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Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence
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The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic
turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt
number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by
filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian
and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle
obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number.
It is shown that the alignment direction observed numerically using these two filters is predicted very well by
the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is
shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially,
the model might not suffer from solution instability when used for large eddy simulations of scalar transport in
homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched
vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux

orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations.
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I. INTRODUCTION

Direct numerical simulation (DNS) of turbulent mixing at
very high Reynolds and Schmidt numbers is challenging due
to high computational cost. The Schmidt number, defined as
the ratio of the kinematic viscosity of fluid to the molecular
diffusivity of the scalar (Sc = v/D), determines the smallest
length scales that are important for scalar transport. For Sc >
1, the smallest scalar length scales (called the Batchelor scale,
ng [1]) are much smaller than the smallest velocity length
scales (Kolmogorov scale, ). Resolving all of these relevant
length scales in simulations becomes unmanageable.

Large eddy simulations (LES) try to reduce computational
cost in such flows to manageable levels by resolving the larger
length scales to a certain extent and employing models to
represent the dynamics of the smaller, unresolved scales. The
mathematical term to be modeled in LES of scalar transport,
referred to as the subfilter-scale scalar flux (SFF), is obtained
by applying a homogeneous spatial filtering operation (¥) to
the convection-diffusion equation,
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Here, 74 is the SFF vector and encapsulates the effects of

nonlinear interactions among the resolved and unresolved
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length scales. A promising framework to reduce the cost of
numerical simulations for Sc > 1, and still retain most of
the relevant nonlinear interactions, is to place the LES filter
cutoff in the viscous-convective subrange [2,3]. Under these
conditions, the velocity field is fully resolved and only the
scalar field is filtered.

A variety of models are available in the literature for emu-
lating 7 4, namely, variations of the Smagorinsky model [4], the
stretched vortex model [5], the similarity model [6,7], and the
tensor-diffusivity model [8—11]. These models usually rely on
observed, or hypothesized, behavior of the subfilter scalar-flux
vector in filtered experimental or numerical simulation data.
Unfortunately, the models were designed primarily for filtering
in the inertial subrange and remain largely untested in the
viscous-convective subrange. One of the important properties
of these models that must be tested is the predicted orientation
of the 74 vector. Accurate knowledge of this orientation is
crucial for correctly determining the amount of subfilter scalar
variance dissipation given by

Xey = =274 - V. )

Given the critical role of T4 orientation in regulating
subfilter dissipation [Eq. (4)], the objective of the present
work is to investigate the vector’s alignment behavior in
homogeneous isotropic turbulence. More precisely, the goals
are threefold: (1) to relate the predicted vector’s orientation
to known velocity-dependent quantities; (2) to identify the
influence (if any) of the Schmidt number of the transported
scalar and the influence of width and shape of the filtering
kernel used; and (3) to assess the ability of various existing
models in predicting this orientation. In the scope of reducing
the cost of LES for high Schmidt number scalar transport,
the present analysis focuses primarily on scenarios involving
filter-width location in the viscous-convective subrange.
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The remainder of the paper is structured as follows. Details
of the simulations used for a priori analysis are provided in
Sec. II. Section III examines the preferential alignment of
the vorticity vector (w), the scalar gradient vector (V¢), and
the numerically computed SFF vector (74) in the strain-rate
eigenframe. The accuracy with which various subfilter models
predict the orientation of 74 is discussed in Sec. IV. Section V
details the mathematical analysis of the tensor-diffusivity
model, which is used to explain the preferential alignment
observed in Sec. III. Finally, the effects of filter shape and
scalar-forcing method on 74 orientation, and the ensuing
implications of using implicit filtering in LES, are discussed
in Sec. VL.

II. SIMULATION DETAILS

To investigate a priori the behavior of the orientation of the
computed SFF vector, direct numerical simulations of homo-
geneous isotropic turbulence are used. The simulations were
performed using a second-order energy-conserving finite-
difference velocity scheme [12], and a fifth-order accurate
upwind finite-volume scheme for the scalar [13]. The velocity
field was forced by injecting energy in a low-wave-number
shell [14]. Two distinct scalar-forcing techniques were used,
one characterized by the presence of a mean scalar gradient
(MSG) [15] and the other simulating the decay of scalar
fluctuations (linear scalar forcing, LS) [16]. The use of the two
scalar-forcing methods allows us to investigate differences in
T4 alignment that might be related to distinct scalar variance
cascade mechanisms (forced vs decaying) at the small length
scales. Simulations using both MSG and LS forcings were
run simultaneously; two independent scalars were transported
using the same velocity field, each being forced using one of
the forcing methods.

