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In the present work, we investigate the possibility of performing velocity-resolved,
scalar-filtered (VR-SF) numerical simulations of turbulent mixing of high Schmidt
number scalars, by using a Large Eddy Simulation (LES)-type filter in the viscous-
convective subrange. The only requirement for this technique is the large scale sep-
aration between the Kolmogorov and Batchelor length scales, which is a direct
outcome of the high Schmidt number of the scalar. The present a priori analysis
using high fidelity direct numerical simulation data leads to two main observations.
First, the missing triadic interactions between (resolved) velocity and (filtered-out)
scalar modes in the viscous-convective subrange do not affect directly the large
scales. Second, the magnitude of the subgrid term is shown to be extremely small,
which makes it particularly susceptible to numerical errors associated with the scalar
transport scheme. A posteriori tests indicate that upwinded schemes, generally used
for LES in complicated geometries, are sufficiently dissipative to overwhelm any
contribution from the subgrid term. This renders the subgrid term superfluous, and
as a result, VR-SF simulations run without subgrid scalar flux models are able to
preserve large scale transport characteristics with remarkable accuracy. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4807061]

. INTRODUCTION

The Schmidt number (Sc), defined as the ratio of the kinematic viscosity of a fluid (v) to
the molecular diffusivity of a scalar (D), is the dimensionless quantity used to characterize scalar
mixing in fluids. Batchelor, in his 1959 paper,' deduced that for low diffusivity passive scalars
(Sc > 1), the smallest turbulent length scale of importance to the scalar field dynamics (the Batchelor
scale: np) depends solely on the Kolmogorov length scale (y = (v3/€)'/4, where € is the mean
dissipation rate, and v is the kinematic viscosity) and the Schmidt number:

ng=n-Sc /2. (1)

Batchelor further predicted that at extremely high Schmidt numbers, there must exist an intermediate
range of wavenumbers (k ), now referred to as the “viscous-convective subrange.” The fluid viscosity
heavily influences scalar transport in this subrange, but the scalar diffusivity does not yet play an
appreciable role. Batchelor went on to show that the scalar spectrum should exhibit a « ~! scaling
in this subrange. Several attempts have been made to verify this power law, but disagreement
remains over its validity. Certain experiments and simulations support the scaling,”~> whereas others
contradict it.>® There even exist certain theoretical objections to the x~! scaling, based on the
requirement of boundedness of the scalar variance.’
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Simulations conducted to date with the goal of studying Batchelor’s scaling law have been
limited in scope by the availability of computational power. The few high Schmidt number datasets
that are available are limited to either a very low Reynolds number, or to a relatively modest Schmidt
number. For example, some of the best available combinations of Reynolds and Schmidt number
simulations have been run at Re;, = 8, Sc = 1024 by Yeung et al.,’ and Re, = 140, Sc = 64 by Donzis
et al.’ The reason is the stringent requirement that the Batchelor scale imposes on grid resolution in
numerical simulations, although recent developments based on compact finite-difference schemes!®
bring promise of some relief from a computational point of view. Commonly used guidelines®
suggest that keeping « ., > 1.5, where k,,, is the largest available wavenumber determined by
the grid resolution, ensures a fully resolved scalar field. Based on this criterion, a typical direct
numerical simulation (DNS) of soot transport in air at a moderate Re; = 100 and Sc¢ = 1000 would
require on the order of 10 000* grid points for full resolution. The largest DNS that have been run to
date on supercomputers'' have not exceeded 4096 in grid resolution. The required resolution for
soot transport thus represents almost two orders of magnitude increase in computational expense
over the current state-of-the-art.

