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To realize the full potential of Direct Numerical Simulation in turbulent mixing
studies, it is necessary to develop numerical schemes capable of sustaining the flow
physics of turbulent scalar quantities. In this work, a new scalar field forcing tech-
nique, termed “linear scalar forcing,” is presented and evaluated for passive scalars. It
is compared to both the well-known mean scalar gradient forcing technique and a low
waveshell spectral forcing technique. The proposed forcing is designed to capture the
physics of one-time scalar variance injection and the subsequent self-similar turbu-
lent scalar field decay, whereas the mean scalar gradient forcing and low waveshell
forcing techniques are representative of continuous scalar variance injection. The
linear scalar forcing technique is examined over a range of Schmidt numbers, and
the behavior of the proposed scalar forcing is analyzed using single and two-point
statistics. The proposed scalar forcing technique is found to be perfectly isotropic,
preserving accepted scalar field statistics (fluxes) and distributions (scalar quantity,
dissipation rate). Additionally, it is found that the spectra resulting from the three
scalar forcing techniques are comparable for unity Schmidt number conditions, but
differences manifest at high Schmidt numbers. These disparities are reminiscent of
those reported between scaling arguments suggested by theoretical predictions and
experimental results for the viscous-convective subrange. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4819782]

. INTRODUCTION

A passive scalar is a quantity in a flow that will convect and diffuse without impacting the evolu-
tion of the velocity field. The mixing of these types of scalars in turbulent flow environments is found
in a broad range of fields, including combustion, atmospheric flow dynamics, and oceanography.
Direct Numerical Simulation (DNS) studies of scalar mixing often use numerically-forced velocity
and scalar fields to prevent the turbulent fluctuations from decaying. To ensure that results obtained
in such DNS studies are representative of the physics of scalar mixing, and not an artifact of the
numerical schemes, the forcing methods used must not alter the physics of the flow configuration to
be studied. The most commonly used method for sustaining turbulent fluctuations in a scalar field
is to supply scalar variance continuously via a spatially-uniform mean scalar gradient.!?> Spectral
schemes utilizing low waveband forcing® have been used also, and these supply scalar variance over
a narrow band of waveshells within the turbulent scalar field. These methods are both equivalent
to holding the scalar variance constant via continuous variance injection. This work presents a new
scalar forcing technique that instead uses one-time variance injection to prevent variance decay. It
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is shown that this new scalar forcing methodology corresponds to a distinctly different physics than
the other two commonly used methods.

There are many applications in which forcing proportional to a scalar gradient is physically
meaningful. In many oceanographic and atmospheric flows, there are gradients in species concen-
tration or temperature. In these instances, as long as the gradient of the scalar quantity of interest
is uniform over distances longer than the largest characteristic length-scale of the turbulent flow,
implementing such a numerical forcing technique is entirely consistent with the physics of the flow
configuration.* Applying a spatially uniform scalar gradient across the scalar field allows this field
to remain homogeneous and to reach a state of statistical stationarity.’ Nevertheless, the imposed
mean scalar gradient introduces robust anisotropy into the scalar field, which can be problematic
for studies of scalar mixing under isotropic conditions. Low waveshell spectral forcing techniques®
eliminate this problem by implementing a perfectly isotropic forcing term. However, these schemes
are less physically representative of experimentally-attainable flows.

The goal of this work is to develop and validate a new scalar field forcing technique that can
capture the physics of self-similar scalar field decay, which is an inherently different physics than
that captured by the two existing scalar forcing methods. The objectives for this forcing are twofold.
First, the forcing must be able to reproduce scalar mixing in physically-relevant turbulent flows.
Second, the forcing must preserve the statistics of isotropic turbulence across all scales of the flow.
These requirements will be considered in light of existing velocity forcing methods, which have been
proven to be effective means of preventing turbulent kinetic energy from decaying.®” Central to this
work is the observation that turbulent mixing of scalars may not always occur in an environment
where the scalar field is subject to continuous energy injection. In other words, these scalars may
undergo turbulent mixing where there is only an initial source of scalar energy, followed by scalar
variance decay. This new proposed scheme aims to create a scalar field constrained to constant scalar
energy (or scalar variance) under these conditions, and it will be shown to be equivalent to creating a
state of “normalized decay.” Examples of situations for which this forcing would be appropriate can
be found in engineering applications, such as in heated grid turbulence experiments, and in natural
phenomena, such as sedimentation processes found in oceanographic flows. This proposed forcing
scheme, referred to as the linear scalar forcing throughout this paper, is validated against its ability
to predict the statistical characteristics and energy spectrum of a scalar field subject to temporal
decay. The forcing method is examined over a range of relatively low Taylor micro-scale Reynolds
numbers (Re;) and low to moderately high Schmidt numbers (Sc).

The structure of this paper is as follows. Section II discusses the mean scalar gradient and
low waveshell forcing techniques and their characteristics. Additionally, the linear velocity forcing
technique primarily used in this study is discussed and its connection to the physics of a decaying
turbulent velocity field is presented. Building on the observations made in Sec. II, Sec. III details the
derivation of the proposed linear scalar forcing technique. Section IV presents the process by which
the appropriateness of the proposed forcing for simulating scalar field decay is validated. Finally,
Sec. V discusses the role of scalar field forcing in mixing studies at high Schmidt numbers.