Details of the physical parameters used in the simulations
are given in Table 1. The Taylor-scale Reynolds number for
all the simulations was kept constant at a value of Re; = 30,
and the Schmidt number was varied from Sc =4 to Sc =
256. It was necessary to restrict Re, to a relatively low
value, since resolving the Batchelor scale at high Sc incurs
considerable computational cost. Nonetheless, scalar transport
in the viscous-convective subrange is governed largely by the
velocity scales in the dissipative range, which show universal
behavior to some extent even at low Reynolds numbers [17].
Re, = 30 yields a sufficiently turbulent flow field for our
purpose, and most of the results discussed in this paper may
be extended to larger Reynolds numbers with appropriate
consideration.

For postprocessing purposes, scalar and velocity modes
corresponding to the highest two-thirds of the wave numbers
were deleted using a sharp-spectral filter to prevent aliasing

TABLE 1. DNS datasets used for analyzing 7, behavior
(Re;, = 30).

Case N Sc Kmax 1) Kmax7]B
A 1024 256 23.2 1.4
B 512 16 11.6 2.9
C 512 4 11.6 5.8
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FIG. 1. (Color online) Schematic of scalar material element
undergoing straining.

caused by multiplication of variables (Orszag’ s two-thirds
truncation rule [18]).

III. VECTOR ALIGNMENT IN THE LOCAL
STRAIN-RATE EIGENFRAME

A. Choice of reference frame

Inspecting the orientation of the various vectors of interest
(e.g., w, V¢, 14) requires the selection of an appropriate
reference frame. The laboratory-fixed frame is not an ideal
choice for this purpose, since the homogeneous and isotropic
nature of the turbulent fluctuations results in random ori-
entation of the vectors with respect to the laboratory-based
orthonormal axes. Instead, the orthonormal reference frame
formed by the eigenvectors of the local strain-rate tensor [S;; =
%(ui, j +uj ;)] presents a more suitable choice [19,20]. This is
due to the fact that the dynamics of passive scalar transport
(as well as those of the velocity field itself) are governed
largely by straining from the velocity field. Additionally, the
tensor-diffusivity model depends closely on vorticity and the
velocity strain rate (as will become apparent in Sec. V), which
provides further motivation for using the eigenframe as a basis
for determining vector orientation.

Figure 1 shows the schematic of a scalar material element
undergoing deformation in a straining flow field. S represents
the direction of the most extensive eigenvector of S;; (positive
eigenvalue: A; > 0), and S3 represents the direction of the
most compressive one (A3 < 0). The intermediate eigenvalue
(corresponding to the eigenvector S,) is known to be close to
zero (and slightly positive) from experimental [21] and nu-
merical studies [19] of incompressible homogeneous isotropic
turbulence. Thus, the S, direction experiences comparatively
little material element deformation.

B. Alignment of » and V ¢ in the eigenframe

To examine the preferential alignment of the various
quantities of interest, we make use of three-dimensional (3D)
joint probability density functions (PDF), hereafter referred
to as sphere PDFs. Such illustrations, e.g., the ones shown
in Fig. 2 for the vorticity vector (w = V x u) and the scalar
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FIG. 2. (Color online) Alignment of (a) @ and (b) V¢ in the S;;
eigenframe. (Case A: Re;, = 30, Sc = 256).

gradient vector (V¢), provide a powerful means of visualizing
vector orientation in the strain-rate eigenframe [20,22]. The
color levels denote the probability density function of vector
orientation, normalized by the PDF value for uniform random
orientation (PDF;an4om = 1/(47) = 0.0796). In other words, a
value of 1 on the color axis denotes probability equal to that of
random orientation, a value lower than 1 indicates aversion to
alignment at the corresponding locations, and a value greater
than 1 suggests preferred orientation.

Both @ and V¢ are known to exhibit strong preferential
orientation in the S;; eigenframe, with the vorticity vector
aligning along the intermediate eigenvector S, [19,21-24]
[Fig. 2(a)], and the scalar gradient vector aligning with the
most compressive eigenvector 3 [19] [Fig. 2(b)]. It is evident

[o)]

N

N
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from Fig. 2(a) that the probability of alignment of @ along the
S, axis is approximately 4 times higher than would be expected
for random orientation and falls quickly to values close to 0 in
regions far away from the axis. The scalar gradient [Fig. 2(b)]
tends to align along the S3 axis with a normalized PDF value
slightly greater than 3. The alignment of V¢ with S3 is an
expected physical outcome and may be explained using Fig. 1;
compression of the material element in the S; direction gives
rise to the highest scalar gradient magnitude in this direction.

