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Bio-Systems Modeling and 
Control
Lecture 18
Diffusion

Diffusion combined with Law of Mass Action –
 Simple Cellular Linear Model Examples
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Example: Simple Cellular Diffusion

•
 

Assume that the regulated variable is the 
concentration x2

 

[μgram/liter] of a certain 
substance X inside a cell.

•
 

X is also present outside the cell in 
concentration x1

 

>x2

 

.
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Simple Cellular Diffusion Model 
Assumption

•
 

X diffuses passively into the cell, according to 
Fick’s

 
Law Flow is proportional to 

concentrations differences, across cell’s 
membrane.

•
 

X is metabolized inside the cell at a rate 
proportional to x2

 

.
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Simple Cellular Diffusion Model 
parameters and equation
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KD

 

=diffusion rate 
constant

KL

 

=Loss rate 
constant

V=cell volume
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Simple Cellular Diffusion Model is 
First-Order Linear System

LDLD

D

LD

D

DLD

LD

KK
V

KK
Kk

s
k

V
KKs

V
K

sX
sX

x
V
Kx

V
KK

dt
dx

xKxxK
dt
dxV

+
=

+
=

⋅+
=

+
+

=

+
+

−=⇒

⇒−−=

τ
τ1)(

)(

)(

1

2

12
2

221
2

Parameters: k=gain, τ=time constant
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Simple Cellular Diffusion Model 
Step Response
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A bit of relevant Linear Systems Theory: 
Laplace Transform, Transfer Function

•
 

We take Laplace Transform of both sides of the 
linear differential equation, using s as a 
differentiation operator (in place of d/dt).

 
Use 

X1

 

(s) as the Laplace transform of x1

 

(t), and X2

 

(s) 
for x2

 

(t).
•

 
The resulting Laplace transformed variables 
ratio X2

 

(s)/X1

 

(s) is called a Transfer Function. It 
is in general a rational function of s (i.e. ratio of 
polynomials of s)
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More Linear Systems Theory: 
Poles and Zeros

•
 

In general, the
 

numerator
 

roots of X2

 

(s)/X1

 

(s) are 
called zeros, and the denominator

 
roots of 

X2

 

(s)/X1

 

(s) are called poles.
•

 
Here (in the simple diffusion example), the 
transfer function has no zeros and it has one 
pole, at s= -1/τ see inverse relationship 
between pole location and time constant: The 
faster time constant the farther to the left (of the 
complex s-plane) pole is.
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More Linear Theory: Stability and 
Steady-state

•
 

A linear system is stable if all its poles have 
negative real parts.

•
 

We can apply the final-value theorem
 

to any 
signal that becomes constant at steady state. 
Here:
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Open-Loop Parametric Control of 
x2

 

by KD

•
 

If somehow we can control the diffusion 
coefficient KD

 

, we can make (in open loop) the 
final value of x2

 

dependent on x1

 

. 
•

 
If x1

 

varies, so does x2

 

.
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Closed-Loop Parametric Control of 
x2

 

by KD
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If somehow we can make the diffusion coefficient 
KD to decrease as x2

 

increases , and we need x2

 to reach a specific level, we can make the final 
value of x2

 

less dependent on x1

 

, if ρ
 

is large.
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What is Diffusion? -
 

1

•
 

On a microscopic scale, all physiological 
systems contain cells, as well as 
molecules and ions suspended or 
dissolved in physiological fluids.

•
 

Molecules and ions are in constant 
random motion, due to their internal 
thermal energy. These collide with walls of 
their containers, and with each other.
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What is Diffusion? -2

•
 

In Physiological systems, Fick’s
 

Diffusion 
Law describes the average movement of 
molecules or ions, in response to 
concentration gradients.

•
 

Physiological diffusion generally occurs 
through cell membranes.

•
 

Molecules pass through the membrane at 
specific discrete sites, through protein 
receptors.
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What is Physiological Diffusion? -3

•
 

Specific receptors suit specific molecules 
that need to pass through it.

•
 

If the receptor combine (chemically or 
physically) with the diffusing molecules, 
the process is called facilitated diffusion

 
or

 carrier-mediated diffusion.
•

 
Sometimes, another molecule can modify 
the permeability of the pore. This is called 
Ligand-gated diffusion.
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What is Physiological Diffusion? -
 

4

•
 

Example to Ligand-gated diffusion: The 
hormone insulin increases the diffusion of 
glucose molecules at glucose pore sites.

•
 

In insulin-sensitive cells, the presence of 
insulin raises the permeability for glucose, 
allowing glucose to flow more easily from 
higher extra-cellular concentration to a 
lower intracellular concentration.
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What is Physiological Diffusion? -
 

5

•
 

Some pore sites are opened by a change 
in the trans-membrane potential 
difference. This is called voltage-gated 
diffusion.