Both the Reynolds number and the Schmidt number can be increased by resorting to Large
Eddy Simulation (LES), which alleviates the large cost of DNS to some extent. LES does not resolve
the smallest physical scales, which results in a significantly relaxed grid resolution requirement.
The drawback of using LES though is that the effect of the unresolved scales (called the “subgrid
scales”) on the resolved scale (“supergrid scale””) dynamics must be modeled through an additional
term in the Navier-Stokes equations. Construction of these LES models relies heavily on results from
theoretical analysis, DNS, and experimental observation, all of which pose significant challenges at
high Schmidt numbers. As a result, very limited amount of work relating to high Schmidt number
scalar transport has been conducted to date using LES.* !>~

The objective of the work presented in this paper is to explore options that may help close
the gap that currently exists between experimental and numerical work. More precisely, our goal
is to investigate the possibility to perform simulations that are less expensive than traditional DNS
and yet do not possess the drawbacks of LES. Towards that goal, we take advantage of the large
scale-separation between the Kolmogorov and Batchelor scales to perform velocity-resolved, scalar-
filtered (VR-SF) simulations. We exploit the wide scale separation between g and 7 to our advantage
by using an LES-type filter of width A such that np << A < n (np < A being a desirable rather than
a necessary condition for minimizing simulation cost). One such filter placement, corresponding to
the vertical line x.n = 10, is shown in Fig. 1. Here « . represents the cutoff wavenumber for the filter,
and all information at higher wavenumbers, i.e., to the right of a «.n line, is filtered out. The end
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FIG. 1. 3D spectra for velocity and three different scalars. Data taken from DNS by Yeung et al.,’ knp axis shown is for
Sc =256 (n = 0.1958).
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result of this operation is a fully-resolved velocity field, but only a partially-resolved scalar field.
This differs from standard LES since only the scalar field is filtered, whereas velocity fluctuations
are completely resolved. In this paper, we will refer to such simulations as “velocity resolved,
scalar filtered” simulations. A similar grid resolution criterion was used previously by Burton* '3
for validating the performance of the “nonlinear LES” (n-LES) model in the viscous-convective
subrange. We point out that the formulation of the n-LES model depends on a priori availability of
the scalar spectrum at the subgrid scales (several model coefficients assume a k ~! scalar spectrum).
As will be shown later, the proposed VR-SF simulations are different in that no a priori behavior
of the scalar spectrum is assumed. The only assumption is a scale separation between Kolmogorov
and Batchelor scales, which is a direct outcome of the high Schmidt number of the scalar.

The consequence of filtering in the viscous-convective subrange and related discussion in terms
of Batchelor’s theory are presented first in Sec. II. The behavior of the subgrid terms computed using
DNS data with respect to the filter width, the Reynolds number, and the Schmidt number is discussed
in Sec. III. Furthermore, the subgrid terms have a limited range of influence on the supergrid scales,
which can be attributed to the peculiar behavior of scalar spectral transfer in the viscous-convective
subrange, as discussed in Sec. I'V. Finally, Sec. V presents direct comparison of VR-SF runs to DNS
data.

Il. CONSEQUENCE OF FILTERING IN THE VISCOUS-CONVECTIVE SUBRANGE
A. Filtered transport equation

To observe the effect of filtering out the large wavenumbers, we start with the most general
convection-diffusion equation, which is the conservation law governing the transport of a passive
scalar. We use the symbol u to represent the velocity vector, and z to represent any general passive
scalar:

d
a—j +V. (gz) — DV, @)
This transport equation may be filtered using a homogeneous spatial filter of any general type. The
most commonly used filtering kernels are the Sharp-Spectral filter, the Gaussian filter, and the Box
filter. We use variables with an overtilde (-) to represent filtered quantities:

az ~

a—j +V. (gz) — DV, 3)

The main drawback of the filtering operation is that Eq. (3) does not contain the flux term V - (g%)

that the filtered passive scalar transport equation actually solves for. This leaves a residual term in
the filtered equation, which is referred to as the subgrid scalar flux (SGF) term:
az . 2 ~
E+V~<gz)=DVz—V~<gz—gz), )

SGF = iz — iz. (5)

The SGF represents the effect of the smallest scales on the larger scales, which is not accounted
for by the filtered equation. These effects arise from triadic interactions between scalar and velocity
modes at large wavenumbers that then feed into the transport process at lower wavenumbers. These
interactions are discussed in more detail in Sec. IV.

