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ABSTRACT

A catastrophic bifurcation in non-linear dynamical systems, called crisis, often leads to their convergence to an undesirable non-chaotic state
after some initial chaotic transients. Preventing such behavior has been quite challenging. We demonstrate that deep Reinforcement Learning
(RL) is able to restore chaos in a transiently chaotic regime of the Lorenz system of equations. Without requiring any a priori knowledge of
the underlying dynamics of the governing equations, the RL agent discovers an effective strategy for perturbing the parameters of the Lorenz
system such that the chaotic trajectory is sustained. We analyze the agent’s autonomous control-decisions and identify and implement a
simple control-law that successfully restores chaos in the Lorenz system. Our results demonstrate the utility of using deep RL for controlling
the occurrence of catastrophes in non-linear dynamical systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002047

Numerous examples arise in fields ranging from mechanics to
biology where the disappearance of chaos can be detrimental.
Preventing such transient nature of chaos has proved to be quite
challenging. In this paper, we demonstrate that Reinforcement
Learning (RL), which is a specific class of machine-learning tech-
niques, is capable of discovering effective control mechanisms
in this regard. The autonomous control algorithm is able to
prevent the disappearance of chaos in a specific non-linear sys-
tem, without requiring any a priori knowledge about the under-
lying dynamics. We analyze the autonomous decisions taken
by the algorithm to understand how the system’s dynamics
are impacted, which in turn allows us to formulate a simple
control-law capable of restoring chaotic behavior. The reverse-
engineering approach adopted underlines the immense potential
of the techniques used here to discover effective control strate-
gies in complex dynamical systems. We note that the autonomous
nature of the learning algorithm makes it applicable to a diverse
variety of non-linear systems, which highlights the potential of
RL-enabled control for regulating other crisis-like catastrophic
events.

I. INTRODUCTION

Chaos is desirable and advantageous in many situations. For
instance, in mechanics, exciting the chaotic motion of several modes

spreads energy over a wide frequency range,1 thereby preventing
undesirable resonance. Chaotic advection in fluids enhances mixing,
as chaos brings about an exponential divergence of fluid packets that
are initially in close proximity.2 In biology, the absence of chaos may
lead to an emergence of synchronous dynamics in the brain, which
can result in epileptic seizures.3 Moreover, the absence of chaos may
also indicate the presence of other pathological conditions.4,5

In some cases, chaos can become transient in nature, where
the dynamics eventually converge to non-chaotic attractors. The
typical route by which this happens is known as a crisis,6 where
for certain parameter-values of the non-linear system, a chaotic-
attractor collides with its basin-boundary and becomes a saddle.
A saddle has a fractal structure with infinitely many gaps along
its unstable-manifold. Any initial condition attracted toward this
chaotic-attractor-turned-saddle escapes to an external periodic- or
a fix-point-attractor. Such transient chaos is often undesirable and
has been conjectured to be the culprit for phenomena such as volt-
age collapse in electric power systems7 and species extinction in
ecology.8 It also plays a crucial role in governing the dynamics of
shear flows in pipes and ducts at low Reynolds numbers.9,10

Given the importance of these phenomena, controlling tran-
sient chaos is a pressing issue. Some attempts to restore chaos in such
scenarios have been made in the past. Yang et al.5 maintained chaos
in transiently chaotic regimes of one- and two-dimensional maps
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using small perturbations. Their method relied on accurate analyti-
cal knowledge of the dynamical system and required a priori phase-
space knowledge of escape regions from chaos. Another method
utilized the natural dynamics around the saddle,11,12 where small
regions near a chaotic saddle through which trajectories escape were
identified. Then, a set of “target” points in these regions were found,
which yield trajectories that can stay near the chaotic saddle for a
relatively long time. When the solution trajectory falls in this escape
region, it is perturbed to the nearest target point so that the trajectory
can persist near the chaotic saddle for a long time. The identifi-
cation of such escape regions and target points can be challenging
and requires either an a priori computation of the probability dis-
tribution of escape times in different regions of the state space11 or
information from the return map constructed from local maxima
or minima of a measured time series.12 Such approaches become
difficult for high-dimensional dynamical systems and have been
illustrated for 2D maps/flows at the most. One particular control
technique that worked for the 3D Lorenz system was described by
Capeáns et al.13 The method was based on finding a certain control-
perturbation set in the phase space, called a “safe set,” which avoids
the escape of the trajectories to the fix-points. Identifying such a
safe set can be prohibitively expensive computationally, and such
safe sets may not exist for all dynamical systems. A useful alter-
native in such scenarios is to adopt control approaches that do
not require a priori knowledge of the system’s dynamics. Gadaleta
and Dangelmayr14 demonstrated an early application of such tech-
niques, where they used reinforcement learning to stabilize unstable
fixed points and periodic orbits in chaotic systems. We adopt a
similar approach in this work, where a reinforcement learning-
based autonomous controller continually perturbs the parameters
of the Lorenz system to discover an optimal strategy for preventing
transiently chaotic behavior of the system.

