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Fish in schooling formations navigate complex flow fields replete
with mechanical energy in the vortex wakes of their companions.
Their schooling behavior has been associated with evolutionary
advantages including energy savings, yet the underlying physi-
cal mechanisms remain unknown. We show that fish can improve
their sustained propulsive efficiency by placing themselves in
appropriate locations in the wake of other swimmers and inter-
cepting judiciously their shed vortices. This swimming strategy
leads to collective energy savings and is revealed through a com-
bination of high-fidelity flow simulations with a deep reinforce-
ment learning (RL) algorithm. The RL algorithm relies on a policy
defined by deep, recurrent neural nets, with long-short-term
memory cells, that are essential for capturing the unsteadiness
of the two-way interactions between the fish and the vortical
flow field. Surprisingly, we find that swimming in-line with a
leader is not associated with energetic benefits for the follower.
Instead, “smart swimmer(s)” place themselves at off-center posi-
tions, with respect to the axis of the leader(s) and deform their
body to synchronize with the momentum of the oncoming vor-
tices, thus enhancing their swimming efficiency at no cost to
the leader(s). The results confirm that fish may harvest energy
deposited in vortices and support the conjecture that swimming
in formation is energetically advantageous. Moreover, this study
demonstrates that deep RL can produce navigation algorithms
for complex unsteady and vortical flow fields, with promising
implications for energy savings in autonomous robotic swarms.

fish schooling | deep reinforcement learning | autonomous navigation |
energy harvesting | recurrent neural networks

here is a long-standing interest for understanding and

exploiting the physical mechanisms used by active swim-
mers in nature (nektons) (1-4). Fish schooling, in particular, one
of the most striking patterns of collective behavior and com-
plex decision-making in nature, has been the subject of intense
investigation (5-9). A key issue in understanding fish-schooling
behavior, and its potential for engineering applications (10),
is the clarification of the role of the flow environment. Fish
sense and navigate in complex flow fields full of mechanical
energy that is distributed across multiple scales by vortices gen-
erated by obstacles and other swimming organisms (11, 12).
There is evidence that their swimming behavior adapts to flow
gradients (rheotaxis), and, in certain cases, it reflects energy-
harvesting from such environments (13, 14). Hydrodynamic
interactions have also been implicated in the fish-schooling pat-
terns that form when individual fish adapt their motion to that
of their peers, while compensating for flow-induced displace-
ments. Recent experimental studies have argued that fish may
interact beneficially with each other (9, 15, 16), but in ways that
challenge (17) the earlier proposed mechanisms (5, 6) govern-
ing fish schooling. However, the role of hydrodynamics in fish
schooling is not embraced universally (8, 18, 19), and there is lim-
ited quantitative information regarding the physical mechanisms
that would explain such energetic benefits. Experimental (15,
16) and computational (20) studies of collective swimming have
been hampered by the presence of multiple deforming bodies
and their interactions with the flow field. Moreover, numerical
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simulations have demonstrated that a coherent swimming group
cannot be sustained without exerting some form of control
strategy on the swimmers (21, 22). Here, we use deep rein-
forcement learning [deep RL (23)] to discover such strategies
for two autonomous and self-propelled swimmers and eluci-
date the physical mechanisms that enable efficient and sustained
coordinated swimming.

During fish propulsion, body undulations and the sideways
displacement of the caudal fin generate and inject a series of
vortex rings in its wake (24-26). When fish swim in formation,
these vortices may assist the locomotion of fish that intercept
them judiciously, which in turn can reduce the collective swim-
ming effort. Such vortex-induced benefits have been observed in
trout, which curtail muscle use by capitalizing on energy injected
in the flow by obstacles present in streams (13, 27). Here, we
examine configurations of two and three self-propelled swim-
mers in a leader(s) —follower(s) arrangement and investigate
the physical mechanisms that lead to energetically beneficial
interactions by considering four distinct scenarios. Two of these
involve smart followers that can make autonomous decisions
when interacting with a leader’s wake and are referred to as
interacting swimmers (IS) (e.g., the follower in Fig. 1). Addition-
ally, we consider two distinct solitary swimmers (SS) that swim
in isolation in an unbounded domain. In the case of interacting
swimmers, IS, denotes swimmers that learn the most efficient
way of swimming in the leader’s wake (without any positional
constraints) and acquire a policy 7, in the process. In turn, swim-
mer IS attempts to minimize lateral deviations from the leader’s
path, resulting in a locally optimal policy 7,. These autonomous
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Fig. 1. Efficient coordinated swimming of two and three swimmers.
(A) DNS of two swimmers, in which the leader swims steadily and the
follower maintains a specified relative position such that it increases its effi-
ciency by interacting with one row of the vortex rings shed by the leader.
The flow is visualized by isosurfaces of the Q criterion (28). (B) DNS of
three swimmers, where the two followers maintain specified positions that
increase their efficiency by interacting with both rows of the vortex rings
shed by the leader. (C) DNS of three swimmers with the follower benefit-
ting from one row of wake vortices generated by each leader. Animations
of the 3D simulations are provided in Movies S1-S3.

swimmers take decisions by virtue of deep RL, using visual cues
from their environment (Fig. 24). The solitary swimmers SS,, and
SS4 execute actions identical to IS, and IS4, respectively, and
serve as “control” configurations to assess how the absence of a
leader’s wake impacts swimming-energetics.

Deep RL for Swimmers

RL (29) has been introduced to identify navigation policies
in several model systems of vortex dipoles, soaring birds and
microswimmers (30-32). These studies often rely on simplified
representations of organisms interacting with their environment,
which allows them to model animal locomotion with reduced
physical complexity and manageable computational cost. How-
ever, the simplifying assumptions inherent in such models often
do not account for feedback of the animals’ motion on the
environment. High-fidelity numerical simulations, although sig-
nificantly more computationally demanding, can account for
such important considerations to a greater extent, for instance,
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by allowing flapping or swimming motions that closely mimic
the interaction of real animals with their environment. This
makes them invaluable for investigating concepts that may be
carried over readily to bioinspired robotic applications, with min-
imal modification. This consideration has motivated our present
study, where we expand on our earlier work (33), combining
RL with direct numerical simulations (DNSs) of the Navier—
Stokes (NS) equations for self-propelled autonomous swimmers.
We first investigate 2D swimmers in a tandem configuration
to scrutinize the strategy adopted by the RL algorithm for
attaining the specified goals. Based on the observed behav-
ior and the physical intuition we gain from examining these
smart swimmers, we formulate simplified rules for implement-
ing active control in significantly more complex 3D systems. This
reverse-engineering approach allows us to determine simple and
effective control rules from a data-driven perspective, without
having to rely on simplistic models which may introduce errors
owing to underlying assumptions.

