through a reaction involving 
the insulinase

 
enzyme.

•
 

It is destroyed at a rate proportional to its own 
concentration in the blood.
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Insulin and Glucose Steady-State 
Levels (for the Insulin compartment)
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•
 

Equating insulin production and destruction 
rates creates the above steady-state solution.

•
 

Steady-state levels of x (glucose) and insulin (y) 
are therefore related piece-wise linearly.
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Glucose-Insulin Steady-State
•

 
We can use the steady-state condition for 
glucose to plot y vs. x. (It is one hyperbolic graph 
for x<θ

 
connected to another graph for x>θ)

•
 

We can use the steady-state condition for insulin 
to plot y vs. x, as well (y=0 connected to a linear 
graph of slope β/α).

•
 

Drawing the two plots together provides a 
graphic solution to the overall system steady-

 state solution, as function of the input and the 
system coefficients.
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Three Steady-State Cases

•
 

Normal

•
 

Type-1 Diabetes

•
 

Type-2 Diabetes
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Case A: Normal Healthy Adult

•
 

Insulin blood 
concentration (in 
milliUnits

 
per ml 

blood) is plotted 
against blood 
glucose 
concentration (in 
mg per ml).

•
 

Axis x is glucose (a 
normal level of 80-

 90 mg/dl)



Dr. Zvi Roth (FAU) 27

Case A: Normal Adult
•

 
Typical adult 
parameters: 

•
 

θ=2.5 mg/ml 
•

 
μ=7200 ml/h 

•
 

λ=2470 ml/h 
•

 
ν=139000 (mU)-1h-1

•
 

φ=0.51mg/ml
•

 
β=1430 mUml(mg)-1h-1

•
 

α=7600 ml/h
•

 
QL

 

=8400 mg/h
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Case A: Normal Adult
•

 
Normal (“N”

 
point) 

Steady-state solution:  
•

 
Glucose steady-state 
concentration is 0.81 
mg/ml

•
 

Insulin steady-state 
concentration is 0.055 
mU/ml.
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Type-1 Diabetes

•
 

This is insulin-dependent diabetes.
•

 
The main defect is the inability of the islet cells in 
the pancreas to produce sufficient amount of 
insulin.

•
 

The most common form of this disorder begins 
in childhood (“juvenile-onset diabetes”).

•
 

Another form of Type-1 diabetes starts at 
adulthood. It is known as “ketone-prone 
diabetes”.
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Type-2 Diabetes

•
 

Non-insulin-dependent diabetes.
•

 
The pancreas may be producing normal 
quantities of insulin, however:

•
 

For some reason there is a drastic 
reduction in the ability of insulin to 
stimulate glucose uptake by the body 
tissues.
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Recall: Insulin and Glucose Steady-
 State Levels

 
(for the Insulin compartment)
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•
 

Type-1 diabetes can be modeled by “lower-than-
 normal”

 
value of β.

•
 

In the steady-state y(x) the line has a lower 
slope.
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Case B: Type-1 Diabetes

•
 

The simplest way 
to model Type-1 
diabetes is by 
lowering β

 
(this is 

the sensitivity of the 
insulin response to 
glucose).

•
 

In the Case B 
example β

 
is 

reduced to 20% of 
its normal value.
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Recall: Insulin Production
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•
 

Insulin is produced at a rate that depends on 
plasma glucose level, which explains the lower 
steady state value of blood insulin in type-1 
diabetes.
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Case B: Type-1 Diabetes

•
 

The new steady-
 state point 

(denoted as “D1”) 
illustrates a highly 
elevated blood 
glucose 
concentration of 
1.28 mg/ml and a 
depressed plasma 
insulin 
concentration of 
0.029 mU/ml.
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Recall: Blood Glucose Mass 
Balance

θθμυλ
θυλ
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•
 

A simple way to model Type-2 diabetes is via 
“lower-than-normal”

 
ν

 
coefficient.