Il. MOTIVATION: CURRENTLY IMPLEMENTED FORCING TECHNIQUES
A. Mean scalar gradient forcing

In simulation studies of turbulent passive scalar mixing, the mean scalar gradient forcing
technique superimposes a uniform mean gradient across the scalar field,

z=72+G-x, M)

where the total scalar quantity, z, is broken down into a fluctuating part, Z, and a spatially-varying
mean part, G - x. All simulations discussed in this paper impose the mean gradient in a single
direction, G = [—1, 0, 0]. Such a forcing technique captures the formation of ramp-cliff structures
and the intermittency of the scalar field, consistent with the findings of experimental studies of
passive scalar mixing, by virtue of the anisotropy it induces.®° This scalar forcing technique is quite
effective and was created to capture the scalar field behavior present in grid turbulence experiments.
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The transport equation for the fluctuating scalar in the presence of a mean gradient, assuming
incompressibility (V - u = 0), is given by

Iz
5 tuVZ=V.(DVZ)-u-G, @)

where D is the molecular diffusivity. The imposed mean scalar gradient term (G) acts as an infinite
reservoir for the scalar field; whenever there are losses due to dissipation, the presence of a gra-
dient term will immediately “inject” into the scalar field a scalar quantity magnitude sufficient to
compensate. Thus, it provides for continuous scalar energy injection, sustaining the scalar field at
a statistically stationary state. Beginning with the forced advection-diffusion equation, Eq. (2), and
multiplying by the scalar fluctuation, Z, results in

a(z?)
at

+V-(uz?) =V -(DVZ*)—x —-2Z(G-w), 3)

where x = 2D | VZ |? is the scalar dissipation rate and incompressibility, again, has been assumed.
When Eq. (3) is averaged over a triply periodic, homogeneous domain (in which all work to be
presented is conducted), only the time derivative, scalar dissipation rate, and the forcing term retain
non-zero values. This leaves

3(Z?%)
Jat

=—(0) =26 -(uZ) = —(x) +2 (u.Z). “

The angled brackets, (- ), refer to volumetric averages. Equation (4) implies that if the scalar field
were to attain perfect isotropy (i.e., (#;Z) = 0), then the time-rate of change of scalar variance would
always be negative and equal to the scalar dissipation rate, causing continuous scalar field decay. It
is the anisotropy, evident from the skewed probability density function (PDF) of the scalar fluxes in
Fig. 1, that prevents the variance of the scalar field from decaying.

Also, due to the anisotropy inherent in this forcing mechanism, it is used primarily for passive
scalars; the velocity field affects the scalar field, but the scalar field does not couple back to effect
the velocity field. With an active scalar, the coupling is two-way, with information being passed
between the turbulent velocity and scalar fields. The anisotropy that is methodically maintained in
the scalar field would have the opportunity to permeate into the velocity field. There may be physical
configurations in which such a coupling is consistent with the physics governing the problem, but
this may not always be the case.
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FIG. 1. PDF of scalar fluxes obtained using a mean scalar gradient forcing and two different velocity forcing techniques’> '
(N = 5123, Re, = 140, S¢ = 1, kmaxnp = 1.5). The o variables refer to standard deviations. (a) Spectral velocity forcing;10
(b) linear velocity forcing.”
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FIG. 2. Statistical metrics of the scalar field produced via low waveband spectral (random) forcing versus mean gradient
forcing (MG) (N = 2563, Rey, = 55, Sc = 1, kpaxnip = 3.0). (a) Scalar fluxes, u;Z; (b) scalar dissipation rate, x.

B. Low waveshell spectral forcing

Spectral forcing techniques continuously provide energy into the scalar field over a range of
tightly constrained, low wavenumber shells (kjouwer < & < Kypper)->'1*'> The advection-diffusion
equation resulting from such a forcing scheme is given by

0Z ol 2

5 tuwvZ=v. (DVZ)+ F {fz(k)}, )
where .7 ! denotes the inverse Fourier-transform of the forcing term in spectral space. The spectral
forcing implemented in this work has a forcing term with a Gaussian distribution centered about a
wavenumber of k¥ = 3 that is active only between the upper and lower bounds of «,p.r = 4 and
Kiower = 2. With such a forcing scheme, as with the mean gradient method, the scalar variance is
held fixed in time because losses from scalar dissipation are balanced by continuous injection of
scalar variance into the scalar field by the forcing term, (Z.% ’li{fz(/c)}). The primary (and only
significant) difference between mean gradient and spectral scalar forcing methods is that a random
spectral forcing is capable of producing perfectly isotropic scalar fluxes, as illustrated in Fig. 2(a).
The character of the scalar field produced under the action of the two forcings are consistent. Both
produce a scalar quantity that is approximately normally distributed about a mean of zero and a
log-normally distributed scalar dissipation rate. Representative results are provided in Fig. 2(b).
Furthermore, as depicted in Fig. 3, a low waveband spectral forcing scheme and the mean scalar
gradient scheme give comparable scalar spectra over a range of Sc. Representative low and high Sc
cases are included in support of this claim.

As the only chief difference in these two methods is the issue of isotropy in the scalar fluxes,
the rest of this paper will focus primarily on the direct comparison of the proposed linear scalar
forcing method to the mean scalar gradient forcing method. This comparison was preferred, as the
mean scalar gradient is more widely applied in simulation studies of mixing and the configuration it
represents is more readily attainable experimentally.

C. Forcing the velocity field linearly

There are two broadly-accepted ways of forcing the velocity field in numerical studies, linearly®’
and spectrally.'” The present work draws on Lundgren’s linear forcing scheme®” as inspiration for
the development of the linear scalar forcing technique. According to the linear forcing scheme,
momentum is injected into the velocity field proportional to the magnitude of the velocity fluctuations
and assumes the form

ou

——i—u-Vu:—V(E)—i-szu—i-Qu, (6)
at 0

where Q is a constant related to the energy dissipation rate and eddy turn-over time, 7.
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FIG. 3. Comparison of scalar energy spectra obtained using the mean gradient (MG) and random spectral forcing.
(a) N = 256°, Re;, = 55, Sc = 1, kmaxip = 3.0 (linear velocity forcing”); (b) N = 3843, Re; = 8, Sc = 256,
Kmaxg = 1.5 (spectral velocity forcing!?).