•
 

Voltage-gated diffusion is involved in the 
generation of nerve impulses, or in their 
inhibition. It also occurs in the triggering of 
muscle contractions.
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What is Phyiological
 

Diffusion? -6

•
 

The larger the concentration difference 
across the membrane the faster is 
diffusion flow (measured typically in [μg or 
ng

 
per minute per μm2).

•
 

Flow saturates above a certain critical 
level due to either finite number of pore 
sites, or configuration change to the 
receptor, if too many molecules bind to it.
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1D version of Fick’s
 

Law –
 definition of parameters

•
 

Consider a tube with cross section area of A.
•

 
Let the concentration at x=x1

 

be C1

 

, and at 
x=x2

 

=x1

 

+Δx be C2

 

.
•

 
Assume that C1

 

>C2

 

.
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1D version of Fick’s
 

Law –
 

model 
assumptions

•
 

Assume that each molecule can jump in +x or –x 
directions with equal probability.

•
 

Average molecules transfer per time from plane 
1 in the direction of plane 2, is proportional to 
the concentration profile dC1

 

/dx
 

.
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1D version of Fick’s
 

Law –
 

model 
assumptions (cont’d)

•
 

Likewise, average molecules transfer per time 
from plane 2 in the direction of plane 1, is 
proportional to the concentration profile dC2

 

/dx
 

. 
•

 
Concentration transfer rate is proportional to A 
and inversely proportional to Δx. 
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1D Fick’s
 

Law Derivation
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At the limit, as Δx 0 and Δt 0, we 
observe:

2
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•
 

Partial derivative of C1

 

w.r.t
 

time is the 
concentration rate at x, in the positive direction 
of x. [Denote C(x)=c]

•
 

Concentration profile = Partial derivative of c 
w.r.t. x, in the positive direction of x.

•
 

Rate of mass transfer is proportional to the 
second partial derivative of c w.r.t. x.

•
 

Diffusion coefficient = D=kA ; [D]=[(μm)2/min]
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1D version of Fick’s
 

Law (applied to 
flow through a thin membrane)
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•
 

Assume a thin membrane of thickness d: 
Concentration is C1

 

on the left and C2

 

<C1

 

on the 
right. 

•
 

Let x=0 be at the left hand side of the 
membrane, and x=d at the right side of the 
membrane.

•
 

Boundary conditions: c(0)=C1

 

and c(d)=C2

 

.
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1D version of Fick’s
 

Law (applied to 
flow through a thin membrane) -2
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•
 

Let’s look at steady-state: ∂c/∂t=0
•

 
A solution for D∂2c/∂x2=0 is c(x)=ax+b. When we 
substitute the boundary conditions 
c(0)=C1

 

,c(d)=C2

 

, we obtain c(x)=C1

 

-(C1

 

-C2

 

)x/d
•

 
Molecules transfer rate through membrane is 
constant : dc/dt=(D/d)(C1

 

-C2

 

). Mass flows until 
C2

 

=C1

 

.
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Diffusion through a thin membrane

•
 

Concentration rate through membrane: 
dc/dt=(D/d)(C1

 

-C2

 

)
•

 
D/d is the membrane’s permeability.

•
 

Diffusion Flow=Φ=(D/d)(C1

 

–C2

 

)
“Ohm’s Law” format.

•
 

Membrane Permeability (Diffusivity, 
conductance) = D/d = 1/R, where R is 
diffusion resistance.
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Example: Diffusion and Mass-
 Action Combined

•
 

Reactants A and B combine reversibly to form a 
compound P inside a cell. P diffuses out of the 
cell. Outside concentration of P is 0.

•
 

B has constant concentration y0

 

inside the cell.
•

 
A diffuses to cell from outside (concentration=x0

 

)
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Model equations expressed in 
terms of substances concentrations
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Model equations –
 

Is system 
linear?
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dx

1012

10100 )(

−

−

−+−=

+−−=

System is linear only 
because concentration 
of B is kept constant at 
the level of y0
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Model equations –
 

Steady state 
conditions
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Follow-up example:

•
 

What happens if B concentration y(t) is no longer 
constant? (that is, y≠y0

 

).
•

 
For instance, assume that B is made inside the 
cell at a rate dy/dt= α

 
–

 
βz if z≥0 (a biochemical 

feedback!)
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Another example

•
 

A Hormone H controls the diffusion of molecules 
M into a cell. Extra-cellular hormone 
concentration is h [ng/ml].

•
 

Extra-cellular M concentration is me

 

and 
intracellular concentration is mi

 

(all in [ng/ml])
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Example requirements
 

(cont’d)

•
 

Molecules M are wasted (inside the cell) at a 
loss rate constant of KL

 

.
•

 
Let the diffusion rate constant be KD

 

=KD0

 

+ah2

•
 

Write the model. Is it linear? [Answer: Yes, as 
me

 

and h are external inputs]
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