To assess the effect of filtering with a Sharp-Spectral filter, we write the velocity in terms of its
Fourier modes:

N/2 .
wx) =Y a@le)e* . 6)
lj=0

Given that the cutoff wavenumber « . is set to a sufficiently large value (k. >> 1), the subfilter velocity
fluctuation amplitude (i.e., the subfilter velocity Fourier coefficients) can be approximated to be zero.
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This is in accordance with the extremely low kinetic energy content at high wavenumbers. Thus,
the filtered velocity resembles very closely the unfiltered velocity (& ~ u : V k.7 > 1), and can be
expressed as follows in terms of the Fourier modes:

ux)~ Y ak)er, %)

i) <k

We can further argue that since the majority of the kinetic energy is concentrated at the lower
wavenumbers, it can be assumed that the velocity field is spatially uniform, within the filter width, for
very high cutoff wavenumbers. The same argument does not apply to the scalar quantity z or to the
flux uz, since the scalar spectrum may retain a considerable amount of energy at high wavenumbers
(Fig. 1).

Using these assumptions, combined with the fact that we are using a homogeneous filter, the
two terms in the SGF simplify to

uz~uz and @z~ uz, (8)
which in turn leads to
SGF:;ZZ—EEQO. 9

Equation (9) suggests that neglecting subgrid information would have limited adverse effect
on supergrid scale dynamics, assuming that we place the filter cutoff «. at a sufficiently large
wavenumber. Stated differently, a subgrid scale model may not be necessary if k.1 >> 1. The result
in Eq. (9), although obtained independently, was pointed out earlier by Calmet and Magnaudet.!?
The idea of no SGF model appears similar in principal to Implicit-LES (ILES).!® The similarities
and differences between the two methods will be discussed later in the paper (Sec. V A).

B. Assumption of locally uniform velocity

The principal assumption made in Eq. (8) is that the velocity field can be treated to be uniform
in space with respect to the filtering operation. We plot in Fig. 2 a single component of the velocity
vector and the corresponding scalar flux from one of the DNS datasets used for the a priori analysis.
The inset shows a magnified region of the plot along with the characteristic filter width (A = 7/ )
in physical space, corresponding to a filter cutoff wavenumber of x.n = 10. Within the confines
of the filter width, the low wavenumber dominated velocity signal (u#) appears to be virtually a flat
line, whereas the flux signal (uz) retains considerable curvature. We can therefore justify treating
the velocity signal to be locally uniform in space, over the width of the filtering kernel, on condition
that the cutoff wavenumber is sufficiently large (i.e., k.n > 1).
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FIG. 2. Plot of the velocity, scalar, and the scalar flux along a line-cut across the DNS field for Case 5. Inset shows magnified
view with effective filter width A corresponding to k.1 = 10.
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TABLE I. Baseline DNS datasets used for a priori analysis.

Case N Re;, Sc v n K maxh
1? 192 8 64 0.1590 0.1285 12
28 384 8 256 0.1590 0.1285 24
3b 512 8 256 0.1590 0.1958 48
40 512 8 512 0.1590 0.1958 48
5b 512 8 1024 0.1590 0.1958 48
6 512 30 64 0.0200 0.0460 12
7¢ 2048 140 64 0.0028 0.0114 11

aPresent work with finite difference solver.!”
Data source: Yeung et al.?
Data source: Donzis et al.

This view of locality is certainly not robust, since the Gaussian and Sharp-Spectral filtering
kernels are non-local in physical space. However, the rapid attenuation of the filtering kernels in
physical space, away from the filtering location, makes this a reasonable assumption. The approxi-
mation used in Eq. (8) becomes more accurate at higher «. owing to a decrease in the filter width A
and the corresponding faster attenuation of the filtering kernels.