C. Alignment of 7 in the eigenframe

To inspect the alignment of 7y, the appropriate terms in
Eq. (3) are obtained by filtering the DNS datasets spatially. This
operation corresponds to a convolution with a filtering kernel
in physical space, or equivalently, multiplication in Fourier
space. Three different filtering kernels, namely the Gaussian
filter, the box (or top-hat) filter, and the sharp-spectral filter are
used here. The respective kernel representations in physical
space are given below [8]:

G an: Glx) = 6 : _6)(?2 5)
aussian: G(x) = (m> exp( F)’ (
Box: G = 1H a — 6)
OX: (X)—Z (E |x|>, (
Sharp: G(x) = M (7
X

Here, A is referred to as the filterwidth. The forms of the
Gaussian and top-hat filters in Eqgs. (5) and (6) ensure that
their second moments ( ffooo x%2G(x)dx) match [8]. The width
(in physical space) for the sharp filter is defined through the
filter cutoff wave number (x, = 7w /A) in Fourier space. In
most of the analysis shown in this paper, A has been chosen
such that the effective filter cutoff wave number lies in the
viscous-convective subrange; in other words, x.n > 1.5.
Figure 3 shows the sphere PDF for 7, in the eigenframe,
computed pointwise for case A (Re;, = 30, Sc = 256) using
the Gaussian filter. The panels show the alignment behavior
for three different effective filter widths, corresponding to
a scenario when approximately 60% (k.np = 0.625), 93%
(kenp = 0.1), and 97% (k.npg = 0.05) of the scalar modes
have been filtered out. At these cutoff widths, 74 exhibits
strong preference for alignment at a particular angle in the

FIG. 3. (Color online) Alignment of the subfilter flux vector (z,) in the filtered strain-rate (g,- ;) eigenframe, computed from case A using
the Gaussian filtering kernel. Figures shown correspond to three different filter cutoffs: (a) x.n = 10, k.ng = 0.625; (b) k.n = 1.6, k.np = 0.1;

and (c) k.n = 0.8, k.np = 0.05.

063015-3



SIDDHARTHA VERMA AND G. BLANQUART PHYSICAL REVIEW E 89, 063015 (2014)

TABLE II. PDFs of SFF vector alignment for different Schmidt numbers, using the Gaussian filtering kernel. The ranges of accuracy for 6
and 0, are +0.9° and £1.8°, respectively, since 100 bins were used for discretizing both of these angles when constructing the sphere PDFs.

Case A (Sc = 256) Case B (Sc = 16) Case C (Sc =4)

PDF ken =10 ken=1.6 kn =0.8 Kken=3.2 ken=1.6 ken=0.8 ken=1.8 ken=1.6 ken =0.8
min 0.15 0.17 0.18 0.14 0.14 0.15 0.14 0.14 0.13
max 9.14 7.32 5.77 9.57 8.57 7.09 8.91 8.75 7.10
Op 42.3° 42.3° 42.3° 40.5° 40.5° 40.5° 40.5° 40.5° 40.5°
N 5.4° 1.8° 5.4° —1.8° —1.8° —1.8° 1.8° 1.8° 1.8°

S1-S3 plane, specifically, at a polar angle of 41.4° £ 1.8° from
the Sz axis. The normalized PDF maxima are 9.14, 7.32,
and 5.77 times the value expected for random orientation,
respectively. It is surprising to observe such large values of
PDF,,.x, especially in cases where more than 90% of the scalar
modes present originally have been filtered out [Figs. 3(b) and
3(c)]. Nonetheless, there is a noticeable drop in the value of
PDF,,.x with increasing filter-width size. -

We note that the velocity field (and hence S;;) is fully
resolved for the first two panels (k.7 = 10 and 1.6) and only
marginally filtered for the last one (k.1 = 0.8). This happens
since filtering in the viscous-convective subrange (feasible
only for Sc >> 1: Table I) does not impact the velocity field,
as long as «.n > 1.5. The same argument would not hold
for Sc < 1, since cutoffs with «.n < 1.5 would result in both
scalar and velocity modes being filtered.

Sphere PDFs for all the datasets listed in Table I were com-
puted in a similar manner, and the relevant quantitative data
are listed in Table II. We use 6p to denote the polar angle
measured from axis 3 to the location of PDF,x on the sphere
PDFs, and 6,4 to represent the corresponding azimuthal angle
measured from axis S;. For enhanced readability, all angles
have been confined using symmetry to the quadrant that is
prominently visible in Fig. 3; i.e., we set 8p = 180° — 6p
if 6p > 90°, 64 =64 — 180° if 90° < 64 < 270°, and 6, =
04 —360° if 64 > 270°. 6p values for all three cases (A
through C in Table II) are observed to be 41.4° £ 1.8°, and
64 values fall within the range 1.8 £ 5.4°. The angles, as well
as the PDF max/min data, show little variation among the three
cases, which points to possible Schmidt number independence
of the SFF vector orientation. This observation, as well as the
weak influence of the filter width discussed earlier, are related
to the fact that the orientation of the SFF vector in the eigen-