II. REINFORCEMENT LEARNING

In recent years, a machine-learning technique called deep
Reinforcement Learning (RL) has shown great promise in control-
optimization problems,15 and it has been successfully used to
uncover complex underlying physics in Navier–Stokes simulations
of fish-swimming.16 The aim of the present work is to illustrate the
utility of deep RL in determining small control-perturbations to the
parameters of the Lorenz system,17 such that a sustained chaotic
behavior is maintained despite the uncontrolled dynamics being
transiently chaotic. In doing so, no prior analytical knowledge about
the dynamical system and no special schemes to find escape regions,
target points, and safe sets will be employed. The RL algorithm
is able to autonomously determine an optimal strategy to restore
chaos, by continually interacting with the dynamical system.

As depicted in Fig. 1, a reinforcement learning problem consists
of five major elements—a learning agent, an environment described
by a model Y (the Lorenz system in our case), state-space S, action-
space A, and reward rt. Initially, the RL agent interacts with its
environment in a trial-and-error manner. At each time step t, the
agent receives the current state st of the environment and selects an
action at following a policy π(at|st). This action allows the agent to
perturb the state of the environment and move to a new state st+1

by evaluating the given model Y of the environment. Upon affecting

FIG. 1. Schematic illustrating the basic framework of a reinforcement learning
problem. An agent continually perturbs the environment (which is the Lorenz sys-
tem in our case) by taking an action and records the resulting states. The agent
is rewarded when a desirable state is reached and punished otherwise.

this transition, the agent is rewarded (or punished) with reward rt.
This process continues until the agent reaches a terminal state, at
which point a new episode starts over. The return received from each
episode is the discounted cumulative reward with the discount factor
γ , which lies between 0 and 1. The discount factor makes it feasi-
ble to emphasize the importance of maximizing long-term rewards,
which enables the agent to prefer actions that are beneficial in the
long-term. The cumulative reward, R(at|st), is given as

R(at|st) =

∞
∑

k=0

γ krt+k. (1)

III. TRAINING THE AGENT TO SUSTAIN CHAOS

The goal of the RL agent is to maximize the cumulative reward
by discovering an optimal policy π∗. There are a variety of meth-
ods available for attaining this. We make use of Proximal Policy
Optimization (PPO),18 which is a type of policy Gradient Method
(PGM).19,20 A detailed description of the algorithm is provided
in the supplementary material. PPO is suitable for continuous-
control problems,21 and it is simpler in its mathematical implemen-
tation compared to other PGM based RL algorithms.22 Moreover,
PPO requires comparatively little hyper-parameter tuning for use
in a variety of different problems. The specific implementation
of the algorithm that we used, PPO2, is available as part of the
OpenAI stable-baselines library.23 The ergodic and unsteady nature
of chaotic dynamics necessitates the use of a version of PPO2 where
the policy is defined by deep recurrent neural networks comprised
of Long Short-Term Memory (LSTM) cells,24 instead of traditional
feed-forward neural networks. A brief description of LSTM cells and
their advantages is provided in the supplementary material.

The environment for the Lorenz system is written in an Ope-
nAI gym25-compatible python format and is provided as part of the
supplementary material. The relevant equations are given as

dx

dt
= σ(y − x), (2a)

dy

dt
= x(ρ − z) − y, (2b)
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dz

dt
= xy − βz. (2c)

With σ = 10 and β = 8/3, ρ = 28 gives rise to chaotic trajectories,
whereas transient chaos is found in the interval ρ ∈ [13.93, 24.06].26

Without any control implemented, the solution will converge to
specific fix-points after a short transient, as shown in Fig. 2. The
two fix-points in our case are given by P+ = (7.12, 7.12, 19) and
P− = (−7.12, −7.12, 19).