Forcing linearly is equivalent to injecting energy at all scales of the flow, from the integral
scales to the dissipative scales. But, as the fluctuations are the largest at the integral scales, the
energy injection is biased preferentially towards these large scales. The linear forcing scheme
was found to produce characteristics consistent with the requirements of homogeneous, isotropic
turbulence, namely, equal-averaged Reynolds stresses and symmetrically distributed scalar fluxes
with reflectional symmetry.” More relevant to the present work, Lundgren’s linear forcing method
can be connected directly to the self-similar nature of decaying turbulence.® In this method, energy
injection can be thought of as a rescaling of the kinetic energy to a constant value. By performing a
simple change of variables in space, time, and velocity on the forced and unforced (freely decaying)
momentum equations, Lundgren® found that the transformed freely decaying momentum equation
admitted terms that were similar in form to those present in the linearly-forced momentum equation.
From this finding, he concluded that the effect of the linear forcing technique is similar to that of
energy decay, which is inherently isotropic and self-similar. Thus, the self-similar decay of energy
in the velocity field was suggested to be analogous to the imposed isotropic forcing term, Qu.°

lll. PROPOSED LINEAR SCALAR FORCING
A. Self-similarity of scalar mixing

Following Lundgren’s® work on linear velocity forcing, the objective of this work is to develop
a new forcing scheme that reproduces the physics of the self-similar decay of a scalar field. The
self-similar regime of scalar mixing manifests itself whenever there is one-time energy injection
into a scalar field. Following this energy injection, there is a short-lived transient period of decay
which eventually gives way to a self-similar flow regime. Self-similarity, in the context of a decaying
scalar field, is characterized by the collapse of freely decaying scalar spectra onto a single spectrum
shape after appropriate normalization. To demonstrate this aspect of self-similarity, a scalar field
was forced to statistical stationarity and then allowed to decay. Referring to Fig. 4(a), the scalar
forcing was removed at #/t = 0, and the variance was allowed to decay. It is clear from Fig. 4(a) that
the scalar field is losing variance without the forcing term active. Figure 4(b) illustrates the behavior
of the self-similar field; the three normalized scalar spectra in Fig. 4(b) correspond to the three
data points in Fig. 4(a) at 1, 2.7, and 6.5 t after the scalar forcing was removed. The coincidence
of the spectra to one unchanging shape when normalized by their variances (and Batchelor scales)
indicates that this scalar field has entered the self-similar regime.

Considering the nature of self-similar decay, it can be argued that to model this type of scalar
mixing, a scalar forcing method based on scalar energy normalization would be needed. These
concepts of energy normalization and self-similarity, in addition to Lundgren’s® insight that an
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FIG. 4. Decay of scalar variance and collapse of scalar energy spectra in the self-similar regime (N = 5123, Re; = 140,
Sc =1, kmaxnp = 1.5). (a) Scalar variance; (b) normalized scalar spectra.

isotropic forcing can be thought of in terms of sustained, normalized energy decay, serve as the
foundation for the development of the proposed linear scalar forcing method.

B. Derivation of the proposed linear scalar forcing term

As mentioned previously, the development of this new scalar forcing is motivated by the success-
ful implementation’ of the linear velocity forcing of Lundgren® and the concepts of normalization
and self-similarity. Note that in the derivation to follow that, although the same variables are used
to denote scalar quantities (Z and z), these quantities do not have the same definitions that were
used in Secs. IT A and IT B. Following Lundgren’s® linear velocity forcing, a normalization method
is needed to drive the scalar field (z) towards a constant energy, or variance, 0’22 = (z2) — (z)2. After
initialization, all turbulent quantities begin to decay as they are convected and diffused through the
simulation domain. The proposed scalar forcing technique seeks to generate self-similar conditions
by implementing two steps. First, a normalization step. Second, a step to drive the scalar field to a
specified, imposed variance value, «. The absolute value of the rescaled scalar field variance («) is
inconsequential; the significant factor is solely that the scalar field variance is constant in time.

Beginning with the renormalization step, the scalar field is rescaled according to

)

where Z is the normalized, forced scalar quantity, z is the unforced (non-normalized) scalar quantity,
and ozz is the variance of the non-normalized scalar field. Using the normalization defined, the
required form of the linearly-forced advection-diffusion equation can be determined readily by
consideration of the spatially-averaged variance equation (Eq. (4) without the mean gradient term),

do2
ot

where it has been assumed that the mean of the decaying scalar quantity is zero, (z) = 0. By
differentiating Eq. (7) and substituting Eq. (8), the rate of change of the rescaled scalar quantity, Z,
is of the form

9z o 0z 1<X(Z)>

— = == Z, 9
ot o2dt 2 of ®

where (x(z)) and o2 are functions of the decaying scalar (z), not the rescaled scalar (Z). Recall the
advection-diffusion equation for any scalar quantity can be expressed as
0z

o =V-(DVz)—u-Vz. (10)
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Using this expression for %, Eqg. (9) becomes

a_Z=1<X(Z))Z+ﬁ(v-(DVz)—u-Vz). (11)
ot 2 o2 o;

z

Note that o and o2 are volume-averaged quantities and are, therefore, constant with respect to any
spatial derivative. In other words,

VZ =—Vz (12)

:x(2)=x(z)%. (13)

Substituting these expressions into Eq. (11) results in an expression for the time-rate of change of
the rescaled scalar quantity in terms of Z only,
1 {(x(2))

92 V- (DVZ) VZ +
_ = . —Uu- —
at 2 «

Although the above expression is mathematically consistent with the rescaling step, it was found
that the scalar field could become divergent, depending on its initial variance. It is the presence of
a in the denominator that is responsible for this behavior. This behavior can be understood by
examining the variance equation corresponding to Eq. (14). Upon volume-averaging, applying the
condition of homogeneity, and recalling the definition of x, Eq. (15) is obtained:

(%) _ 3o

= — (%2 1 15
5 = ar = {x( ))(?— ) (15)

Z. (14)

By inspection of Eq. (15), if the variance value (o%) is less than (greater than) «, then the time
derivative of scalar variance will attain a negative (positive) value, and the scalar variance will decay
away towards zero (grow indefinitely).