S3
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FIG. 4. (Color online) Alignment of 7, computed from case A
using the box filter with x.n = 1.6 (x.np = 0.1).

frame can be shown to be completely independent of the scalar
field when using the Gaussian filter. In addition, sphere PDFs
computed using the box filter (Fig. 4) are virtually identical
to those computed using the Gaussian filter [Fig. 3(b)], both
qualitatively and quantitatively. The reason for this behavior
of T, orientation, as well as that for its apparent independence
from the filtered scalar field, is discussed in Sec. V A.

IV. 74 ORIENTATION AND SUBFILTER MODELS

In this section, we compare the accuracy with which
various SFF models, namely, the Smagorinsky model [4], the
stretched vortex model [5], and the tensor-diffusivity model
[8—11], predict 74 orientation when using a Gaussian filter.
While not specifically designed for filtering in the viscous-
convective subrange, it is still interesting to see whether
possible extensions of the Smagorinsky and stretched vortex
models would describe the orientation of the 74 vector well.

A. The Smagorinsky model

The Smagorinsky model is perhaps the most well-known
and widely used subfilter model, given its conceptual sim-
plicity and ease of implementation. The model relies on the
concept of “eddy diffusivity”:

75 =D, V. ®)

The dynamic Smagorinsky model [25] uses the idea of scale
invariance for computing the turbulent diffusivity (D;) instead
of prescribing a constant value but still relies on the filtered
scalar gradient for determining vector direction.

B. The stretched vortex model

The stretched vortex model takes a more physical approach
to model construction and works on the principle that convec-
tive scalar transport at the unresolved scales is accomplished
by subfilter vortices [5]. Several simplifying assumptions lead
to the following analytical form of the model:

I
(to) = C(81) — efe?) —— ©)
T4 (85 —e e’)axj
or
75 = C(Vd — (Vo -2,)e,), (10)

where e, represents the unit vector in the direction of resolved
vorticity, @. When filtering in the viscous-convective subrange
(kc > 1.5), the velocity field is fully resolved, i.e., ® = .
V¢ and w tend to align in mutually orthogonal directions (€3
and ‘e, respectively), independent of the filtering kernel used.
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FIG. 5. (Color online) Alignment of VE[; in the §;; eigenframe,
computed from case A using the Gaussian filter with «.n = 1.6

(kecnp = 0.1).

This can be deduced by comparing Fig. 2(a) to Fig. 5, which
shows the orientation of V¢ computed using the Gaussian
filter, with 95% of the scalar modes filtered out. The box and
sharp-spectral filters yield similar results for V¢ orientation.
The orthogonality of V¢ and @ implies that the second term
in Eq. (10) is essentially zero. An earlier formulation of the
stretched vortex model for velocity modeling [26] uses an e,
that aligns with the subfilter vorticity, instead of the resolved
vorticity. For this purpose the authors in Ref. [26] represent
e, as a linear combination of €; and &, both of which are
perpendicular to V¢. The dot product of V¢ and’e,, in Eq. (10)
is Z€ro even with this particular combination. Thus, whenever
V¢ and the assumed e, are mutually orthogonal, the stretched
vortex model reduces to a form resembling the Smagorinsky
model [Eq. (8)], but with a different constant.

C. The tensor-diffusivity model

For sufficiently smooth velocity (#) and scalar (¢) fields,
and for a small filter-width A, the tensor-diffusivity model
is evaluated from the leading order term in the Taylor-series
expansion of Eq. (3). More precisely, the expansion takes the
following form for a variety of filtering kernels, including the
Gaussian and box filters [27,28]:

vy = b — i}

= CVi - V¢ + 0(AY. an

The leading order term in Eq. (11) constitutes the tensor-
diffusivity model. The coefficient C depends on the second
moment [ f fooo x2G(x)dx] of the filtering kernel and is identical
for the forms of the Gaussian and box filtering kernels shown
in Eqgs. (5) and (6) (C = A?/12). This implies that, to leading
order, 74 is virtually identical for both the Gaussian and
box filters, which can be confirmed from Figs. 3(b) and 4.
We note that moment integrals of the sharp-spectral kernel
do not converge to finite values for order greater than O.
The consequence of using the sharp filter is discussed in
greater detail in Sec. VIA. With the filter cutoff located
in the viscous-convective subrange, Vi = Vu, and Eq. (11)
simplifies to

2

A ~
Ty A EVu -Vo. (12)

PHYSICAL REVIEW E 89, 063015 (2014)

0.06 F
Ter{sor-diffusivit‘y ——
Smagorinsky —#—
0.05 I Stretched vortex ---@---

45 90 135
0 (deg)

FIG. 6. (Color online) PDFs of the angle between the true SFF
vector and the model predictions. Computed a priori from dataset B
by filtering with the Gaussian filter at k. = 1.6. The stretched vortex
model depicted in this figure assumes alignment of &, [Eq. (10)] with
the resolved vorticity vector.