Efficient Autonomous Swimmers

We first analyze the kinematics of swimmers IS,, and IS4 (Fig. 2),
which were described previously, and were trained to attain spe-
cific high-level objectives via deep RL (see Methods for details).
In both cases, the swimmer trails a leader representing an adult
zebrafish of length L, swimming steadily at a velocity U, with tail-
beat period T [Reynolds number Re = L?/( Tv) = 5000]. After
training, we observe that IS, is able to maintain its position
behind the leader quite effectively (Ay ~ 0; Fig. 2D), in accor-
dance to its reward (Rq =1 — |Ay|/L). Surprisingly, IS, with a
reward function proportional to swimming efficiency (R, =7),
also settles close to the center of the leader’s wake (Fig. 2D and
Movie S4), although it receives no reward related to its relative
position. This decision to interact actively with the unsteady wake
has significant energetic implications, as described later in the
text. Both IS, and IS, maintain a distance of Az ~2.2L from
their respective leaders (Fig. 2C). IS, shows a greater procliv-
ity to maintain this separation and intercepts the periodically
shed wake vortices just after they have been fully formed and
detach from the leader’s tail. In addition to Az = 2.2, there is
an additional point of stability at Az = 1.5 (Fig. 2E). The differ-
ence 0.7L matches the distance between vortices in the wake of
the leader. In both positions, the lateral motion of the follower’s
head is synchronized with the flow velocity in the leader’s wake,
thus inducing minimal disturbance on the oncoming flow field.
We note that a similar synchronization with the flow velocity
has been observed when trout minimize muscle use by interact-
ing with vortex columns in a cylinder’s wake (13). IS,, undergoes
relatively minor body deformation while maneuvering (Fig. 2F),
whereas IS, executes aggressive turns involving large body cur-
vature. Trout interacting with cylinder wakes exhibit increased
body curvature (27), which is contrary to the behavior displayed
by IS,,. The difference may be ascribed to the widely spaced vor-
tex columns generated by large-diameter cylinders used in the
experimental study; weaving in and out of comparatively smaller
vortices generated by like-sized fish encountered in a school
(Fig. 2B) would entail excessive energy consumption.

We note that maintaining Ay =0 requires significant effort
by IS4 (SI Appendix, Fig. S2D), which is expected, as this swim-
mer’s reward (Rg) is insensitive to energy expenditure. One
of our previous studies (33) demonstrated that minimizing lat-
eral displacement led to enhanced swimming efficiency (com-
pared with the leader), albeit with noticeable deviation from
Ay =0. This conclusion is markedly different from our cur-
rent observation and can be attributed to the use of improved
learning techniques which are better able to achieve the speci-
fied goal. In the present study, recurrent neural networks aug-
mented with “long short-term memory” cells (S Appendix, Fig.
S3) help encode time dependencies in the value function and
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Fig. 2. Learning efficient swimming strategies: Differences between 2D and 3D flow fields. (A) The smart swimmer relies on a predefined set of variables
to identify its “observed state” (such as range and bearing relative to the leader that are depicted). Additional observed-state parameters are described in
Methods. (B) Comparison of vorticity field in the wake of 2D (Upper) and cross-section of the 3D (Lower) swimmers (red, positive; blue, negative). In 2D, the
leader’s wake vortices are aligned with its centerline. In contrast, in 3D flows, the wake vortices are diverging, leaving a quiescent region behind the leader.
In 2D, smart followers must align with the leader’s centerline. In 3D, they must orient themselves at an angle to harness the wake vortex rings (WRs). Every
half a tail-beat period, the smart follower in 2D simulations (IS,)) autonomously selects the most appropriate action encoded in policy =, learned during
training simulations, which allows it to maximize long-term swimming efficiency (Movie S4). The smart follower is capable of adapting to deviations in the
leader’s trajectory (Movie S5), as these situations are encountered when performing random actions during training. (C) Relative horizontal displacement
of the smart followers with respect to the leader, over a duration of 50 tail-beat periods starting from rest (solid blue line, IS,,; dash-dot red line, I54).
(D) Lateral displacement of the smart followers. (E) Histogram showing the probability density function (PDF; left vertical axis) of swimmer IS,,’s preferred
center-of-mass location during training. In the early stages of training (first 10,000 transitions; green bars), the swimmer does not show a strong preference
for maintaining any particular separation distance. Toward the end of training (last 10,000 transitions; lilac bars), the swimmer displays a strong preference
for maintaining a separation distance of either Ax =1.5L or 2.2L. The solid black line depicts the correlation coefficient, with peaks in the black curve
signifying locations where the smart follower’s head movement would be synchronized with the flow velocity in an undisturbed wake (see S/ Appendix

for relevant details). (F) Comparison of body deformation for swimmers IS,, (Upper) and ISy (Lower), from t =27 to t = 29. Their respective trajectories are
shown with the dash-dot lines, whereas the dashed gray line represents the trajectory of the leader. A quantitative comparison of body curvature for the

Ay/L

two swimmers may be found in S/ Appendix, Fig. S1.

produce far more robust smart swimmers than simpler feed-
forward networks (33). The performance of our deep recurrent
network is compared with that of a feedforward network in S7
Appendix, Fig. S4 and indicates that the deep network is bet-
ter able to achieve the goal of in-line following, but at the
penalty of increased energy expenditure. As a result, IS, suc-
ceeds in correcting for oscillations about Ay =0 much more
effectively by undergoing severe body undulations (Fig. 2F),
leading to increased costs (SI Appendix, Fig. S2). These obser-
vations confirm that following a leader indiscriminately can be
disadvantageous if energetic considerations are not taken into
account. Thus, it is unlikely that strict in-line swimming is used
as a collective-swimming strategy in nature, and fish presum-
ably adopt a strategy closer to that of IS,, by coordinating
their motion with the wake flow. We note that patterns simi-
lar to the ones reported in this study have been observed in a
recent experimental study (17). The behavior of swimmer IS,
is also compared qualitatively to that of a real fish following
a companion in Movie S6, and we observe that the motion
of IS, resembles the swimming behavior of the live follower
quite well.

Intercepting Vortices for Efficient Swimming

To determine the impact of wake-induced interactions on swim-
ming performance, we compare energetics data for IS, and SS,
in Fig. 3. The swimming efficiency of IS, is significantly higher
than that of SS,, (Fig. 34), and the cost of transport (CoT), which
represents energy spent for traversing a unit distance, is lower
(Fig. 3B). Over a duration of 10 tail-beat periods (from ¢ =20
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to t = 30; SI Appendix, Fig. S2) IS,, experiences a 11% increase
in average speed compared with SS,,, a 32% increase in aver-
age swimming efficiency and a 36% decrease in CoT. The benefit
for IS,, results from both a 29% reduction in effort required
for deforming its body against flow-induced forces (Pp.s) and
a 53% increase in average thrust power (Pryrus ). Performance
differences between IS, and SS,, exist solely due to the pres-
ence/absence of a preceding wake, since both swimmers undergo
identical body undulations throughout the simulations. Compar-
ing the swimming efficiency and power values of four distinct
swimmers (SI Appendix, Fig. S2 and Table S1), we confirm that
IS, and SS,, are considerably more energetically efficient than
either IS or SSq.