To avoid this problem, an approximation is made. As it is the long-time scalar field behavior
with which this study is interested, not the initial transient behavior, o was replaced with the variance
of the rescaled scalar field, cr%. This is a justifiable approximation, as at stationarity, the rescaled
scalar field variance will approach «. This is not the case in the initial transient period, but it is true
in the long-time limit, o = aé. Thus, Eq. (14) can be written as

0Z 1 (x(Z))

2 V.(DVZ)—u-VZ +
o7 ( )—u +2 o2

Z. (16)

With such an expression, the right-hand side of Eq. (15) now becomes zero, enabling the scalar field
to attain a state of constant variance.

C. Compensating for discretization errors and controlling the scalar field variance

The solution of the above equation analytically would lead to a statistically stationary scalar field
with a constant variance, as the newly added production term would balance exactly all molecular
dissipation. Assuming the scalar transport scheme implemented in the numerical solver is energy
conserving, this production term is sufficient to produce a scalar field with a constant time-averaged
variance. However, if the transport scheme implemented is not energy conserving (e.g., Weighted-
Essentially Non-Oscillatory (WENO)," High-Order Upwind Convective (HOUC)," or Quadratic
Upstream Interpolation for Convective Kinematics (QUICK)!3 schemes), then there will be losses
in scalar variance due to numerical diffusion. These losses can be easily compensated for via the
addition of a second term, which is active only when the effects of numerical diffusion manifest in
the scalar field.

The constraints in constructing this second term are threefold. First, it should take the form of
a relaxation term, being active only when the variance of the rescaled scalar field is not equal to «.
This will have the effect of driving the variance to « and sustaining it at «, providing the user with



095102-8 Carroll, Verma, and Blanquart Phys. Fluids 25, 095102 (2013)

control over the final, stationary scalar field variance value. This control over the variance of the
scalar field, combined with knowledge of the mean of the scalar field, gives the user the ability to
define completely the statistical distribution of the scalar quantity of interest. This statement will
be supported further in Sec. IV C. Second, it needs to be dimensionally consistent with Eq. (14)
(or Eq. (16)). Finally, the additional term should be linear with respect to the rescaled scalar quantity,
such that it preserves the linearity of the rescaled and unforced advection-diffusion equations. In
light of these requirements, this additional relaxation term is of the form

L (\/Ez — 1) Z, (17)
TR O’Z

where 73 is arelaxation time-scale. If a% = «, then the term is inactive, as the variance of the rescaled
field is at its desired value; if o% # o, then more (or less) variance is added to (or subtracted from)
the rescaled scalar field. The role of the relaxation time-scale is to prevent the relaxation term from
adjusting too strongly to changes in scalar variance. Using a time-scale associated with the larger
scale flow structures instead of a smaller time-scale on the order of viscous processes (where losses
in scalar variance actually occur) ensures that the scalar variance is adjusted sufficiently slowly and
smoothly to prevent transient behaviors from being introduced in the scalar field. As an example,
the value of « can be chosen to match exactly the variance of the initial scalar field. However, this
is not a requirement.

The final form of the scalar transport equation with the proposed linear scalar forcing technique
is obtained by combining Eqs. (16) and (17),

Az _ 1 (o 1 (x(@))
¥+u-vz_v.(pv2)+[m(\/:§ 1>+2 .2 ]z. (18)

To reiterate, the proposed forcing function is composed of two terms; the relaxation term allows the
scalar field to evolve towards a specified variance, or average scalar energy, while the production
term balances exactly any losses from scalar dissipation. Note, however, that the relaxation term is
required only if the scalar transport scheme used is not energy conserving; if it is energy conserving,
then the relaxation term will be effectively inactive. This proposed linear scalar forcing scheme
has the advantage of being truly mathematically isotropic, imposing no preferred direction. It is
interesting to note that the production term is similar to the linear velocity forcing term, Qu.
Analogous to Q, the linear factor,

1 (x(2)
2 O’%

b

is the inverse of a time-scale. However, in this case, it is the inverse of the scalar time-scale,
_ 2
Tz = Gz/X(Z)'

IV. VALIDATION OF THE VARIANCE FORCING TECHNIQUE

The validation of the proposed linear scalar forcing takes the following form. First, the temporal
behavior of the forcing is investigated to ensure the average scalar variance asymptotes indeed to a
constant value, independent of the initial conditions. Second, the impact of varying the magnitude
of the relaxation time-scale is studied. Third, the relevant single-point metrics for isotropy, such as
skewness, variance, and the three scalar fluxes, are calculated to ensure appropriate behavior. Addi-
tionally, the distributions of scalar quantities with accepted analytical forms, such as the distribution
of the scalar dissipation rate (log-normal), are calculated and verified to be predicted correctly.
Finally, two-point statistics (e.g., spectra) are considered. For each (Re;,Sc) combination included
in this study, the spectra generated from the linear scalar forcing are compared to spectra from the
decay of a scalar field in the self-similar regime.
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TABLE I. Simulation parameters for the DNS study conducted. N is the number of grid points, and D is the molecular
diffusivity of the scalar quantity.