We would like to point out that this approximation does not conflict with the assumptions made
by Batchelor in the derivation of the « ~! scaling.! Batchelor assumed that at sufficiently small scales,
material “blobs” of the scalar are acted upon by essentially constant strain rates (y ~ (¢/v)"?) that are
inversely proportional to the Kolmogorov time scale (t, = (v/€)"?). This suggests that the majority
of the deformation of scalar blobs (which may be much smaller in size than the Kolmogorov length
scale) is caused by Kolmogorov sized eddies. With a filter width located in the viscous-convective
subrange (k.1 > 1), these Kolmogorov sized eddies, along with the accompanying constant straining
motion, are fully resolved in the proposed VR-SF simulations.

lll. A PRIORITESTING

The behavior of the SGF magnitude, in particular its dependence on the Reynolds and the
Schmidt numbers, is analyzed by filtering DNS data obtained from homogeneous isotropic turbulent
simulations (“baseline data”). The simulation parameters along with the source of the data are listed
in Table I. The results of the analysis were found to be independent of the numerical solver used
to perform the simulation. The baseline datasets are filtered using the Sharp-Spectral filter, and the
consequences of using other filtering kernels are discussed in Appendix A.

A. Filtering methodology

Since the SGF requires us to take the product of two terms, it is necessary to take additional
precaution to ensure that aliasing from wavenumbers greater than « ., does not impact the calcu-
lations. The SGF terms are dealiased in accordance with Orszag’s “two-thirds truncation rule.”'8
More specifically, the Fourier components corresponding to the upper third of the wavenumbers
are discarded prior to performing any calculations. This operation is equivalent to filtering with the
Sharp-Spectral filter at a low-pass cutoff wavenumber of %Kmax. We shall refer to the resulting output
as “truncated data.” We clarify here that the aliasing error in question arises during the postprocess-
ing of the data, and is not associated with the DNS dataset itself. Equation (10) presents a schematic
view of the steps followed, with “FFT” denoting the Fast Fourier Transform, and “IFFT” denoting
the Inverse Fast Fourier Transform. The terms with the overhat (A) represent Fourier coefficients, and
the subscript “d” indicates truncated data:

FFT _~ Truncation ~ IFFT
u— % 7 L

~ ~

(10)
FFT _ Truncation ~ IFFT
z z i Zq.
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To obtain the first term in the SGF (Ez), the two truncated quantities are multiplied, followed
by the operations shown below:

FFT _—  Filter == IFFT ~~
gdzd —_—> gdzd — Edzd —_—> gdzd. (11)
To obtain the second term in the SGF (#Z), the following operations are first performed on the
truncated data,

FFT ~ Filter = IFFT _
Uq Uaq Ua Uq

(12)
FFT . Filter =< IFFT
Zd Zd Zd Z4,

and then the filtered quantities are multiplied to get &,Z;. From this point forward, we shall drop
the subscript “d” for convenience, and assume that truncated and dealiased data are used, unless
otherwise stated.

B. Qualitative analysis

To observe the degree of correlation between #z and #Z, Fig. 3 shows contours of the Joint
Probability Density Function (JPDF) at various filter cutoffs, with the color map shown on the right
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FIG. 3. Joint probability density function for the two terms in the SGF at various sharp filter cutoff wavenumbers. Whitespace
indicates absence of data points. The inset figures show the corresponding location of the cutoff with respect to the velocity
and scalar spectra. Data taken from baseline Case 5 (Table I). Only the y and z components of the scalar flux have been used
(Appendix B). (a) k. = 33. (b) k.n = 10. (c) kcn = 6. (d) k. = 1.
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of each frame. Any scatter in the direction perpendicular to the 45°diagonal represents the error
introduced by filtering, which should be accounted for by the SGF term.