The higher order terms [O(A*)], which were neglected in the
expression above, involve higher order velocity and scalar
derivatives. In the viscous-convective subrange, scalar material
elements have been speculated to experience effectively linear
straining [1]. Under these conditions, it is appropriate to keep
only the leading order term in Eq. (12).

D. Orientation predicted by the three subfilter models

To compare the effectiveness of the three models in
predicting 74 orientation, we compute PDFs of the angles that
the vectors defined by the three model terms [Eqgs. (8), (10), and
(12)] subtend with the vector defined by Eq. (3). The results
shown in Fig. 6 indicate that the tensor-diffusivity model-
predicted vector is co-aligned with the exact t,. However,
both the Smagorinsky and stretched vortex model predictions
are close to being counteraligned (i.e., orthogonal) with the
SFF vector. These results are expected, as the filtered scalar
gradient (which forms the basis of determining vector direction
for the Smagorinsky and stretched vortex models) is aligned
mainly with the €3 unit vector (Fig. 5), and the exact SFF term
is close to zero in this direction (Fig. 3). Thus the Smagorinsky
and stretched vortex models appear to be unsuitable represen-
tations for T4 when using the Gaussian filter. Similar results
were found for all three models when using the box filter. Given
the strong directional correlation between the exact 74 and
the tensor-diffusivity model prediction, we conduct a detailed
examination of the tensor-diffusivity model with regard to the
strain-rate eigenframe.

V. STRAIN-RATE EIGENFRAME BASED ANALYSIS
OF THE TENSOR-DIFFUSIVITY MODEL

The SFF vector computed from filtered DNS data [Eq. (3)]
shows a very strong preference for alignment at a particular
angle in the S;-S3 plane, when using the Gaussian or box
filtering kernels (Figs. 3 and 4). This dependence can be
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explained by analyzing the tensor-diffusivity model [8-11]
for scalar transport. A similar analysis was carried out by
Higgins et al. [20] regarding subfilter heat flux orientation in
atmospheric measurement data. The authors found 74 to lie
in the plane spanned by the mixed model, i.e., the tensor-
diffusivity model combined with the Smagorinsky model.
However, we show that the orientation of 74 in simulation
data can be predicted exactly by the tensor-diffusivity model
alone.

A. Explanation for orientation

To examine the reason for S§;-S3 orientation of 7,4, the
velocity gradient tensor (Vu) in Eq. (12) is decomposed
[20] into its symmetric and antisymmetric parts, i.e., the
strain-rate tensor S;; = 1/2(u; ; + u ;) and the rotation tensor
Q,‘j = 1/2(”,',_]' — l/tj,,')Z

2

A -

Tp= (S +2)- V3 (13)
A2 ~ A2 ~

— 2 S VI+ 2 wox V. 14

S Vet gexVe (14

Furthermore, from the Taylor-series expansion [29] of V$ (for
the Gaussian and box filters):

2
VE=Vo+ VI + (15)

the filtered scalar gradient resembles the unfiltered gradient,
which is the leading order term. We can confirm that the
orientation of V¢ is virtually identical to that of the unfiltered
V ¢, albeit with a slight drop in the maximum normalized PDF
value, by comparing Figs. 5 and 2(b). .

Using the observed alignment of w [Fig. 2(a)] and V¢
in the eigenframe (Fig. 5), we make the following simpli-
fications:

® = tlw| e, (16)

Vé = £|Vg| &, (17)

where @, is the unit vector in the direction of axis S, and e3 is
the unit vector for ;. Equation (14) can then be interpreted as
follows:

2 S T
7y ~ E(is VI8 + S0l @ x V3 e3) (18)
~ 22 Whi (0 + Ll (19)
M+ ol A3 €3 Slolen).

As is evident from Eq. (19), 74 has measurable compo-
nents only in the S§; and S3 directions. This explains the
strong aversion to alignment in the S, direction (Figs. 3
and 4). Equation (19) also explains the enstrophy depen-
dence of T, orientation observed in Ref. [30]. In regions
of low enstrophy (|@|?>/2), the €3 component of Eq. (19)
is dominant, which results in 74 aligning with the S3
eigenvector.

Equation (19) can further be used to extract determin-
istic information about T, orientation in the S§;-S3 plane.