Variation of Schmidt number
Fixed: HOUCS scheme (except case 4), g = 1

Case ID N3 Re;, Kmax? KmaxB Sc D

1 256° 55 3.0 3.0 1 7.50 x 1073
2 2563 55 2.4 34 0.5 1.50 x 1072
34 10243 55 11.8 2.95 16 4.69 x 1074
4a.b.c 10243 140 3.4 34 1 2.80 x 1073
5b 7683 8 49 3.06 256 6.20 x 10~

Variation of scalar transport scheme
Fixed: Tg =1, Sc =1, Re;, =55

Case ID N3 Re;, D K max1B Scalar scheme
1 256° 55 7.50 x 1073 3.0 HOUC5
6 256° 55 7.50 x 1073 3.0 QUICK

Variation of relaxation timescale
Fixed: HOUCS scheme, Sc = 1, Re, =55

Case ID N3 Re;, D K maxNB TR
1 256° 55 7.50 x 1073 3.0 1

7 2563 55 7.50 x 1073 3.0 0.1
8 2563 55 7.50 x 1073 3.0 0.5

Variation of initial condition
Fixed: HOUCS scheme, tg = 1, Sc = 1, Re; = 55

Case ID N3 Re;, D K maxNB Initial condition

9 256° 55 7.50 x 1073 3.0 Gaussian

10 2563 55 7.50 x 1073 3.0 Random

11 256° 55 7.50 x 1073 3.0 Mean scalar gradient-forced

2For these cases, g = 0.1. This was done to reduce computational burden for this Re; , Sc combination.
bFor these cases, the velocity field was spectrally-forced;'? all others were linearly-forced.
CFor this case, the QUICK scalar transport scheme was used.

A. Simulation study

The primary objective of this study is to evaluate the characteristics of the proposed linear scalar
forcing technique in homogeneous, isotropic turbulent flow over a range of Schmidt numbers. The
velocity field is linearly forced” in cases 1-3 and cases 6—11 (Table I), as discussed in Sec. I C, and
spectrally forced'’ in cases 4-5 to maintain a suitable Re;. The scalar field is forced with both the
proposed method (referred to as linear scalar (LS)) and the mean scalar gradient method (referred
to as MG) to allow for comparison.

The specific simulation parameters and fluid properties (kinematic viscosity, v = D Sc, and
molecular diffusivity, D), are summarized in Table 1. The columns titled k.1 and «,,4p are
indicative of the simulation resolution, where «,,, corresponds to the maximum wavenumber
accessible in the simulation, 1 is the Kolmogorov length-scale, and 73 is the Batchelor'® length-
scale, defined as ng = nS ¢™2.The Kolmogorov and Batchelor!” length-scales indicate the smallest
characteristic length-scales for the velocity and scalar fields, respectively. Convention mandates
highly restrictive resolution requirements for both the velocity and scalar fields when performing
DNS studies, or the physics of the dynamically important small scales will not be captured fully.
The accepted resolution limits for the velocity and scalar fields are « 4 > 1.5 and & pqenp > 1.5,
respectively,'® for spectral codes. As the code package implemented in this work is non-spectral, the
limits &40 > 3.0 and k.4, > 3.0 will be used. One unfortunate result of these resolution criteria
is that simulation studies are restricted to moderate Schmidt numbers, as high-Schmidt number
simulations can become too computationally expensive to perform.

To illustrate the robustness and validity of the proposed scalar forcing, a parametric study was
performed. The parameters methodically varied include the relaxation time-scale, Tg, the scalar



095102-10 Carroll, Verma, and Blanquart Phys. Fluids 25, 095102 (2013)

transport scheme, the nature of the initial conditions, and the Schmidt number, Sc. As will become
evident in Secs. IV B-IV D, the proposed linear scalar forcing is quite robust.

The simulations to be presented were conducted in a configuration of 3D periodic turbulence
of size (2r)°. They were performed with the NGA code package.!” The code is physical (non-
spectral) and uses a standard staggered grid. The velocity field is solved implicitly via a second-order
accurate finite-difference scheme, and this scheme is energy conserving. The scalar field is solved
implicitly via either the QUICK scalar transport scheme, which is a third-order upwinded finite-
volume scheme, !> or a fifth-order accurate upwinded scheme (HOUC5)."* The time advancement is
accomplished via a semi-implicit Crank-Nicolson method. "’

B. Time evolution

To illustrate the effectiveness of the proposed scalar forcing at driving the scalar field towards a
state of constant variance, consider Fig. 5(a), which contains the evolution of variance of the scalar
field as a function of time for cases 1-3 in Table I. Initially, the energy content of the scalar field
is negligible. As the forcing is applied, the field assumes progressively a constant scalar variance
value, as determined by the value of « specified. For all simulations performed, o« was set to unity.
As can be verified from Fig. 5(a), the energy content of the scalar field does relax towards a constant
value.

However, depending on the quality of the scalar transport scheme used, the scalar variance may
not assume a value of precisely unity. This is illustrated in Fig. 5(b). The disparity can be explained
as follows. The third-order accurate QUICK scheme suffers from comparatively greater numerical
diffusion than the fifth-order accurate HOUCS5 scheme. Both curves shown in Fig. 5(b) were obtained
using the same value of tg, which is not sufficient to overcome the effects of numerical diffusion
when the QUICK scheme is used for scalar transport. Upon decreasing the value of tg, the steady
state scalar variance obtained with the QUICK scheme increased towards the desired value. Note
that the highest Re; = 140 case included in this study was run with the QUICK transport scheme
instead of the less dissipative HOUCS scheme due to numerical stability issues. To compensate for
any losses from utilizing the QUICK scheme, this Re; = 140 case was run at a very high resolution,
knp = 3.4.

These observations verify that both the production and relaxation terms are necessary for the
success of the proposed scalar forcing technique. The production term compensates for losses in
scalar variance from physical diffusion, and the relaxation term accommodates for errors in the
scalar transport scheme and determines the final, steady state variance value. Further evidence of
the need to compensate for discretization errors can be obtained by examining Fig. 6, which depicts
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FIG. 5. Time evolution of scalar field statistics for « = 1. (a) Time evolution of scalar field variance. Re; = 55, Sc¢ = 16
plateaus more quickly as tg = 0.1. The legend refers to (Re,, Sc); (b) effect of reducing numerical error via improving the
scalar scheme (cases 1 and 6, Re; = 55,Sc = 1).
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FIG. 6. Effect of relaxation term on scalar field variance Re, = 55, Sc = 1, knp = 3.0. Note that the scalar field variance is
unchanged from that of the initial scalar field for 57 when the relaxation term is zeroed.

the temporal variance data obtained when the proposed linear scalar forcing is run with and without
the relaxation term active. Initially (#/t < 23), the relaxation term is active and the scalar variance
is driven to and sustained at the specified @ = 1 value. Then, the relaxation term is removed from
the forcing (#/r > 23). The scalar variance is observed to remain constant for approximately 5 t
before losses due to the imperfect nature of the HOUCS5 scheme begin to manifest as a reduction
in variance. Assuming perfect energy conservation in the scalar transport scheme, the production
term would be sufficient to sustain the scalar field at the desired variance value. Unfortunately, no
scalar transport scheme is truly energy conserving; physical schemes induce discretization errors
and spectral schemes may induce dealiasing errors. As a result, the relaxation term is necessary, and
once at statistical stationarity, it is only needed to compensate for numerical errors.