The efficient swimming of IS, [e.g., point 7mae (A4) in Fig. 34]
is attributed to the synchronized motion of its head with the lat-
eral flow velocity generated by the wake vortices of the leader
(Movie S4v). This mechanism is evidenced by the correlation
curve shown in Fig. 2E and by the coalignment of velocity vec-
tors close to the head in Fig. 4 4 and B. As shown in Movie
S7, IS, intercepts the oncoming vortices in a slightly skewed
manner, splitting each vortex into a stronger (Wy, Fig. 44)
and a weaker fragment (Wz). The vortices interact with the
swimmer’s own boundary layer to generate “lifted vortices” (L),
which in turn generate secondary vorticity (.51 ) close to the body.
Meanwhile, the wake and lifted vortices created during the pre-
vious half-period, W2y, War, and Lo, have traveled downstream
along the body. This sequence of events alternates periodically
between the upper (right lateral) and lower (left lateral) surfaces,
as seen in Movie S7. Interactions of IS, with the flow field at
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Fig. 3. Energetics data for a smart follower maximizing its swimming effi-

ciency. Swimming efficiency (A) and CoT (B) for IS,, (solid blue line) and
§S,, (dash-double-dot black line), normalized with respect to the CoT of
a steady solitary swimmer. Four instances of maximum and minimum effi-
ciency, which occur periodically throughout the simulation at times (n7, +
0.12), (nT, 4+ 0.37), (nT, 4 0.62), (nT, + 0.87), have been highlighted. T, =1
denotes the constant tail-beat period of the swimmers, whereas n repre-
sents an integral multiple. The decline in n at point E (t = 27.7, n =0.86)
results from an erroneous maneuver at t = 26.5 (Movie S7), which reveals
the existence of a time delay between actions and their consequences.

points nmin (D) and (E) in Fig. 34 are analyzed separately in S/
Appendix, Figs. S5 and S6.

We observe that the swimmer’s upper surface is covered in a
layer of negative vorticity (and vice versa for the lower surface)
(Fig. 4 A, Upper) owing to the no-slip boundary condition. The
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Fig. 4.

wake or the lifted vortices weaken this distribution by generat-
ing vorticity of opposite sign (e.g., secondary vorticity visible in
narrow regions between the fish surface and vortices L1, Wiy,
Lo, and L3) and create high-speed areas visible as bright spots
in Fig. 4 A, Lower. The resulting low-pressure region exerts a
suction force on the surface of the swimmer (Fig. 4 B, Upper),
which assists body undulations when the force vectors coincide
with the deformation velocity (Fig. 4 B, Lower) or increases
the effort required when they are counteraligned. The detailed
impact of these interactions is demonstrated in Fig. 4 C—-F. On
the lower surface, W1 generates a suction force oriented in the
same direction as the deformation velocity (0 < s < 0.2L in Fig.
4B), resulting in negative Pp.s (Fig. 4E) and favorable Prarust
(Fig. 4F). On the upper surface, the lifted vortex L, increases
the effort required for deforming the body (positive peak in Fig.
4C at s =0.2L), but is beneficial in terms of producing large pos-
itive thrust power (Fig. 4D). Moreover, as L progresses along
the body, it results in a prominent reduction in Pp.s over the
next half-period, similar to the negative peak produced by the
lifted vortex Lo (s=0.55L in Fig. 4E). The average Pp.s on
both the upper and lower surfaces is predominantly negative (i.e.,
beneficial), in contrast to the minimum swimming efficiency
instance Nmin (D), Where a mostly positive Pps distribution sig-
nifies substantial effort required for deforming the body (S/
Appendix, Fig. S5). We observe noticeable drag on the upper
surface close to s =0 (Fig. 4 B, Upper and Fig. 4D), attributed
to the high-pressure region forming in front of the swimmer’s
head. Forces induced by W, are both beneficial and detrimen-
tal in terms of generating thrust power (0 < s < 0.2L in Fig. 4F),
whereas forces induced by L. primarily increase drag but assist
in body deformation (Fig. 4F). The tail section (s =0.8L to 1L)
does not contribute noticeably to either thrust or deformation
power at the instant of maximum swimming efficiency.

Energy-Saving Mechanisms in Coordinated Swimming

The most discernible behavior of IS, is the synchronization
of its head movement with the wake flow. However, the most
prominent reduction in deformation power occurs near the mid-
section of the body (0.4<s<0.7 in Fig. 4 C and E). This
indicates that the technique devised by IS, is markedly differ-
ent from energy-conserving mechanisms implied in theoretical
(6, 34) and computational (20) work, namely, drag reduction
attributed to reduced relative velocity in the flow and thrust
increase owing to the “channelling effect.” In fact, the predomi-
nant energetics gain (i.e., negative Pp.s) occurs in areas of high

T

\\\L .

Flow field and flow-induced forces for IS,,, corresponding to maximum efficiency. (A) Vorticity field (red, positive; blue, negative) with velocity vectors
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shown as black arrows (Upper) and velocity magnitude shown in Lower (bright, high speed; dark, low speed). The snapshots correspond to t =26.12, i.e.,
point nmax(A) in Fig. 3A. Demarcations are shown at every 0.2L along the body center line for reference. The wake vortices intercepted by the follower (W,
Wi, Way, Wy,), the lifted vortices created by interaction of the body with the flow (L4, L, and L3), and secondary vorticity S; generated by L; have been
annotated. (B) Flow-induced force vectors (Upper) and body deformation velocity (Lower) at t = 26.12. (C and D) Deformation power (C) and thrust power
(D) (with negative values indicating drag power) acting on the upper surface of follower. The red line indicates the average over 10 different snapshots
ranging from t =30.12 to t = 39.12. The envelope signifies the SD among the 10 snapshots. (E and F) Deformation power (E) and thrust power (F) on the

lower (left lateral) surface of the swimmer.
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Fig. 5. The 3D swimmer interacting with WRs. (A) Swimming efficiency for
a 3D leader (dash-dot red line) and a follower (solid blue line) that adjusts its
undulations via a proportional-integrator (PI) feedback controller to main-
tain a specified position in the wake. After an initial transient, the patterns
visible in the efficiency curves repeat periodically with T,. Time instances
where the follower attains its minimum and maximum swimming efficiency
have been marked with an inverted red triangle and an upright green tri-
angle, respectively. The sudden jumps at t = 18.3 and 19.3 correspond to
adjustments made by the PI controller. (B) An oncoming WR is intercepted
by the head of the follower and generates a new LR (C) similar to the 2D
case (Fig. 4). As this ring interacts with the deforming body, it lowers the
swimming efficiency initially (t =~ 17.8; A and C), but provides a noticeable
benefit further downstream (t ~ 18.2; A and D).

relative velocity, for instance, near the high-velocity spot gen-
erated by vortex L. (Fig. 4). This dependence of swimming
efficiency on a complex interplay between wake vortices and
body deformation aligns closely with experimental findings (13,
27). We remark that the majority of the results presented here
are obtained with a steadily swimming leader. However, with no
additional training, 1S, is able to exploit the wake of a leader exe-
cuting unfamiliar maneuvers, by deliberately choosing to interact
with the unsteady wake, as seen in Movies S5 and S6. The smart
follower is able to respond effectively to such unfamiliar situa-
tions, since it is exposed to a variety of perturbations while taking
random actions during training. This observation demonstrates
the robustness of the RL algorithm to uncertainties in the envi-
ronment and further establishes its suitability for use in realistic
scenarios.