We use reinforcement learning to prevent such a transient
from chaotic- to fix-point solutions. This is done by perturb-
ing the parameters in Eq. (2) [ρ = (σ , ρ, β)] by 1ρ = (1σ ,
1ρ, 1β), with 1ρ ∈ [−ρ/10, ρ/10]. We clarify that these limits
do not change with the “current” value of ρ but instead remain
fixed at the initial value. The instantaneous value of the solu-
tion vector X(t) = (x, y, z) and its time-derivative (velocity) Ẋ(t)

= (Vx(t), Vy(t), Vz(t)) = ( dx
dt

,
dy

dt
, dz

dt
) constitute the state space S for

the RL algorithm. For training the RL agent to retain a chaotic tra-
jectory, we utilize the fact that |V(t)| will decrease consistently as
the solution converges to one of the fix-points, eventually becoming
zero. On the other hand, |V(t)| will have a non-zero average value
when the solution traces the chaotic attractor. Thus, whenever the
agent determines suitable action values 1ρ for which |V(t)| is main-
tained above the predefined threshold value V0 = 40, it is rewarded;
otherwise, it is punished. In doing so over several iterations, the
agent eventually learns to keep the trajectory chaotic. We remark
that the method is robust against the choice of V0 unless a very small

value of V0 is chosen. The strategy used here for selecting an appro-
priate V0 is to use a value close to the ensemble average of velocity
magnitude sampled from various instances of chaotic transients.

The reward allocated to the agent consists of two parts: a step-
wise reward rt provided at each time step and a one-time terminal
reward rterminal given at the end of each episode. The two terms take
the following form:

rt =

{

10, V(t) > V0,

−10, V(t) 6 V0,
(3a)

rterminal =

{

−100, r̄t < −2,

0, r̄t > −2.
(3b)

The average r̄t is defined over the last 2000 time steps of an episode
and facilitates learning to keep the trajectory chaotic over long peri-
ods of time. The training of the agent is divided into episodes of
4000 time steps each, with time step size dt = 2e−2. The RL agent
is expected to learn suitable action values 1ρ for any state permis-
sible by the system environment, such that the long-term reward
accumulated is maximized.

The neural network architecture used for training the RL agent
is shown in Fig. 3. The network consists of an input layer, an out-
put layer, and three hidden layers in between. Figure 4 illustrates the
training of the agent with time. The underlying neural network is
trained for 2 × 105 time steps, which corresponds to 50 independent
episodes in total, with each episode beginning with random values of
the state variables X between −40 and 40; the corresponding values

FIG. 2. Solution of the Lorenz system of equa-
tions in (a) and (b) the chaotic regime with ρ = 28
and (c) and (d) the transiently chaotic regime with
ρ = 20. Panels (a) and (c) depict the solutions
in the phase space, and the corresponding time-
variation of the x coordinate is shown in panels (b)
and (d). Note that the solution traverses a chaotic
trajectory for ρ = 28, whereas it converges to
P− after a few chaotic transients for ρ = 20.
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FIG. 3. A schematic diagram of the neural network architecture used in our study.
The 6 state variables feed into a network with 2 fully connected layers consisting of
64 nodes each, followed by an LSTM layer comprising 256 cells. The output layer
has three nodes corresponding to the three possible actions. Hyperbolic tangent
(tanh) activation is used throughout the network.

for Ẋ are determined using the Lorenz equations [Eq. (2)]. Initially,
the solution keeps converging to the fix-points, since the network is
unable to provide optimal action-decisions. After the network has
trained for some time, it successfully learns the optimal actions for
keeping the value of |V(t)| above V0. As a consequence, the agent
learns that the best way of maximizing reward is by maintaining the
dynamics over the chaotic-attractor, which, although non-attracting
for the given set of parameters, is a coexisting attractor of the sys-
tem, along with the fix-points. In Fig. 4(b), we observe that the
autonomous controller learns a distinct trend for ρ, which even-
tually suppresses the transiently chaotic behavior beyond t = 2000.
However, the other two parameters σ and β do not exhibit a notable
pattern. This indicates that the controller focuses primarily on the
parameter that is best able to restore chaotic dynamics.

We note that the training procedure for the present study is not
extremely demanding in terms of computational cost; a complete
training run requires approximately 10 min on a regular laptop com-
puter. The main difficulty arises when deciding the most appropriate
form of the reward function, since variations in the formulation can
lead to notably different outcomes.