Figure 3(a) with «.n = 33 = %Kmaxn serves as the baseline case, since dealiasing reduces the
largest wavenumber available in the data. We can clearly identify that this case has no error, based
on the perfect correlation between the two quantities. Figure 3 suggests that the relative differences
between y':'z and &Z increase as k.7 is moved to lower values, since a wider JPDF is indicative of
increasing disparity between the two terms in the SGF. This is expected since a lower « .n corresponds
to neglecting a greater proportion of the information available at higher wavenumbers. Nevertheless,
the shape of the JPDF remains fundamentally the same throughout the viscous-convective subrange
(Figs. 3(b) and 3(c)) and the increase in the error in assuming SGF = 0 is relatively modest compared
to the large savings in computational cost that can be realized by using VR-SF. In the limit when
k. = 1, the JPDF no longer adheres to the 45°diagonal, which suggests that the magnitude of the
subgrid term is substantial.

C. Magnitude of the SGF term

Following the qualitative analysis in Subsection III B, we now analyze quantitatively the effects
of filter width, Reynolds number, and Schmidt number on the magnitude of the SGF term.

1. Definitions

Using Eq. (5) in conjunction with the symbol SGF; ; ; to represent the calculated value of the
SGF at grid location (i, j, k) € [1, NJ? (where N is the number of grid points in each direction), we
get

SGF,"J"]( = 'lZZi,j,k — Ei,j,kzi’j’k' (]3)
Then, the L, norm (|SG F|) can be written as

N 2
1
SGFI=| =5 > SGF 0| - (14)
i, j k=1
Normalizing this L, norm using the standard deviations for the truncated velocity (o) and scalar
(0,) fields, we arrive at a suitable definition for the non-dimensional relative magnitude m:
|ISGF|
m —=

oy -0,

~

15)

Since the SGF as defined in Eq. (13) is a vector quantity, we can calculate m component-wise as

follows:
1 |SGF|U>2 <|SGF|,U>2
m = : +(—2). (16)
0.2 \/( oy Ow

The u# component of the SGF has been excluded in this definition, since the flux component in the
direction of the imposed mean scalar gradient differs systematically from the other two components
(Appendix B).

2. Dependence on k.1 and Sc

Figure 4 shows the variation of m with k .n when a Sharp-Spectral filter was used for filtering the
baseline datasets. We can identify two regions of distinct behavior with respect to k.. For x.n < 3,
the magnitude grows very rapidly with decreasing « ., and is independent of the Schmidt number.
This distinctive change in SGF behavior happens since we are neglecting useful velocity information
close to the Kolmogorov length scale. As was discussed in Sec. II B, these velocity modes play a
crucial role during scalar transport even in the viscous-convective subrange. The non-ideal shape of
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FIG. 4. Relative magnitude vs. sharp filter cutoff wavenumber. Data taken from baseline Cases 3, 4, and 5, averaged over 4
stationary snapshots (#/7 eqay = 5.7, 10, 11.6, and 13.8).

the JPDF shown in Fig. 3(d) is consistent with these results, however, we must be mindful of the
fact that few Fourier modes remain for the case shown at k. = 1.

For k.n > 5, we observe a slower, exponential drop in relative magnitude of the SGF term with
the selected cutoff wavenumber. The decay rate in this region is dependent on the Schmidt number;
higher Schmidt numbers result in a smaller slope. This behavior is expected since, for the same
selected k.1, we ignore a larger proportion of the useful information available at higher Schmidt
numbers. We can infer this from Fig. 1, where the spectrum for a smaller Schmidt number scalar
decays faster than that for a larger Schmidt number scalar.

An important trend to note from Fig. 4 is that the magnitude increase, quantifiable by the vertical
shift of the SGF magnitude curve, slows down with increasing Schmidt number. For instance, at
approximately «.n = 6, the relative magnitude increases by 1% going from Sc = 256 to Sc = 512,
but only by another 0.5% when going from Sc = 512 to Sc = 1024. One would thus hope that the
SGF magnitude curve tends towards an asymptotic shape at very high Schmidt numbers, thereby
making the computed magnitude of the SGF term independent of the Schmidt number.