Recall that T (the relaxation parameter) is a free parameter which controls the overall stiffness
of the forced scalar transport equation, Eq. (18). To show the effectiveness of the proposed scheme
at driving the scalar field towards stationarity, tg is varied, as indicated in cases 1, 7, and 8.
Figure 7(a) indicates the impact of the relaxation parameter on the performance of the proposed
forcing. A smaller value, 7z = 0.1, results in a faster initial rise to the specified variance and serves
to weight the relaxation term preferentially in comparison to the production term.

Further, the behavior of this linear scalar forcing is independent of initial conditions. The
effect of the initial conditions was qualified by making use of three different initialization methods.
First, the initial scalar field was generated as Gaussian in space (case 9), following the scalar field
initialization technique of Eswaran and Pope.'® Second, a completely random field was used to

1.2 ; ; ; ; 2.5 . ; . ;
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FIG. 7. Effect of relaxation time-scale and initial conditions on the performance of the proposed linear scalar forcing
(Re), = 55,Sc = 1). (a) Effect of the relaxation time-scale (kg = 3.0, cases 1, 7, 8); (b) effect of scalar field initial
conditions (k maynp = 3.0, cases 9, 10, 11).



095102-12 Carroll, Verma, and Blanquart Phys. Fluids 25, 095102 (2013)

10° | U% —
vZ ——
wZ ——
w 107 9 w
a a
o o
& 107 e
=3 35
© 6
1078 1
10 . . X
-10 -5 0 5 10
Ui Z/ (Gui Gz) Ui Z/ (Gui Gz)
(a) (b)

FIG. 8. PDF of scalar flux with the proposed linear scalar forcing for cases 1 and 3. (a) Sc¢ = 1, Re, = 55; (b) Sc = 16,
Rt?;L =55.

seed the simulation, consisting of random numbers bounded from —1 to 1 (case 10). Finally, the
initial scalar field was taken to be a statistically stationary field obtained from implementing the
mean scalar gradient forcing (case 11). The impact of these three different initial conditions on the
behavior of the proposed forcing technique is depicted in Fig. 7(b). The proposed forcing technique
successfully drives the scalar field to a constant variance regardless of its initial state.

The (potential) impact of the addition of the relaxation term in Eq. (18) on the long-term behavior
of the scalar field has been investigated by considering different relaxation time-scales (Fig. 7(a)),
initial fields (Fig. 7(b)), and different times (e.g., #/t = 2 and #/t = 35, Fig. 6). The statistics were
found to be unchanged. As a result, it is believed that it is appropriate to conclude that the relaxation
term included in Eq. (18) only drives the scalar variance to its desired value, having no adverse
effects on the long-term statistics of the scalar field.

The statistical character of the scalar field under the action of the linear scalar forcing is
found, also, to be favorable and approximately Gaussian, consistent with experimental findings.
The skewness and flatness were calculated for each case included in the study. The skewness data
indicated that the scalar field was symmetric about its mean (equally probable to have positive
and negative scalar values), a requirement for homogeneous, isotropic turbulence. Additionally, the
flatness of the scalar field was found to have a value of approximately three, consistent with that of
a Gaussian distribution.

C. Single point scalar field statistics

To remain consistent with the physics of scalar mixing in a decaying turbulent field, the scalar
statistics must be isotropic and symmetric. To determine if the proposed forcing is able to reproduce
these requirements, the probability density functions of the three scalar fluxes for each simulation
were calculated for cases 1-4. These cases correspond to moderate Re;, = 55 conditions over a range
of low to moderate Sc = 0.5, 1, 16 and one high Re; = 140 condition at Sc = 1. These scalar fluxes
are averaged over multiple T (eddy turn-over times) and two representative PDFs are depicted in
Fig. 8. As is apparent in Fig. 8, the scalar fluxes are symmetrically distributed about a value of zero.
Comparable distributions were found for all Re; and Sc examined in this study. This is in contrast
to the strong anisotropy in the scalar fluxes obtained with the mean gradient forcing (Fig. 1).

The distribution of the scalar and scalar dissipation rate is also calculated. Under conditions of
isotropy and homogeneity, the distribution of a scalar quantity is expected to be close to Gaussian,
while that of the scalar dissipation rate is close to log-normal. The PDFs for these two quantities
are included in Fig. 9. As shown in Fig. 9(a), the approximately Gaussian distribution of the
scalar quantity, Z, is preserved with the proposed forcing. Additionally, Fig. 9(b) indicates that the
commonly-accepted log-normal distribution of x is preserved also under the action of the linear
scalar forcing.
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legends refer to the (Re; , Sc¢) combination implemented. (a) Scalar field quantity, Z; (b) scalar dissipation rate, x.