IV. CONTROL STRATEGY DISCOVERED BY THE

AUTONOMOUS AGENT

Figure 5 shows the distribution of the perturbation variable 1ρ

employed by the trained agent, which allows it to keep the dynamics
on the chaotic-attractor. This distribution was obtained by plot-
ting the controlled-trajectories for 400 random initial values for the
variables x, y, and z, lying between −40 and 40. Note that a sim-
ilar distribution was obtained for the other perturbation variables
1β and 1σ . However, we find that an execution of the converged
RL control-policy with 1β and 1σ explicitly set to zero does not

(a)

(b)

FIG. 4. (a) Training of the RL agent with time. Note that the trajectory is tran-
siently chaotic until around t = 2000, beyond which the agent learns to take
effective decisions to keep the solution trajectory chaotic for further instances. (b)
Time-variation of the controlled parameters ρ, σ , and β . Note the gradual transi-
tion of the mean value of ρ, which corresponds with the eventual switch to chaotic
behavior.

make a difference in the control outcome; the agent is still able to
maintain a chaotic trajectory. This may be attributed to the dom-
inating magnitude of the parameter ρ compared to the other two
parameters. The significance of ρ is also evident in Fig. 4(b) where
a transition in the mean value of ρ from approximately 20 to 21
is observed when the RL agent becomes effective at keeping the
dynamics chaotic. No such transition is evident for β and σ . We
note that a mean value of 21 for ρ does not correspond to the sta-
ble chaotic regime of the Lorenz system, and solving the equations
with constant ρ = 21 would still lead to transiently chaotic behavior.
From the distribution shown in Fig. 5(a), we observe that the per-
turbation values for 1ρ are predominantly negative in the region <,
where Vz = dz/dt < 0, and positive elsewhere. We observe this cor-
respondence by visualizing the velocity vectors in Fig. 5(b), which
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(a)

(b)

FIG. 5. (a) Distribution of the perturbation parameter 1ρ learned by the RL
agent to keep the dynamics on the chaotic-attractor. The red dots indicate loca-
tions where the perturbation values are positive, and the blue dots correspond to

negative values. (b) Velocity vector ( dx
dt
, dy

dt
, dz
dt

) plot shown for the corresponding
solution in the state space. Note that 1ρ is predominantly negative in the region
< where Vz = dz

dt
< 0.

indicate that the direction of motion within the region < almost
always results in a decrease of the z coordinate, i.e., Vz < 0. The
overall effect of this control mechanism is to prevent the trajectory
from spiraling into the fix-points.

Note that unlike other control-techniques, RL-based control
requires no a priori analytical knowledge about the dynamical sys-
tem regarding its escape regions, target points, and safe sets. The RL
agent learns an optimal strategy π∗ to prevent the transition from
chaotic to fix-point solutions completely autonomously, by contin-
ually interacting with the environment defined by the Lorenz system
of equations exhibiting transient chaos.

V. REVERSE ENGINEERING A CONTROL-LAW

Based on the strategy of the RL controller, we formulate a
simple rule-based controller, which perturbs the parameter ρ by
−ρ/10 whenever the trajectory visits the region <, i.e., whenever
Vz < 0. All parameters remain unperturbed outside this region.
The success of the rule-based binary-control is demonstrated in
Fig. 6 (Multimedia view), where the uncontrolled trajectory (green)

(a)

(b)

(c)

FIG. 6. (a) and (b) Comparison of the trajectory with and without the appli-
cation of rule-based control. The blue trajectory corresponds to the controlled
solution, starting from the initial condition Q = (1, 12, 9). The green uncon-
trolled solution starts from the same initial condition and spirals into the
fix-point P−. The corresponding animation is available in Supplementary
Movie 1. (c) Time-variation of ρ for the rule-based control approach. Multimedia
view: https://doi.org/10.1063/5.0002047.1
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converges to the fix-point P−, whereas its controlled counterpart
(blue) remains chaotic. We remark that in the controlled scenario,
ρ takes on two discrete values ρ = 20.0 and ρ = 18.0 [Fig. 6(c)],
both of which lie within the range ρ ∈ [13.93, 24.06] where transient
chaos would be observed without active control. This demonstrates
that autonomous strategies discovered by RL can be extremely use-
ful for formulating simple control-laws in fairly complex dynamical
systems.

VI. CONCLUSION

We have demonstrated the utility of deep reinforcement learn-
ing in restoring chaos for a transiently chaotic system. The learning
algorithm autonomously discovers an effective strategy for perturb-
ing the parameters of the Lorenz system to achieve its goal. We ana-
lyze the underlying strategy to formulate a simple control-law, which
is able to sustain the chaotic trajectory even in the transiently chaotic
parametric regime. Since transient chaos is a consequence of a catas-
trophic bifurcation (crisis),27 our results pave the way for RL-enabled
control of catastrophes in non-linear dynamical systems.

SUPPLEMENTARY MATERIAL

Please see the supplementary material for a discussion of the
PPO algorithm and LSTM cells.
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