Having examined the behavior and physical mechanisms asso-
ciated with energy savings, we now formulate and test a simple
control rule that enables efficient coordinated swimming. We
remark that this is a combination of RL and DNSs in a reverse-
engineering context, where: (/) We use the capability of RL to
discern useful patterns from a large cache of simulation data; (if)
we analyze the physical aspects of the resulting optimal strategy,
to identify the behavior and mechanisms that lead to energetic
benefits, and finally; (iii) we use this understanding to devise a
rule-based control algorithm for sustained energy-efficient syn-
chronized swimming, in a notably more complex 3D setting. To
the best of our knowledge, there is no work available in the lit-
erature that investigates the flow physics governing interactions
among multiple independent swimmers, by using high-fidelity
simulations of 3D NS equations.

Given the head-synchronization tendency of the 2D smart
swimmer IS, we first identify suitable locations behind a 3D
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leader where the flow velocity would match a follower’s head
motion (SI Appendix, Fig. S7). A feedback controller is then
used to regulate the undulations of two followers to main-
tain these target coordinates on either branch of the diverging
wake, as shown in Fig. 1B and Movie S1. We note that a
fish following in-line behind the leader would not benefit in
the present 3D simulations, since the region behind the leader
remains quiescent owing to the diverging wake. The controlled
motion yields an 11% increase in average swimming efficiency
for each of the followers (Fig. 54) and a 5% reduction in each
of their CoT. Overall, the group experiences a 7.4% increase
in efficiency when compared with three isolated noninteracting
swimmers. The mechanism of energy savings closely resembles
that observed for the 2D swimmer; an oncoming WR (Fig.
5B) interacts with the deforming body to generate a “lifted-
vortex” ring (LR; Fig. 5C). As this new ring proceeds along
the length of the body, it modulates the follower’s swimming
efficiency as observed in Fig. 5. Remarkably, the positioning of
the lifted ring at the instants of minimum and maximum swim-
ming efficiency resembles the corresponding positioning of lifted
vortices in the 2D case; a slight dip in efficiency corresponds
to lifted vortices interacting with the anterior section of the
body (Fig. 5C and SI Appendix, Fig. SS5), whereas an increase
occurs upon their interaction with the midsection (Figs. 4
and 5D).

These results showcase the capability of machine learning,
and deep RL in particular, for discovering effective solutions to
complex physical problems with inherent spatial and temporal
nonlinearities, in a completely data-driven and model-free man-
ner. Deep RL is especially useful in scenarios where decisions
must be taken adaptively in response to a dynamically evolving
environment, and the best control strategy may not be evident a
priori due to unpredictable time delay between actions and their
effect. This necessitates the use of recurrent networks capable
of encoding time dependencies, which can have a demonstra-
ble impact on the physical outcome, as shown in SI Appendix,
Fig. S4. In conclusion, we demonstrate that deep RL can pro-
duce efficient navigation algorithms for use in complex flow
fields, which in turn can be used to formulate control rules that
are effective in decidedly more complex settings and thus have
promising implications for energy savings in autonomous robotic
swarms.

Methods

We perform 2D and 3D simulations of multiple self-propelled
swimmers using wavelet adapted vortex methods to discretize
the velocity—vorticity form of the NS equations (in 2D) and
their velocity pressure form along with the pressure-projection
method (in 3D) using finite differences on a uniform computa-
tional grid. The swimmers adapt their motion using deep RL.
The learning process is greatly accelerated by using recurrent
neural networks with long short-term memory as a surrogate of
the value function for the smart swimmer. Details regarding the
simulation methods and the RL algorithm are provided in S/
Appendix.
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Simulation details. The simulations presented here are based on the incompressible Navier-Stokes (NS) equations:
V.-u=0
0 VP
D Vu=—— +vVZu+ A\x(us — u)
ot Pf

Each swimmer is represented on the computational grid via the characteristic function x, and interacts with the fluid by means of the
penalty! term Ay (us — u). Here, us denotes the swimmer’s combined translational, rotational, and deformation velocity, whereas u and
v correspond to the fluid velocity and viscosity, respectively. P represents the pressure, and the fluid density is denoted by py.

The vorticity form of the NS equations was used for the two-dimensional simulations, with A = 1e6. A wavelet adaptive grid? with an
effective resolution of 40962 points was used to discretize a unit square domain. A lower effective resolution of 10242 points was used for
the training-simulations to minimize computational cost. We have determined in previous tests that this resolution provides a reasonable

balance between speed and accuracy.? The pressure-Poisson equation (V2P = —pf (VuT : Vu) + psAV - (x (us — u))), necessary for

estimating the distribution of flow-induced forces on the swimmers’ bodies, was solved using the Fast Multipole Method with free-space
boundary conditions.?

The three-dimensional simulations employed the pressure-projection method for solving the NS equations.* The simulations were
parallelized via the CUBISM framework,? and used a uniform grid consisting of 2048 x 1024 x 256 points in a domain of size 1 x 0.5 x 0.125,
with penalty parameter A = 1le5. Further grid-refinement by 1.5x in all three directions, and increasing the penalty parameter to le6
resulted in no discernible change in the swimmer’s speed. Thus, the lower grid resolution was selected to keep computational cost
manageable. The CFL (Courant-Friedrichs-Lewy) number was constrained to be less than 0.1, resulting in approximately 2500 time steps
per tail-beat period. The non-divergence-free deformation of the self-propelled swimmers was incorporated into the pressure-Poisson
equation as follows:

VP =ZL(Vou XV ), i
where u* represents the intermediate velocity from the convection-diffusion-penalization fractional steps. Equation 1 was solved using a
distributed Fast Fourier Transform library (AccFFT®). To prevent a periodic recycling of the outflow, the velocity field was smoothly

truncated to zero as it approached the outflow boundary. We ensured that periodicity and velocity smoothing do not impact the results
presented, by running simulations with a domain enlarged in all three spatial directions.

Flow-induced forces, and energetics variables. The pressure-induced and viscous forces acting on the swimmers are computed as follows:3
dFp = —PndS 2]
dF, = 2uD-ndS (3]

Here, P represents the pressure acting on the swimmer’s surface, D = (Vu + VuT) /2 is the strain-rate tensor on the surface, and dS

denotes the infinitesimal surface area. Since self-propelled swimmers generate zero net average thrust (and drag) during steady swimming,
we determine the instantaneous thrust as follows:

Thrust = QH T /(u dF + |u-dF|), [4]

where dF = dF p 4+ dF,. Similarly, the instantaneous drag may be determined as:

Drag = —— Sl // u-dF — |u-dF|) (5]

Using these quantities, the thrust-, drag-, and deformation-power are computed as:

Prhrust = Thrust - |ull (6]
PD'rag = —Drag- ||ll|| [7]

—//uDef-dF 8]

where up.s represents the deformation-velocity of the swimmer’s body. The double-integrals in these equations represent surface-integration
over the swimmer’s body, and yield measurements for time-series analysis. On the other hand, only the integrand is evaluated when
surface-distributions of thrust-, drag-, or deformation-power are required (as in main Figs. 4c to 4f).

