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Ohm’s Law

* |n a component called resistor the voltage V
(across the component) and the current |
(through the component) obey Ohm’s Law
V=IR, where R is the component’s resistance.

* V represents the “effort” and | represents the
“flow”.

« "Resistance” concept applies to many other
different types of physical systems —
mechanical, fluid, heat and chemical.
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Generalized Ohm’s Law —
Mechanical Systems

*

« Piston of the dashpot moves at a velocity v
(“I") that is proportional to the applied force F
(“V7).

» "Resistance R, relates to the viscosity of the
fluid inside the dashpgt ...,



Generalized Ohm’s Law — Fluid
System
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* Qs the volumetric flow (“I") through a rigid
tube. AP is the pressure difference across the
two ends of the tube (this is “V").

* Fluid resistance Rt is directly related to the
viscosity of the fluid and the tube length, and
iInversely related to the tube’s cross section
dareada. Dr. Zvi Roth (FAU) 5



Generalized Ohm’s Law — Heat
Transfer System

% 9
Q AB = QR,
a— —
Ab =0, -0,

« Heat flow Q (“I"); Temperature difference AB
(“VH).
* Thermal resistance R; relates inversely to

material thermal conductivity and thickness,
and directly to material area.
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Generalized Ohm’s Law —
Chemical Systems

h t Ab = QR,
ag= ¢ - b,

 Diffusion through a thin membrane.

 Concentration difference is “V”, and flow Q
through the membrane is “I".

- Diffusion resistance = (permeability)"

Dr. Zvi Roth (FAU)



Electrical Capacitors

. dv 1%,
I=C—=v({t)=—11(7)d
=V c{“’ r

q(t) = [i(r)dz = q(t) = Cv(t)

« A component is called capacitor if current |
through the component is proportional to the
rate of change of voltage v across component.
C is the capacitance.

« Capacitor can store electrical charge q.

* Voltage across C must be a continuous
function of t — it cannot jump instantly.

Dr. Zvi Roth (FAU) 8




Generalized Capacitor —
Mechanical Systems

<“>
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For an elastic spring, the applied force F is
“V”, the displacement x is “q”, the compliance
C,, Is the inverse of the spring’s stiffness

represented by its elastic modulus k.

Dr. Zvi Roth (FAU)



Generalized Capacitor — Fluid
system example

AV (volume change)

1

AV = AP G,

i

s

Fluid-filled elastic container is a fluid
capacitor. Compliance is determined both by

the container’s elasticity and by the
compressibility of the fluid.

AP is “V” and cha[g e of volume is “q’.
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Generalized Capacitor — Thermal
system

El heat stored, Q@ = AL

Al a8, - 0,

* Thermal capacitance depends on the specific
heat of the material and on the object’s
dimensions.

« Temperature difference is “V"; Stored heat -

(1P

q
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Generalized Capacitance —
Chemical system

hMaes of
Chemical @ = & C
Species

Conceniratbion, §

« Capacitance is the volume of the fluid.
« Concentration of the substance (in the fluid

(1Pl

volume) is “V”; Substance’s mass is “q".

Dr. Zvi Roth (FAU)
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Other analogies to electrical
concepts:

* In a “resistor’ energy is dissipated; In a
“capacitor’ energy is stored.

* V-I=Power: Mech. Sys - F-v=power;
Fluid sys. — Pressure x Flow rate =
power, efc. It is consistent.

« “Capacitor” stores “static” (potential)
energy.

Dr. Zvi Roth (FAU)
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Generalized Inductance

More common name is Inertance, which has
to do with storage of kinetic energy.

An electrical inductance (inertance) is defined

as V=L-di/dt.

Mechanical inertance: F=M-(dv/dt), which is
Newton’s 2" Law. Mass is the inertance.

Fluids: Inertance re
between fluid acce
pressure differential.

ates to the relationship
eration and applied

No inertance in thermal or chemical systems.