PHYSICAL REVIEW E 89, 063015 (2014)
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FIG. 7. (Color online) PDFs of 6, (lines with symbols) and a,
(lines without symbols), computed pointwise from dataset B. Results
shown for both Gaussian (solid lines) and box (broken lines) filters
at k.n = 1.6.

The tensor-diffusivity model-predicted SFF vector [Eq. (19)]
makes an angle of
fs, = arctan :l:M (20)
’ 2X3
with the §3 axis, whereas the exact 74 [Eq. (3)] subtends the
following angle:

Ty - €
as, = arccos( ¢ AS ) 21
ITylles]

The PDFs of 85, and a5, computed from dataset B are plotted
in Fig. 7. The distribution predicted by the tensor-diffusivity
model, i.e., the PDF of 6s,, matches that of g, quite well. The
peaks in the PDFs occur at approximately 40° and 140°, which
compares well with the 6p values shown in Table II. Thus, the
four symmetric orientation angles resulting from Eq. (20),
specifically, £|6s,| and 7 & |6, |, are in excellent agreement
with the sphere PDFs shown in Figs. 3 and 4. Overall, the
numerical results support the analytical form of T4 given by
Eq. (19), when using the Gaussian and box filters.

The complete independence of the angle in Eq. (20) from
any scalar-field-related variable explains the Schmidt number
and filter-width independence of the orientation of 74 observed
in Sec. III. The orientation only depends on velocity-dependent
variables, @ and A3, which are largely unaffected by filtering
for k.n > 1.5. However, the magnitude of 7, will depend
on the ﬁltered~scalar field, as is clearly evident from the
presence of |V¢| in Eq. (19). The observations in this section
confirm that the tensor-diffusivity model provides an excellent
means of representing the subfilter-scale scalar-flux vector
orientation analytically, when using the Gaussian or box
filters.

B. Numerical stability of the tensor-diffusivity model

Although the tensor-diffusivity model provides close to
an exact analytical form for the subfilter term, a posteriori
implementation for velocity modeling in LES has been known
to give rise to stability issues [29,31,32]. More precisely,
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insufficient subfilter dissipation caused by the presence of
negative viscosity in the model can result in the solution going
unstable [10]. A common approach is to restore stability by
augmenting the tensor-diffusivity model with a Smagorinsky
term [29,31,32], which provides additional subfilter dissipa-
tion to compensate for the occurrence of negative viscosity.
Other attempts to restore stability rely on either clipping
negative viscosity [33] or incorporating regularization specific
to the numerical method used [34]. In contrast to these issues,
certain studies have noted that the tensor-diffusivity model
by itself can lead to stable solutions, without augmentation
with an additional dissipative term [29]. However, the subfilter
dissipation was found to be insufficient in those cases, giving
rise to inaccurate results. It is important to note that most of
the a posteriori studies that observed solution instability were
concerned with modeling the subfilter velocity stress tensor
(Tu), not the subfilter scalar-flux vector (t4). One exception
is Ref. [34] which discusses a posteriori implementation for
scalar transport, albeit in laminar one- and two-dimensional
(1D and 2D) test cases.

Fortunately, the occurrence of negative diffusivity may not
be a dominant issue when using the tensor-diffusivity model
for scalar transport in homogeneous isotropic turbulence. More
specifically, the tensor-diffusivity model may lead to stable
results when used in the viscous-convective subrange. We can
arrive at this conclusion by inspecting the subfilter dissipation
(Xz,) of the filtered scalar variance. The filtered scalar transport
equation, Eq. (2), is multiplied by the filtered scalar (qNS), and in
conjunction with the incompressibility condition (V - u = 0),
yields

py)
aai; +V - (@i$?) = DV?¢* — 2D|VP|* — 2V - (¢74)
+2V¢ - 14 (22)

Here, ¥ = 2D|V$|2 and x,, = —2V5- T4 are the resolved
and unresolved scalar dissipation rates, respectively. x., is
responsible for scalar variance dissipation by the subfilter
terms. Recalling that the scalar gradient vector shows strong
preference for alignment with the €3 vector, and using
Eq. (14), the subfilter scalar dissipation takes the following
form:

A (e 1L~
sz—?V(P' S'V¢+§(0XV¢ (23)

~ 5 A2

A —A3|V¢>|2?. (24)
Using the fact that A3 is negative, Egs. (22) and (24) indicate
that the tensor-diffusivity model should always act as a sink
for the resolved scalar variance. The absence of a positive X
term, which would act as a positive source for scalar variance,
negates the issue of negative diffusivity contributing to scalar
variance increase.