PDef

The instantaneous swimming-efficiency is based on a modified form of the Froude efficiency proposed in ref.:”

_ PThrust
PThrust + max(PDef7 0)

[9]

To compute both 7 and the Cost of Transport (CoT), we neglect negative values of Pp.y, which can result from beneficial interactions of
the smart-swimmer with the leader’s wake:

t
ft—Tp max(Ppey,0)dt

t
Sy ulde

This restriction accounts for the fact that the elastically rigid swimmer may not store energy furnished by the flow, and yields a conservative
estimate of potential savings in the CoT. We note that percentage-changes in Pp.y, reported in the main text and the supplementary
section, have been computed using this bounded value to avoid overstating any potential benefits.

CoT(t) = [10]
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Swimmer shape and kinematics. The Reynolds number of the self-propelled swimmers is computed as Re = L2/ (vTp). The body-geometry
is based on a simplified model of a zebrafish.8 The half-width of the 2D profile is described as follows:

\/ 2wps — 52 0<s< sy

S — Sp
w(s) = wp, — (wp, — wi) (St—sb) sp < s < st [11]
L—
wt ° st <s< L
L — s¢

where s is the arc-length along the midline of the geometry, L = 0.1 is the body length, wy = s, = 0.04L, s = 0.95L, and w¢ = 0.01L.
For 3D simulations, the geometry is comprised of elliptical cross sections, with the half-width w(s) and half-height h(s) described via cubic
B-splines.® Six control-points define the half-width: (s/L,w/L) = [(0.0,0.0), (0.0,0.089), (1/3,0.017), (2/3,0.016), (1.0,0.013), (1.0,0.0)];
whereas eight control-points define the half-height: (s/L,h/L) = [(0.0,0.0), (0.0,0.055), (0.2,0.068), (0.4,0.076), (0.6,0.064), (0.8,0.0072),
(1.0,0.11), (1.0,0.0)]. The length was set to L = 0.2, which keeps the grid-resolution, i.e., the number of points along the fish midline,
comparable to the 2D simulations. Body-undulations for both 2D and 3D simulations were generated as a travelling-wave defining the
curvature along the midline:

2rt 2s

k(s,t) = A(s)sin (Tp - L) (12]

Here A(s) is the curvature amplitude and varies linearly from A(0) = 0.82 to A(L) = 5.7.

Reinforcement Learning. Reinforcement learning (RL)? is a process by which an agent (in this case, the smart-swimmer) learns to earn
rewards through trial-and-error interaction with its environment. At each turn, the agent observes the state of the environment s, and
performs an action a,, which influences both the transition to the next state s,+1 and the reward received rp,41. The agent’s goal is
to learn the optimal control policy an = 7*(sn) which maximises the action value Q*(sn, an), defined as the sum of discounted future
rewards:

Q*(sn,an) = maxE (rn+1 + APtz + Vi3 + ..l am = 7(sm) Ym € [n+ 1, 7']) [13]
™

Here, 7 denotes the terminal state of a training-simulation, and the discount factor - is set to 0.9. The optimal action-value function
Q*(sn,an) is a fixed point of the Bellman equation: Q*(sn,an) = E[rn+1 +vmaxy Q*(sn+1,a’)].'10 We approximate Q*(sn,an) using
a neural network!! with weights wy,, which are updated iteratively to minimize the temporal difference error:

TDerr = Esn,an,sn+1 [T'n+1 + ’YQ(STL+1= a/; W*) - Q(Sna an; Wk)} [14]

Here, w_ is a set of target weights, and a’ is the best action in state s, 41 computed with the current weights (a’ = arg max, Q(Sn+1,a; Wg)).
The target weights w_ are updated towards the current weights as w_ « (1 — a)w_ + awy, where o = 10~% is an under-relaxation factor
used to stabilize the algorithm.!

States and actions. The six observed-state variables perceived by the learning agent include Az, Ay, 6, the two most recent actions
taken by the agent, and the current tail-beat ‘stage’ mod(¢,7)/Tp. The permissible range of the observed-state variables is limited
to: 1 < Az/L < 3; |Ay|/L < 1 (boundary depicted by Renq in SI Appendix Fig. S8); and |0] < /2. If the agent exceeds any of these
thresholds, the training-simulation terminates and the agent receives a terminal reward R¢,q = —1.

The smart-swimmer (or agent) is capable of manoeuvering by actively manipulating the curvature-wave travelling down the body. This is
accomplished by linearly superimposing a piecewise function on the baseline curvature k(s,t) (equation 12):

kEagent(s,t) = k(s,t) + A(s)M(t,Tp, s, L) [15]

The curve M (t,Tp,s, L) is composed of 3 distinct segments:

2
t—tn—;
M(t,Tp,s,L) = § bp_j - m (T”J - Z) [16]
P
=0

The curve m is a clamped cubic spline with m(0) = m/(0) =0, m(1/2) = m/(1/2) =0, and m(1/4) = 1, m/(1/4) = 0. t, represents the
time-instance when action a,, is taken, whereas b,, represents the corresponding control-amplitude, which may take five discrete values: 0,
+0.25, and 40.5.

Neural network architecture. One of the assumptions in RL is that the transition probability to a new state s,+1 is independent of the
previous transitions, given s, and an, i.e.,:

P(Sn+1|8n,0n) = p(Snt1|8n,an,...,50,a00) [17]

This assumption is invalidated whenever the agent has a limited perception of the environment. In most realistic cases the agent receives
an observation o, rather than the complete state of the environment s,. Therefore, past observations carry information relevant for future
transitions (i.e., p(0n+1|0n,an) 7# p(0n+1|0n,an,...,00,a0)), and should be taken into account in order to make optimal decisions. This
operation can be approximated by a Recurrent Neural Network (RNN), which can learn to compute and remember important features
in past observations. In this work we approximate the action-value function with a LSTM-RNN'2 composed of three layers of 24 fully
connected LSTM cells each, and terminating in a linear layer (SI Appendix Fig. S3). The last layer computes a vector of action-values
dn = Q(on; Yn—1,wg) with one component qif) for each possible action a available to the agent (y,—1 represents the activation of the
network at the previous turn).
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Training procedure. During training, both the leader and the follower (learning agent) start from rest. The leader swims steadily along a
straight line, whereas the follower manoeuvers according to the actions supplied to it. Multiple independent simulations run simultaneously,
with each of these sending the current observed-state o, of the agent to a central processor, and in turn receiving the next action an
to be performed. The central processor computes a, using an e-greedy policy (with € gradually annealed from 1 to 0.1) from the most
recently updated @ function. Once a training-simulation reaches a terminal state (e.g., the follower hits the boundary labelled R¢y,q in
SI Appendix Fig. S8), all the messages exchanged between the simulation and the central processor are appended to a training set of
sequences R. In the meantime, the network is continually updated by sampling B sequences from the set R, according to algorithm 1.
The batch gradient g is computed with back propagation through time (BPTT).14 The network weights are then updated with the Adam