Dr. Zvi Roth (FAU) 14
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Generalized Kirchoff’s Laws:

1. Algebraic sum of “across-variable” values
around any closed circuit (loop) =0

2. Algebraic sum of “through-variable” values
through a given node =0

Dr. Zvi Roth (FAU)



Combinations of components

A:R’siIn
parallel

B: R’s In series

C:C’slin
parallel

D: C’s In series

(Electrical)
A
| B

C
It
C
G
O® T

D

e
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Combinations of components
(Electrical)

1 1
A:/'Req:( | )

1 A C
B —. Req — Rl + R2 i g
C' B D
. \
D Ceq — Cl + C2 M/\—‘ a.——|C|l—2_!j|2_
1 | 1 )_1 e 0
Cl C2
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Combination of mechanical

A Both components
pistons are A c

constrained to i // ~ c. /
move atthe — 7 1 %

same V. series

<

connection!

Rui R /
Thus R, is o o G
sum of two

R’sS
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Combination of mechanical

B Same components

force is ‘;ml " CC
applied to i % W

both pistons : — % =
parallel A |
connection! . 7 ’ ;

_ ) _—|Il_| - % - Cui G
;h|L|JFsé Req IS % /
1117 M2

Dr. Zvi Roth (FAU)

19



Combination of mechanical

C: Same components

:g(reiendg é n. both & m
. -« -« |

series B e //
_ . S

connection! b

Thus Cg, IS — B e:

C, || C, which ’

leads to a sum
of the springs
moduli

Dr. Zvi Roth (FAU) 20



Combination of mechanical
components

D: Same
force applied:
parallel
connection!

Thus Cg, IS
C,+ C,which
leads to a an
overall spring
constant
smaller than
each constant

Dr. Zvi Roth (FAU) 21



Example: Linear Model of Respiratory Mechanics

Dr. Zvi Roth (FAU)
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Respiratory mechanics: Fluid model
resistances

e Lung mechanics —
alrways are divided

into two categories: e R T
The larger (central) A A
airways, and the = -
smaller (peripheral) T - or,
airways. -l
e Each airway has a Py -

fluid resistance Rq,Rp

Dr. Zvi Roth (FAU) 23



Respiratory mechanics — Fluid
model capacitances

 AIr that enters the
alveoli produces an

expansion of chest- r. R —
wall cavity by the AR
._%;.*’.m R,

same volume. J [
* This Is represented by 00| ==c, :

a connection of the T

lung C, and chest-wall ' - C,

C,y compliances in "o

series.

Dr. Zvi Roth (FAU) 24



Respiratory mechanics — more about
capacitances

A small fraction of the
alr volume that enters

the respiratory system P R Qs P,
is shunted away from A A
the alveoli as a result - -
of compliance of the T ==t or,
central airways and L
gas compressibility y T°

(represented by Cy)

Dr. Zvi Roth (FAU) 25



Respiratory mechanics model —
applications and significance

The shunted air
volume is normally
very small, but it P, R Qs
becomes more VWY —-—VW—9
substantial if a disease S
leads to peripheral 00, m=C.
alrway obstruction (an
Increased Ry) or a } —
stiffening of the lungs "o
or chest-wall
(decreased C, or C\é")

r. Zvi Roth (FAU) 26




Respiratory mechanics — pressures In
a fluid model are like voltages in an

electrical model

* Pressures: P, =at
airway opening, P,,=

in central airways, P,= o R - Py

In the alveoli, P,=In ._’\%A‘\_ﬂ R,

the pleural space ==

(between lung i s QP

parenchyma and chest | ——

wall). P o “
« Reference pressure is

I:)O:amb lent (Set {0 Qr)zw Roth (FAU) 27



Pressure and Flow Units and Typical
Values:

* Pressures’ unit is typically [cmH,O]

e Typical pressure amplitudes in the
respiratory system are in the order of
magnitude of a fraction of to a few
[cmH,0].