We note, however, that Eq. (17) is a simplification since,
in addition to the ‘€3 component of V¢, there is a minimal
spread in the ‘e; direction (Fig. 5). Nevertheless, dissipation
caused by the A3 term [Eq. (24)] should dominate the minimal
backscatter related to the minuscule €, component of V.
Thus, it should be possible to use the tensor-diffusivity
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model for scalar transport in homogeneous turbulence, without
implementing extraneous means of restoring stability. This
conjecture requires a posteriori testing, which is out of the
scope of the current work.

We close the discussion on solution stability by noting that
backscatter is a physically appropriate phenomenon associated
with the stretching of material elements (Fig. 1) and is one
of the several ways in which the small scales affect the large
scales in turbulent flows [35]. In terms of scalar energy-transfer
in spectral-space [3], backscatter represents an increase in
variance at large scales due to deposition of energy by the small
scales. Thus, solution stability permitting, subfilter models
should try to account for backscatter whenever possible. This is
another advantage that the tensor-diffusivity model offers over
eddy-diffusivity based models, which are unable to account
for backscatter inherently.

VI. DISCUSSION
A. Effect of filter shape

The discussion up until now has been concerned only
with using the Gaussian and box filters when examining 7
orientation. In this section, we inspect what effect, if any, using
adifferent filtering kernel (i.e., a different filter shape) can have
on the orientation. Figure 8 shows sphere PDFs of 7 4 computed
for case A using the sharp-spectral filtering kernel. We observe
a drastic change in the behavior of the SFF orientation,
when compared with equivalent results from the Gaussian
and box filters (Figs. 3 and 4). The SFF vector distribution
in the eigenframe is close to being completely random (i.e.,
PDF value ~ 1) with the sharp filter, an observation which
persists for more than an order of magnitude variation in the
filter cutoff (Fig. 8). PDF values obtained using the three
different filtering kernels are provided in Table III, along
with data relevant for comparing MSG and LS forced scalar
fields (discussed in Sec. VIB). The quantitative data confirm
significant differences that arise when using the Gaussian or
box filters vs the sharp-spectral filter. These results suggest
that the observed alignment of T4 does not have a physical
significance, and is merely a mathematical outcome of the
filtering operation.

Severe filter dependence of the correlation between model
predicted and exact subfilter stress tensor (z,) has been
observed in previous numerical [36,37] and experimental
[33] studies. Thus, the current observations, combined with
those available in the literature, provide strong support for the
viewpoint that in order to get accurate results, filtering and
modeling must be treated as a unified process [29,36-38],
irrespective of whether the velocity or the scalar is being
modeled.

In spite of very different orientation of 7, when using the
sharp-spectral filter, the results discussed in Secs. III C and V
remain broadly applicable, since the expansion in Eq. (11) is
valid for a wide class of continuous and discrete filters with
finite second moments [27,28]. We reiterate that Eq. (11) is not
valid when using the sharp-spectral filtering kernel, since the
second moment of the sharp filter does not converge to a finite
value. Thus, the tensor-diffusivity model may not perform
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FIG. 8. (Color online) Similar to Fig. 3, but computed using the sharp-spectral filter. (a)x.n = 10, k.np = 0.625; (b)k.n = 1.6, k.np = 0.1;

(¢) k.n =0.8, k.np = 0.05.

well in predicting 74 orientation when coupled with the sharp
filter.

B. Effect of scalar forcing

The 7,4 distributions discussed in Secs. IIIC and V were
computed for a scalar field forced by imposing a mean scalar
gradient (MSG) [15]. Identical computations were carried
out for a scalar field mimicking the dynamics of decaying
scalar fluctuations (linear scalar forcing [16]). The alignment
trends observed were identical in both cases (Table III), even
though the means of sustaining small scale fluctuations, and
consequently, the scalar variance spectra, have been seen to
differ at high Schmidt numbers [16]. The indifference of
T, orientation to the forcing method is reminiscent of the
Schmidt number and filter-width independence observed in
Sec. I C, and may yet again be explained using the absence
of a ¢-dependent term in Eq. (20).

C. Implications for practical LES

The present results indicate that model selection for practi-
cal LES must be strongly contingent on the effective filtering
kernel used. This raises a few crucial questions, particularly:
(1) Is it appropriate to use implicit filtering in LES? (2) Is it
appropriate to think of subfilter terms as being entirely physical
in nature, rather than to consider their combined physical

and mathematical role? Both these questions are of critical
relevance to practical LES, where implicit filtering (not to be
confused with implicit LES [39]) and filter-independent model
selection are common approaches.