Algorithm 1: Asynchronous recurrent DQN algorithm.

initialize network wo and target network w_ = wy;
initialize set of transition sequences R = 0;
repeat

N + 0;

sample batch of B sequences from R;
for sequence j € [1,...,B] do
[a5,0, 95,0 = Q(05,0; 0, w);
for turns n € [0,...,7; — 1] do
[9),n+15Yj,n+1] = Q(0),n+1;Yj,ns Wk);
[@j,n+1, Tj,n+1] = Q04,415 Yjns W=);
(a) .
Jm+1 0
if 5jny1 is terminal then

(an),

€jn = Tin+l = 45, 5
else

a’ = arg max,

. — ~(‘1/) _ (an),
€jn = Tin+1 + 74,01 — 45, 5

end
N+ N +1;
end
end
perform BPTT: g = % Ej Zn e]-,nqué,i;l);
update weights w1 by passing g to the Adam algorithm?3;

update target network: w_ < (1 — @)W_ + aWg41;
k<+—k+1,

until Q(o,a; wy) = Q* (0, a);

stochastic optimization algorithm.13

A total of 1200 forward simulations were used during the training procedure, which corresponds to approximately 46000 transitions
(action-decisions) by the learning agent. To determine the convergence of network-fitting, we inspected the histogram distribution of the
follower’s preferred Az position (similar to main Fig. 2e) during the final and the penultimate 10000 transitions. We observed that the
distribution did not change noticeably towards the end of training, which indicates that the RL algorithm has arrived close to a local
minimum. Running additional simulations would not alter the histogram distribution appreciably, and any incremental improvements
would incur too large a computational cost to be justifiable.

Proportional-Integral feedback controller. The PI controller modulates the 3D follower’s body-kinematics, which allows it to maintain a

specific position (ztgt, ytgt, 2tgt) relative to the leader:
2nt  2ms
in | - - 22 ) 8¢ 18
S‘“<Tp L) 5()} it

The factor «(t) modifies the undulation envelope, and controls the acceleration or deceleration of the follower based on its streamwise
distance from the target position:

k(s,t) = a(t)A(s)

alt) =1+ i (27 ) 19

The term S(t) adds a baseline curvature to the follower’s midline to correct for lateral deviations:
B(t) = FL—Z (£216] + f316)) [20]
Here, 0 represents the follower’s yaw angle about the z-axis, and 0 is its exponential moving average: ét+1 = 1}1?1 0, + %9. The swimmers’

z-positions remain fixed at z¢4¢, as out-of-plane motion is not permitted. The controller-coefficients were selected to have a minimal
impact on regular swimming kinematics, which allows for a direct comparison of the follower’s efficiency to that of the leader:

fi = 1 [21]
f2 = max(0,50 sign(0 - (yigt —v))) [22]
f3 = max(0,20 Sign(é (ytgt —v))) [23]
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Supplementary Text, Figures, Tables, and Movies

Body-deformation during autonomous manoeuvres. The extent of body-bending that swimmers IS, and IS4 undergo when manoeuvring
is compared quantitatively in SI Appendix Fig. S1. A qualitative comparison was presented in main Fig. 2f. We observe that the
body-deformation of IS, is noticeably higher than that of a steady swimmer (with relative curvature 1), which implies a tendency to take
aggressive turns. The deformation for swimmer IS, is markedly lower, which plays an instrumental role in reducing the power required for
undulating the body against flow-induced forces.

Comparison of four different swimmers. The performance metrics for four different swimmers are compared in SI Appendix Fig. S2.
Interacting swimmer IS4 occasionally attains higher speed than IS, (SI Appendix Fig. S2a), but at the cost of much higher energy
expenditure (SI Appendix Fig. S2c and Table S1). Moreover, the speeds of solitary swimmers SS; and SSg are lower than those of either
interacting swimmer (IS, and IS;), which suggests that wake-interactions may benefit a follower in some aspects, regardless of the goal
being pursued. However, we stress that while interacting with a leader’s wake appropriately may yield a benefit compared to the energy
requirements of a steady solitary swimmer (e.g., ISy - SI Appendix Fig. S2c), this may not be the case if the reinforcement learning
reward does not account for energy usage. Both swimmers ISy and SS; have higher energetic costs of swimming compared to a steady
solitary fish (Fig. S2c¢), which demonstrates that following a leader indiscriminately can indeed be disadvantageous. In SI Appendix
Fig. S2d, Pp.y attains negative values only for IS, which is indicative of maximum benefit extracted from flow-induced forces. Both ISy
and SS4 are capable of generating significantly higher thrust-power than ISy, but suffer from larger deformation-power, and consequently,
lower swimming-efficiency. Comparing the columns for IS, and SS; in Table S1, we note that interacting with a preceding wake has a
measurable impact on swimming-performance; IS, is approximately 32% more efficient than SS,, spends 36% less energy per unit distance
travelled, requires 29% less power for body-undulations, and generates 52% higher thrust-power. Wake-interactions may yield certain
benefits even for the swimmer actively minimizing lateral displacement from the leader, primarily by increasing thrust-power, but at the
penalty of higher energetic-cost for body-deformation, as can be surmised by comparing the data for IS4 and SS4 in SI Appendix Table S1.
This observation further confirms that interacting with unsteady wakes may not prove to be beneficial overall, if the swimming-kinematics
do not account for energetic considerations.

Uncovering underlying time-dependencies. While it is relatively straightforward to maintain a particular tandem formation via feedback
control (when the follower strays too far to one side, a feedback controller can relay instructions to veer in the opposite direction), the
same is not true for maximizing swimming-efficiency. It is difficult to formulate a simple set of a-priori rules for maximizing efficiency,
especially in dynamically evolving conditions. This happens because: 1) the swimmer perceives only a limited representation of its
environment (main Fig. 2a); and 2) there may be measurable delay between an action and its impact on the reward received over the
long term. These traits make deep RL ideal for determining the optimal policy when maximizing swimming-efficiency, especially when
augmented with recurrent neural networks (SI Appendix Fig. S3). These network architectures are adept at discovering and exploiting
long-term time-dependencies. We remark that neither standard optimisation, nor optimal control!9 techniques are suitable for use in the
current problem, both due to the need for adaptive control, and due to the unavailability of simplified sets of equations describing the
system’s response. Moreover, optimal-control algorithms evaluate multiple forward simulations at every decision-making step, which is
decidedly impractical in the current study given the large computational cost of the forward Navier-Stokes simulations.