D. Two-point scalar field statistics

The final test is to ensure that the proposed scalar forcing reproduces adequately the scalar
energy spectrum in the self-similar regime. Towards that end, a scalar field is forced via the mean
gradient forcing from #/t = —15 until #/T = 0, after which it is allowed to decay. It is clear from
Fig. 10(a) that after t/T = 0, the scalar variance decays in the absence of any external forcing. The
analysis that follows focuses on the three data points depicted in Fig. 10(a), obtained 1, 4, and 7 t
after the beginning of decay, with the mean scalar gradient forcing term zeroed. The scalar spectra
for these three data points are presented in Fig. 10(b), along with the spectrum obtained when the
field was forced with a mean gradient, just prior to decay (#/t = 0). These spectra are not normalized,
and they clearly indicate that the energy content of the scalar field is decreasing. However, the shape
of the spectra are largely unchanged, suggesting a possible self-similar behavior. To verify that
the scalar field had entered a self-similar state, the spectra at 1, 4, and 7 t after the onset of variance
decay were suitably normalized by their Batchelor scales and their variances, o%. The results are
displayed in Fig. 10(c). The collapse of the spectra to one consistent curve for two of the three data
points (#/t = 4 and 7) confirms that the scalar field has entered into a self-similar regime. The scalar
dissipation spectra, defined as D (k) = Dk>E(k), are presented in the inset to highlight this collapse.
As shown in the dissipation spectra comparison, the data at #/r = 1 does not collapse on to the same
spectrum as the other two, indicating that this data point is located in the transient period between
statistical stationarity and self-similar behavior. The number of eddy turn-over times (7) of decay
needed for the scalar field to enter into the self-similar regime varies with Re; and Sc; in all cases
included in this study, it was verified that sufficient time had passed to allow for the self-similar
regime to develop fully.

To prove that the linear scalar forcing produces the physics of self-similar decay, the decaying
spectra that have entered the self-similar regime, such as those in Fig. 10(c), are compared to the scalar
spectrum obtained when a scalar field is forced via the linear scalar forcing method. Representative
results are depicted in Fig. 10(d). Collapse of the normalized decaying spectra onto the spectrum
predicted by the linear scalar forcing confirms that the proposed forcing does reproduce accurately
the physics of scalar mixing in the self-similar regime. For clarity, only one of the three decaying
spectra, at t/t =7, is used for the comparison to the linearly-forced scalar spectrum, although spectra
at t/t = 4 and 7 exhibit the same behavior.

The preceding analysis focused on case 1 in Table I, where the Schmidt number was unity. To
confirm that this behavior persisted for non-unity Sc and other Re, , the same analysis was conducted
using cases 2-5. In all cases, the freely decaying spectra assumed the spectrum shape predicted by the
linear scalar forcing method. Taking as examples the two extreme Sc included in this study (Sc = 0.5
and Sc = 256), Fig. 11 details the self-similar collapse of freely-decaying spectra onto the spectrum
shape predicted by the linear scalar forcing. The extent of agreement between the decaying and
linearly-forced scalar spectra is highlighted in Figs. 11(c) and 11(d), which displays the dissipation
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FIG. 10. Evolution of a purely decaying scalar spectrum into the shape predicted by the proposed linear scalar forcing method
(Re;, =55, Sc = 1, case 1). (a) Decay of scalar variance. Points correspond to scalar variance 1, 4, and 7 t after forcing
is removed; (b) scalar spectra in self-similar regime; (c) collapse of normalized scalar spectra. The inset is the dissipation
spectrum, 10% x D(x); (d) collapse of normalized scalar spectra in the self-similar regime.

spectra for the two cases. As is apparent, the linear scalar forcing predicts the appropriate spectrum
of a decaying scalar. This behavior was observed for all cases included in this study and persisted
irrespective of the initial conditions implemented.

V. IMPLICATIONS FOR HIGH-SCHMIDT NUMBER SCALAR MIXING

The mean gradient and linear scalar forcings are intended to capture two distinctly different
scalar field physics. This difference manifests in the structure of the scalar spectra that the two
methods predict. The stationary scalar spectra generated by the two techniques are provided in
Fig. 11 for the lowest and highest Schmidt numbers investigated (Sc = 0.5, 256). Comparing these
spectra, it is clear that continuous energy injection (mean gradient forcing) and one-time energy
injection (linear scalar forcing) can predict different scalar field structures under certain conditions.

The simulation results for small Sc¢ are considered first (Figs. 11(a) and 11(c)). At Sc < 1, the
spectrum predicted by the two forcing methods are comparable. However, at Sc > 1 (Figs. 11(b)
and 11(d)), there are distinct differences in shape (the distribution of scalar variance in wavespace)
observable between the scalar spectra generated under mean gradient and linear scalar forcing. The
mean gradient-predicted spectrum decays less strongly across the intermediate wavenumbers than
that predicted by the proposed forcing method. These differences are more pronounced at larger
Sc and can be considered in terms of Batchelor’s theory for scalar behavior!® and experimentally-
observed high-Schmidt number scalar behavior.?%-23
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FIG. 11. Evolution of a purely decaying scalar spectrum into the shape predicted by the proposed linear scalar forcing
method. Linear scalar and mean gradient forcing are denoted as LS and MG. (a) Collapse of decaying spectra onto linear
scalar forcing-predicted shape; (b) collapse of decaying spectra onto linear scalar forcing-predicted shape; (c) comparison of
freely decaying and linear scalar forcing-predicted dissipation spectra; (d) comparison of freely decaying and linear scalar
forcing-predicted dissipation spectra.

Batchelor’s theory predicts that the scalar energy spectrum will present distinct regions in
wavenumber space with distinct scalings; the emergence of these regions is dependent on the
Schmidt number of the scalar.'® For high Schmidt number scalars (Sc > 1), there are two char-
acteristic regions. The first is the inertial-convective subrange, which manifests at scales larger
than the Kolmogorov scale. The second is the viscous-convective subrange, which is present for
scales, /, bounded between the Kolmogorov and Batchelor!® scales, n < | <« npg. The scalar en-
ergy spectrum (Ez(k)) in the inertial-convective and viscous-convective subranges is predicted,
further, to scale according to x> (for sufficiently high Reynolds numbers)’* and «~! (irre-
spective of the Reynolds number), respectively, where « is the wavenumber.'” It is the scaling
in the viscous-convective region with which the present analysis is concerned. In contradiction to
Batchelor’s!” prediction, several experimental studies of high Schmidt number turbulent scalars have
not observed the k! scaling behavior.2>->*> Some observed that a weaker scaling, possibly a log-
normal scaling, across the viscous-convective subrange may be more representative of experimental
data.””