Implicit filtering removes high wave-number spatial fluc-
tuations by projecting the solution on to a coarse grid, which
contrasts with explicit filtering where the solution is convolved
with a filtering kernel. Projection on a coarse grid, when
using spectral methods in LES, is equivalent to filtering
with a sharp-spectral filter. The use of finite-volume and
finite-difference schemes may introduce yet another level
of filtering, which may not be well-defined mathematically
[37,40-43]. Thus, relying on implicit filtering can result in
very poor correlation of the model predicted and exact SFF
terms, which can be detrimental to solution accuracy. In this
regard, explicit filtering has been considered in the literature
as a means of introducing some measure of predictability into
the behavior of subfilter terms, in addition to providing control
over discretization errors. More specifically Refs. [27,29] use
explicit filtering to ensure strong correlation between the
subfilter terms and the models used, and Refs. [41-43] note a
reduction in numerical error (along with a tendency to obtain
grid-independent results) when using explicit filtering.

The second question posed is concerned with the fact that
there is a prevalent tendency to view the subfilter term as being
physical in nature, and the choice of a particular model for LES

TABLE III. Case A (Re; = 30, Sc = 256). Comparison of alignment data for different filtering kernels, and for MSG and LS forcing. The

ranges of accuracy for 6p and 6, are £0.9° and £1.8°, respectively.

MSG LS
Filter PDF ken =10 ken=1.6 ken=0.8 ken =10 ken=1.6 ken=0.8
Gaussian min 0.15 0.17 0.18 0.15 0.18 0.20
max 9.14 7.32 5.717 9.03 7.09 5.48
0p 42.3° 42.3° 42.3° 42.3° 42.3° 42.3°
04 5.4° 1.8° 5.4° 5.4° 5.4° 1.8°
Box min 0.15 0.17 0.17 0.15 0.18 0.20
max 9.23 7.88 6.42 9.10 7.64 6.03
0p 42.3° 42.3° 40.5° 42.3° 42.3° 42.3°
04 5.4° 5.4° 1.8° 5.4° 5.4° 1.8°
Sharp-spectral min 0.29 0.35 0.36 0.29 0.36 0.37
max 1.63 1.46 1.44 1.63 1.43 1.42
0p 35.1° 36.9° 35.1° 35.1° 35.1° 33.3°
04 1.8° 1.8° 9° 1.8° 5.4° 9°
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is often made independently of the implicit or explicit filter
used [36]. The filter dependence of subfilter terms suggests that
there is a dominant mathematical aspect involved in modeling,
which must not be ignored. Thus, modeling and filtering must
be treated as a unified process by using appropriate model-filter
combinations in LES.

VII. CONCLUSION

In this paper, we have examined the alignment behavior
of the subfilter-scale scalar-flux vector in the eigenframe of
the strain-rate tensor. The focus is placed on filtering in the
viscous-convective subrange. Results obtained from filtered
DNS datasets indicate strong preferential alignment of the
SFF vector (t4) in a particular direction, when using both
the Gaussian and box filters. The alignment direction is
explained by analyzing the tensor-diffusivity model, based
on the observed preferential orientation of the vorticity (w)
and scalar gradient (V¢) vectors. The independence of the
SFF vector orientation from the filter width, the flow Schmidt
number, and the scalar-forcing method, is explained by
extracting the orientation angle from the tensor-diffusivity
model. The relevant orientation angle, 6s,, is shown to depend
only on velocity-related variables, @ and A3. The remarkable
agreement between numerical results and those predicted by
the tensor-diffusivity model confirms that it provides close to
an exact analytical form for the subfilter term, when using the
Gaussian or box filtering kernels.

Using the orientation of V¢ in the strain-rate eigenframe,
it is shown that the subfilter dissipation term for the tensor-
diffusivity model acts predominantly as a sink for the scalar
variance. Thus, the issue of solution instability induced by
the occurrence of negative diffusivity may not arise when
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using the model for scalar transport in homogeneous isotropic
turbulence. This result should remain valid, at least, as long as
the filter width is located in the viscous-convective subrange.

Analyzing the effect of filter shape indicates close to
random orientation of the SFF vector when using the sharp-
spectral filter. Such strong dependence of the subfilter term on
filter shape raises concern regarding the suitability of using
implicit filtering in LES, which is often the preferred method
of choice for such simulations. Additionally, comparison of
various SFF models indicates that the tensor diffusivity is
capable of predicting T4 orientation quite accurately when
using the Gaussian and box filters, whereas the Smagorinsky
and stretched vortex models do not perform well in this regard.

The results reinforce the viewpoint that filtering and
modeling must be tackled as a unified issue in LES, and
appropriate filter-model combinations must be used. The
observed filter dependence also suggests that it may not be
appropriate to ascribe a solely physical role to subfilter models,
and that it is more pertinent to examine their combined physical
and mathematical role in LES.
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