•
 

It causes the steady-state y(x) hyperboles to 
become elevated.
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Case C: Type-2 Diabetes

•
 

The simplest way 
to model Type-2 
Diabetes is via 
lowering the 
coefficient ν

 
(the 

constant that 
multiplies xy

 
in the 

glucose mass 
balance equation)
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Case C: Type-2 Diabetes

•
 

In the shown 
example (Case C) 
the coefficient ν

 was reduced to 
20% of its original 
value.

•
 

The insulin curve 
was left the same 
as normal.
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Case C: Type-2 Diabetes

•
 

Lowering of ν
 causes the glucose 

curve to shift away 
from the origin.

•
 

Also local slopes of 
the curve become 
steeper.

•
 

The new 
equilibrium is 
denoted as “D2”.



Dr. Zvi Roth (FAU) 39

Case C: Type-2 Diabetes

•
 

D2 solution:
•

 
Glucose 
concentration is 
elevated to 1.29 
mg/ml.

•
 

Insulin solution is 
also elevated to 
0.146 mU/ml (3 
times its normal 
level).
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Comments about Diabetes 
treatment

•
 

Type-1 diabetes is treated via injection of insulin 
to the blood.

•
 

In Type-2 diabetes, obviously, there is no point 
in adding any insulin. 

•
 

Treatment is done by medications that enhance 
glucose uptake by the body cells.

•
 

In both type-1 and type-2 diabetes the glucose 
steady state value x is high. It is fast and easy to 
measure x(t).

•
 

In type-1 diabetes y is low whereas in type-2 
diabetes y is high.

•
 

It is not possible to measure blood insulin y in 
real time.   
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Glucose Dynamic Model

C
dx
dt

U t Q x x y xG L= + − − ≤( ) ,λ ν θ

C
dx
dt

U t Q x x y x xG L= + − − − − >( ) ( ) ,λ ν μ θ θ

CG

 

is the glucose capacitance in the 
extracellular space.

U(t) represents glucose infused into the blood 
stream.
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Glucose Dynamic Model

C
dx
dt

U t Q x x y xG L= + − − ≤( ) ,λ ν θ

C
dx
dt

U t Q x x y x xG L= + − − − − >( ) ( ) ,λ ν μ θ θ

Meaning: Dynamically, the rates at which 
glucose is added to or eliminated from the blood 
are not equal. Only at steady-state they become 
equal.



Dr. Zvi Roth (FAU) 43

Glucose Dynamic Model

C
dx
dt

U t Q x x y xG L= + − − ≤( ) ,λ ν θ

C
dx
dt

U t Q x x y x xG L= + − − − − >( ) ( ) ,λ ν μ θ θ

The above model represents a “glucose 
tolerance test”. 

It may become part of a control model in which 
one of the controls means is “adding glucose”.
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Insulin Dynamic Model

C
dy
dt

y xI = − ≤α φ,

C
dy
dt

y x xI = − + − >α β φ φ( ),

CI

 

is the insulin capacitance of the extracellular 
space.

In the above there is no “external insulin input”
 

–
 it can be added, as part of a control scheme.
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C
dx
dt

U t Q x x y xG L= + − − ≤( ) ,λ ν θ

C
dx
dt

U t Q x x y x xG L= + − − − − >( ) ( ) ,λ ν μ θ θ

C
dy
dt

y xI = − ≤α φ,

C
dy
dt

y x xI = − + − >α β φ φ( ),

Glucose mass balance:

Insulin mass balance:

Summary of the Dynamic Model for a glucose test
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Khoo’s
 

Simulink
 

Model
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Khoo’s
 

Simulink
 

Model
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Khoo’s
 

Simulation Result

•
 

Pulse 
response.

•
 

Normal adult 
–

 
solid curve

•
 

Type-2 
diabetes –

 dashed curve
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Modified Khoo’s
 

model (Z. Roth)
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Another modified model
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