* Flow rates are typically measured in liters
per second [L/s].

Dr. Zvi Roth (FAU) 28



Resistance and Capacitance Units
and Typical Values:

e Resistance’s units are therefore
[cmH,O-s/L].

 Order of magnitude of normal R and R
are a fraction of to a few [cmH,O-s/L].

» Capacitance’s unit is [L/cmH,0].
» Typical values for C, and C is around 0.2.
* C. may be normally 1/40 of C, .

Dr. Zvi Roth (FAU)
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Respiratory mechanics — fluid flow

rates are like electrical currents

e Letthe volume flow-rate of
alr entering the respiratory

system be Q ata pressure |, . —
: . P,

:)r:‘pli:ﬁo either one can be o—%_ol—ww_:-: [.I
 Need to find the eQf ==Cs ir,

relationship between Q(t) iR

and Pao(t)- P o ' T°
« Use Kirchhoff’s laws to

derive the differential

Dr. Zvi Roth (FAU) 30
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Respiratory mechanics — applying
Kirchhoff’s laws

Recall: Qi1s “I” and P

iS “V”.

Apply KCL at node AP N

b g e [.

Q-QA:CS(dPaW/dt) Q-Q, mmtm=c, -:] |

Als0: Qu=Ceq(dPA/dlt) 1

Where Ceq-]':CL-l-I_CW-l p ¥ T Cv
@

Now KVL: P_,=QR. +

QaRptPA

Dr. Zvi Roth (FAU) 31



Respiratory mechanics — How do set
up a Simulink model?

Q'QA:CS(dPaW/ dt) P, R B
Qa=Cey(dPA/dt) Sy
How do we proceed ol oL -
systematically? T PP
Need to set a “state- . ' T
variable model” (that .

IS, a system of In a RC circuit,
Independent first-order capacitor voltages
differential equations) (that can be initialized

Independently) can be
Dr. Zvi Roth (FAgJﬁateS 32



Respiratory mechanics — Setting up a
state-variable model

Q-QA:CS(d Paw/dt) p. R, ,T,. |
QA:Ceq (dP,/dt) Y

Let P, and P, be the 00| ==c.
state variables.

Represent Q4 In terms "o
of P,and P, :

In a RC circult,
(Po-Pa)/Rp=Q, capacitor voltages
(that can be initialized
Independently) can be
Dr. Zvi Roth (FAgJeateS 33



Respiratory Mechanics — the
resulting state equations

SR G -
._/\TN\/’;.W. dPaW :_ipaw_l_iPA_'_iQ
| g dt T, T, C,
Q-Q mmmCs or, dPA _ 1 PaW _i PA
i dt 7, 7,
\d e Cw
"o n, =R,Cs 7, =RC,

How do we find the relationship between P, and

Q? Dr. Zvi Roth (FAU) 34



Respiratory Mechanics — the resulting model:
state equations and output equation (Scenario

1—Q Is input)
P R Q,
PA dP 1 1 1
.w.rw_. aW:__PaW+_PA+—Q
Q ~ R | o dt T, T, C,
Q-Q) ==Cs , dP, = 1 P. _1 P,
?Fn dt 7, 7,
‘ - C. n=R,Cs  7,=R,C,
II. I:)aozl:)aw_i_l:QCQ

In general, an output variable is a linear combination of
the state variables anddhe dsajut, 35



Respiratory Mechanics — the resulting model:
state equations and output equation (Scenario
2 — P, IS Input)

o R R P, dgiw = —(l + i) P + 1 Py + 1 P,
O—UM;OWQ dP , (5] T?:’L 7 T4
_— ~=—P, ——P,
QQ, mmm=C, 0P, at 7, 2
0, =R,Cs  7,=R.C,, 73 =R.C
\j -
"o | Q:_Ricpaw"’RiCPao

Scenario: An Intensive care unit patient hooked up to a
ventilator with a given-peak-pressure. 3
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