The advantage of using a Recurrent Neural Network (RNN). To illustrate the advantage of using a deep recurrent network, we compare the
performance of a smart-swimmer trained to minimize lateral deviations (Ay) from a leader using two distinct neural network architectures:
a Feedforward Neural Network (FNN) similar to the one used in our previous study;1® and the more sophisticated deep Recurrent Neural
Network (RNN) shown in Fig. S3. Using SI Appendix Fig. S4a, we observe that the FNN-trained smart-follower is unable to achieve
its goal of maintaining Ay = 0 as rigorously as the RNN-trained follower, which clearly demonstrates the superior capability of the
RNN. Moreover, in its attempt to maintain Ay = 0 rigorously, the RNN-trained swimmer executes severe turns (main Fig. 2f), which
lead to an increase in its energy consumption (higher CoT in Fig. S4b). To explain the comparative energetic benefit observed by the
FNN-trained swimmer (even though its reward does not account for energetic considerations), we note that it almost always settles close
to the ‘attractor point’” Az = 2.2L, where the head-motion is synchronised well with the wake flow. This leads to energetic gains for
the FNN-based swimmer, although its primary objective of maintaining Ay = 0 is not achieved satisfactorily. We remark that similar
migrations of a follower toward the favourable attractor point are observed, even when employing a feedback controller to attempt to
hold position at an unfavourable location in the wake. We speculate that this may portend the existence of stability points throughout
schooling formations, where minimal control-effort may yield large energetic gains.

Flow-interactions at the instant of minimum swimming-efficiency. The instant when swimmer IS, attains the lowest efficiency during each
half-period (9min (D) in main Fig. 3a) is examined in SI Appendix Fig. S5. The mean Pp.s curve is mostly positive on both the lower
and upper surfaces, with large positive peaks generated by interaction with the wake- and lifted-vortices. This increase in effort is not
offset sufficiently by an increase in Prpyqyst, resulting in low swimming-efficiency. Compared to the instance of maximum efficiency (main
Fig. 4), increased effort is required in the head region, along with an increase in thrust-production by the tail section s > 0.7L.

Slight deviations impact performance. To examine the impact of small deviations in ISy’s trajectory on its performance, we compare two
different time-instances (at the same tail-beat stage) in SI Appendix Fig. S6. At t = 26.5, IS, deviates slightly to the left of its steady
trajectory (Supplementary Movie S7), which throws it out of synchronization with the oncoming wake-vortices. The resulting reduction in
efficiency at ¢t &~ 27.5 indicates that even slight deviations are capable of impacting performance, and that there may be a measurable
delay between actions and consequences. However, the smart-swimmer autonomously corrects for such deviations, and is able to quickly
recover its optimal behaviour.

Correlation with the flow-field. The correlation-coefficient curve shown in main Fig. 2e, and the correlation map shown in SI Appendix
Fig. S7, were computed as follows:

p(u, uhcad) _ cov (u(zz y): uhead) _ Zt u(z’ Y, t) " Uhead (t) [24]

Tu(a,y) TUnead Voo, u@,y, 0)l12/>, [[tneaa ()]
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Here, u(z,y,t) was recorded in the wake of a solitary swimmer, whereas upeaq(t) was recorded at the swimmer’s head. Maxima in
p(u, Upead) provide an estimate for the coordinates where a follower’s head-movements would exhibit long-term synchronization with an
undisturbed wake.

Limiting the exploration space. During training, the range of values that a smart-follower’s states can take are constrained, as mentioned
previously. This prevents excessive exploration of regions that involve no wake-interactions, and helps to minimize the computational cost
of training-simulations. The limits of the bounding box (shown in SI Appendix Fig. S8) are kept sufficiently large to provide the follower
ample room to swim clear of the unsteady wake, if it determines that interacting with the wake is unfavourable.

Power distribution in the presence/absence of a preceding wake. To determine the extent to which wake-induced interactions alter the
distribution of Ppcy and Prpryst, both of which influence overall swimming-efficiency, we compare these quantities for ISy and 5SS, in SI
Appendix Fig. S9. A similar comparison for IS; and SSg is shown in SI Appendix Fig. S10. For IS;, a greater variation in Pp.y and
Prprust is observed (broad envelopes in SI Appendix Figs. S9a and S9b), compared to the solitary swimmer 5SS, (SI Appendix Figs. S9c
and S9d). This is caused by ISy’s interactions with the unsteady wake, which is absent for SS;. The average Pp.s for ISy shows distinct
negative troughs near the head (s/L < 0.2, SI Appendix Fig. S9a) and at s/L = 0.6. A lack of similar troughs for SS, (SI Appendix
Fig. S9c) implies that these benefits originate exclusively from wake-induced interactions. There is no apparent difference in drag for
both IS, and SSy in the pressure-dominated region close to the head (s ~ 0). However, wake-induced interactions provide a pronounced
increase in thrust-power generated by the midsection for IS, (compare SI Appendix Figs. S9b and S9d, 0.2 < s/L < 0.4). Among all of
the four swimmers compared, only IS, shows a distinct negative Pp.y region close to the head (s < 0.2L), which further supports the
occurrence of head-motion synchronization with flow-induced forces, when efficiency is maximized. Comparing the deformation- and
thrust-power distribution for IS; and SS4 in SI Appendix Fig. S10 provides additional evidence that wake-interactions have a marked
impact on swimming-energetics.

Performance of IS,, with respect to an optimal solitary swimmer. A natural question (credited to one Referee) is whether solitary swimming
may be preferred to swimming in the wake of a leader. The scenario of a solitary swimmer is an inherent part of the RL training procedure.
There are no positional constraints imposed on the smart-follower during training, so it has the possibility to swim at a large lateral
distance from the leader, free of the wake’s influence and effectively as a solitary swimmer. If solitary swimming with optimal kinematics
were preferable to interacting with the leader’s wake, the RL algorithm would have converged to this swimming mode as the final strategy
for ISy, instead of preferring to harness the wake-vortices. We emphasize that RL cannot guarantee global minima, but during the training
process we did not find solitary swimming as a preferred strategy, instead of the behaviour reported in the manuscript.