Case 5 has a sufficiently high Sc = 256 to allow for a comparison of the scalar spectra produced
by the linear scalar and mean gradient forcing methods to both Batchelor’s'® predictions and the
summarized experimental results. As the Reynolds number is low (Re; =~ 8), it is not expected to cap-
ture the « ~>3 scaling across the inertial-convective range as predicted by Obukhov?® and Corrsin,**
but it is expected that the Schmidt number is high enough to capture the correct behavior across
the viscous-convective range. To compare the data presented to Batchelor’s'® scaling prediction,
the Kraichnan?® model spectrum (K-form) will be used. The Kraichnan spectrum introduces into
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FIG. 12. Comparison of predicted scalar spectra to Kraichnan-predicted®® form (Re; = 8, Sc¢ = 256). The Batchelor'’
and Kraichnan® predicted scaling of Ez(k) oc k! is represented by the Kraichnan?® model spectrum (black). Note the
Kraichnan®® spectra have been shifted slightly vertically to highlight consistency (or inconsistency) with the MG and LS
spectra. (a) Mean gradient-forced spectra; (b) linear scalar-forced spectra.

Batchelor’s'® proposed spectrum form a correction allowing for fluctuations in strain rate.® This
model form was obtained strictly theoretically, and it is given by

Ez(/<)=61()<)(§)_1/2 - <1+Kn3f>exp< Kﬂsr) (19)

where g was determined by Qian to have a value of 24/5 for homogeneous, isotropic turbulence.?’
One of the assumptions made by both Batchelor'® and Kraichnan®® was that the scalar field is subject
to continuous scalar variance injection (infinite scalar reservoir). The presence of an infinite reservoir
of variance will produce a scalar energy distribution that is distinct, and this is the distribution that
the mean gradient forcing was developed to capture.

To emphasize the differences between the mean gradient and linear scalar forcing techniques,
they are compared directly to the K-form model spectrum. Figure 12(a) compares the statistically
stationary scalar spectrum predicted by the mean gradient forcing to Kraichnan’s®® model. As is
apparent in Fig. 12(a), the mean gradient spectrum agrees quite well with the K-form spectrum.
Alternatively, the linear forcing assumes one-time scalar variance injection, contrary to the explicit
assumptions of the K-form spectrum. Unsurprisingly, Fig. 12(b), which compares Kraichnan’s?®
model to the spectrum predicted by the linear scalar forcing, finds virtually no agreement. Note for
the mean scalar gradient forcing that the disagreement in the viscous-diffusive subrange between the
K-form and predicted spectrum can be attributed to numerical losses, which have minimal negative
impact in the viscous-convective subrange.

As is evident from Fig. 12, the scalar spectra resulting from the two different scalar forcing
techniques exhibit different scaling behaviors across the viscous-convective subrange. The mean
scalar gradient forcing appears to obey the k! scaling, while the proposed scalar forcing does not.
In fact, the proposed scalar forcing implies a scaling with wavenumber that is weaker than « ',
possibly consistent with experimental findings. The difference between the physics corresponding
to the two scalar forcing techniques could provide insight into the apparent disagreement between
the experimental results and theoretical analysis in the literature. The presence of a constant, uniform
mean scalar gradient is more consistent with the assumptions used in the derivation of Batchelor’s'’
theoretical scaling, namely, the assumption of an infinite scalar reservoir. On the other hand, the self-
similar nature of scalar mixing in decaying turbulence might be more consistent with experimental
observations, as they both are limited to having only a finite, initial scalar variance distribution.
Stated differently, the apparent disagreement between experiments and theory could be due only to
the conditions under which scalar mixing is considered, whether that be in a decaying, self-similar
(appropriate for experiments) or forced (appropriate for Batchelor’s'® predictions) scalar field. This
warrants additional investigation. However, this is beyond the scope of the present study.
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VI. CONCLUSIONS

The primary objective of this work was to develop a methodology for numerically simulating the
self-similar decay of a turbulent scalar field. The linear scalar forcing technique has been presented
and the statistics produced by its implementation have been shown to reproduce the characteristics
of homogeneous, isotropic turbulence. For the range of Sc considered in this study, the spectra
predicted by the proposed scalar forcing are consistent with the sustained decay of a turbulent scalar
field. The proposed forcing is robust, performing well irrespective of the initial conditions of the
flow field.

The proposed scalar forcing is both novel and attractive relative to the most commonly-used
scalar forcings (mean scalar gradient and spectral). Spectral schemes require periodic boundaries,
are, in general, memory and computationally intensive, and impose constraints that are not easily
realizable in experiments. In comparison, the linear scalar forcing can accommodate non-periodic
boundary conditions, which are almost always needed when modeling engineering problems, and
can be integrated easily into non-spectral (physical) codes. Compared to the mean gradient forcing,
the proposed linear scalar forcing will be slightly more memory intensive, as it requires storage and
calculation of the scalar field variance and scalar dissipation rate at each timestep. However, this is
not a significant increase.

Finally, it has been suggested that the proposed linear scalar forcing may provide insight
into the nature of high Schmidt number flows. Specifically, the disparity observed between the
scalar energy spectra generated by the well-established mean scalar gradient and the proposed linear
forcing are reminiscent of the observed differences between theoretical predictions and experimental
results. These differences may be simply a consequence of the conditions under which scalar
mixing is studied. The implementation of a mean scalar gradient corresponds to a scalar field with
continuous energy injection, while the proposed linear scalar forcing simulates sustained decay of
scalar variance. As presented, this methodology can be implemented to perform simulation studies
of the mixing of passive scalar quantities in a turbulent environment.
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