We note that optimal morphokinematics of solitary swimmers (albeit at Re = 500 and not Re = 5000 as studied herein) have been
performed in our earlier work.!® In principle one could train also an efficient solitary swimmer through Reinforcement Learning, but this
will require changing the observed states. Finally one may remark that we could have used as baseline leader a swimmer that had been
previously optimized. In this context, we have also conducted a parametric search to find the best steady-swimming kinematics for the
present baseline fish model. The wake of optimal swimmers is not drastically different from the wake of the present swimmer, and it
contains vortex rings that we believe the follower would have reacted to in similar fashion as to the present leader.
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Fig. S1. Midline curvature. Severity of body-deformation for the swimmers IS, (solid blue line) and IS4 (dash-dot red line), shown for 50 tail-beat periods starting from rest.
The relative body-curvature is computed as 2;?:1 |k, normalized with the same metric for a solitary swimmer executing steady motion (x; represents the curvature at 6
control points along a swimmer’s body).
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Fig. S2. Performance metrics for four different swimmers. Plots comparing (a) speed, (b) 1, (c) CoT, (d) deformation-power , and (e) thrust-power for four different
swimmers. The solid blue line corresponds to swimmer IS, the dash-double-dot black line to swimmer SS., (a solitary swimmer executing actions identical to IS,,), the
dash-dot red line to swimmer 1S4, and the double-dot green line to swimmer SS; (a solitary swimmer executing actions identical to 1.S54). The horizontal dashed line at
CoT = 1in (c) corresponds to a free-swimming solitary swimmer.
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Fig. S3. Schematic of the Recurrent Neural Network (RNN). The RNN used in this study is composed of 3 LSTM layers, consisting of 24 cells (green blocks) each. The
input layer (pink block) of the network comprises the 6 observed-state variables. The black arrows between different layers indicate all-to-all connections. The purple arrows
indicate recurrent connections within each LSTM layer. The last layer consists of 5 output neurons (orange) with linear activation.
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Fig. S4. Comparison of feedforward and recurrent neural networks. (a) Comparing the in-line following capability of smart-swimmers trained using a feedforward neural
network (green line with square symbols), and the deep recurrent network shown in Fig. S3 (black line with circle symbols). The horizontal dashed line at Ay = 0 denotes
the target specified for both smart-swimmers. (b) Cost of transport for the two swimmers. The horizontal dashed line at CoT = 1 corresponds to a free-swimming solitary
swimmer.
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Fig. S5. Flow-field and flow-induced forces for IS,,, corresponding to minimum efficiency. (a) Vorticity field with the velocity vectors shown (top), and velocity magnitude
(bottom) at ¢ = 26.87 (point M.m4r (D) in main Fig. 3). (b) Flow-induced force-vectors (top) and body-deformation velocity (bottom) at this instance. (c,d) Deformation-power
and thrust-power acting on the upper (right lateral) surface of follower. The red line indicates the average over 10 different snapshots ranging from ¢ = 30.87to ¢ = 39.87.
The envelope denotes the standard deviation among the 10 snapshots. (e,f) Deformation-power and thrust-power on the lower (left lateral) surface of the fish.
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Fig. S6. Deviations impact performance. Comparison of two instances when a maximum in the swimming-efficiency is expected. The deformed shape and deformation-
velocity for the two instances are similar, but differences in the flow-field influence efficiency. Panels on the left hand side of the page show data for IS,, att ~ 33.7 (n = 1),
whereas those on the right hand side correspond to t =~ 27.7 (n = 0.86). (a, b) Vorticity, velocity vectors, and velocity magnitude at the two time instances. A slight deviation
in the follower’s approach to the wake causes a noticeable change in the surrounding vortices, as well as in the velocity induced near the surface. The regions highlighting
differences have been marked as R1, Rz, R3, and Ry4. (c, d) A comparison of the surface force-vectors and body-deformation velocity. (e,f) There are notable differences in

the distribution of Pp. s on the upper and lower surfaces.
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Fig. S7. Correlation map. The horizontal plane on the right side of the swimmer depicts the correlation-coefficient described by Equation 24. Areas of high correlation are
denoted as yellow regions, whereas those of low correlation are shown in blue. The vortex rings shed are shown on the swimmer’s left side, along with the velocity vectors on
the left horizontal plane.
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Fig. S8. Reward for 1.5 ;. Visual representation of reward assigned to smart-swimmer IS ;, whose goal is to minimize its lateral displacement from the leader.
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Fig. S9. Power distribution. Deformation-power and thrust-power distribution along the body of (a,b) swimmer IS,,, and (c,d) swimmer SS,,. The solid red line indicates the
average over a single tail-beat period (from t = 26 to t = 27), whereas the envelope denotes the standard-deviation. The silhouettes at the bottom of each panel represent

the fish body.

Siddhartha Verma, Guido Novati, Petros Koumoutsakos

15 of 18



0.002 0.002
0.001 0.001
2 0 f 0
-0.001 -0.001
-0.002 & i -0.002 I e i ikt i
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1
s/L s/L
() (b)
0.002 0.002 T T T T T T T T
,\1\'\/&\
,/\‘»/ ¥ “,,
0_001 0.001 _{,.\ N/\// ‘,»\ﬂ i
D_Q 0 f (O B B |
v,
i
-0.001 | . -0.001 -
-0.002 & : I 1 I i -0.002 E . I I I e
0O 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1
s/L s/L
(©) (d

Fig. S10. Power distribution. Deformation-power and thrust-power distribution along the body of (a, b) swimmer IS4, and (c, d) swimmer SS4. The solid red line indicates
the average over a single tail-beat period (from ¢t = 26 to t = 27), whereas the envelope denotes the standard-deviation. The silhouettes at the bottom of each panel represent
the fish body.
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Table S1. Comparison of energetics metrics for the four swimmers. Averaged values computed for the data shown in Sl Appendix Fig. S2. All
the values shown have been normalized with respect to the corresponding value for I5,,.

| 18y 8Sy IS4 SSa

" 10 076 077 066
CoT 10 156 396 3.86
Ppey 1.0 141 390 328

Priprust 1.0 066 233 148
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Movie S1. 3D simulation of three nonautonomous swimmers, in which the leader swims steadily, and the two followers
maintain specified relative positions such that they interact favourably with the leader’s wake. The flow-structures
have been visualized using isosurfaces of the Q-criterion.'”

Movie S2. 3D simulation of two nonautonomous swimmers, in which the leader swims steadily, and the follower
maintains a specified relative position to interact favourably with the wake. The energetic-benefit for the follower is
similar to that of each of the followers in Supplementary Movie S1.

Movie S3. 3D simulation of three nonautonomous swimmers, in which the leaders use a feedback controller to maintain
formation abreast of each other, and the follower holds a specified position relative to the leaders. The energetic-benefit
for the follower is double that of the followers in Supplementary Movies 1 and 2, as it now interacts profitably with
wake-rings generated by both the leaders.

Movie S4. 2D simulation of a pair of swimmers, in which the leader swims steadily, and the follower (IS,) takes
autonomous decisions to interact favourably with the wake. The upper panel (labelled ‘w’) shows the vorticity field
generated by the swimmers, whereas the second panel (labelled ‘v’) shows the lateral flow-velocity. The smart-swimmer
appears to synchronize the motion of its head with the lateral flow-velocity, which allows it to increase its swimming-
efficiency. The lower panels show the energetics metrics, namely, the swimming efficiency 7, the thrust-power Prj,.y sty
the deformation-power Pp.y, and the Cost of Transport (CoT).

Movie S5. 2D simulation of a pair of swimmers, where the leader performs random actions, and the follower takes
autonomous decisions to benefit from the flow-field. The smart-follower, which was trained with a steadily-swimming
leader, is able to adapt to the erratic leader’s behaviour without any further training. Remarkably, the follower chooses
to interact deliberately with the wake in order to maximize its long-term swimming-efficiency, even though it has the
option to swim clear of the unsteady flow-field.

Movie S6. A qualitative comparison between swimmer IS, and a real fish following a leader. We observe that the
motion of IS, resembles that of the live follower quite well. The leader in the simulation executes random turns after
every few tail-beat cycles, and the follower responds to changes in range and bearing, similarly to Supplementary
Movie S4.

Movie S7. Detailed view of the flow-field around smart-swimmer IS,. The top panel shows the vorticity field in colour
and velocity vectors as black arrows. The middle panels show the swimming-efficiency and the deformation-power.
The distribution of thrust-power and deformation-power along the swimmer’s left- (‘lower’) and right-lateral (‘upper’)
surfaces are shown in the lower panels, and depict how these quantities depend on wake-interactions.
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