Finally, the rapid decrease in the SGF magnitude for filtering beyond «.n = 33, which is the
value for k,,n after dealiasing for the case shown, serves as a check for the a priori analysis.
Filtering beyond the dealiasing limit merely removes noise from the data and the two terms that
constitute the SGF are now exactly equal.

3. Dependence on Re,

To determine the effect of changing the Reynolds number, we compare the normalized magnitude
of the SGF term in Fig. 5 at a fixed Schmidt number (S¢c = 64) and at three different Reynolds
numbers. With the current normalization of the magnitude of the SGF term introduced in Eq. (16),
the results are dependent on the Reynolds number; a higher Reynolds number results in lower
magnitude. However, when the definition of m is altered to rescale with the Kolmogorov velocity scale
(uy ~ (en)"?) instead of o, the curves collapse almost perfectly (Fig. 5(b)),

1
m = VISGF|,2 +|SGF|,% (17)
unazﬁ \/

This collapse is not unexpected and confirms that it is indeed the small velocity scales that are
important for determining m. Furthermore, we can conclude from the collapse that the magnitude of
the SGF, when appropriately normalized, behaves independently of the Reynolds number for high
Schmidt number mixing.
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FIG. 5. Comparison of m vs. k.1 plots for Sc = 64 and three different Reynolds numbers. Baseline Cases 1, 6, and 7. (a) m
as defined in Eq. (16). (b) Rescaled m as defined in Eq. (17).

IV. SCALAR ENERGY TRANSFER

Filtering the scalar transport equation alters the transfer of scalar energy from the large scales to
the small scales. As suggested in Secs. IT and III, this transfer is fundamentally different in the viscous-
convective subrange when compared to the inertial subrange. Inspecting the transfer spectrum can
provide insight into how triadic interactions among velocity and scalar modes in certain wavenumber
ranges influence transport at all other wavenumbers. This is central in understanding the role of the
SGF term in the viscous-convective subrange.

A. The scalar transfer spectrum

The relevant term corresponding to spectral transfer in the scalar energy equation is obtained by
first taking the Fourier transform of the transport equation. This is followed by multiplication with
the conjugate of the scalar Fourier coefficient (?*(&)). Finally, the scalar transfer spectrum 7(k) is
computed by averaging the convective term over spherical wave-shells. This averaging operation is
denoted by angled brackets. All products involved are dealiased as discussed in Sec. III A:

T = (-2Re (Fw) 1~ Vz())) (18)

= <2£ Im <?(£) E(E)?(Z)d£>>'
~:~+~

The expression obtained involves triadic interactions between scalar and velocity modes, which
contribute to the scalar flux mode associated with wavenumber vector k. We would like to point out
that during scalar transport, each velocity mode (wavenumber vector p) interacts with each scalar
mode (wavenumber vector ¢), and the resultant corresponds to a new mode with wavenumber vector
p+q

It is instructive to decompose the transfer spectrum 7(«) into contributions from various velocity
(V(k|p)) and scalar (S(x|q)) modes'? as follows:

Viklpa) = <2£ Im <?"(£) u(pyz( — g)dg)>, (19)

\£|6A

S(klga) = <2Lq -Im (3*(5) g Aﬁ(g - g)?(g)dg>>- (20)
lé
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FIG. 6. Contribution of velocity modes V («x|p) (lines A through H) to the scalar transfer spectrum T(k) (Eq. (19)). Inset
shows velocity modes for wavenumber ranges D and higher.

The combined contribution of these modes must add up to give back the transfer spectrum:

T()=Y Viklp)=Y_ Sklq). 1)
p q

V(k|p) and S(k |g) are plotted for baseline Case 5 in Figs. 6 and 7, respectively, using logarithmi-
cally spaced ranges for the contributing modes. The data shown were taken from baseline Case 5
(Table I), averaged over 4 stationary snapshots (7 .qey = 5.7, 10, 11.6, and 13.8). Bandpass filtering
of the pertinent variables was done using the Sharp-Spectral filter. Figure 6 indicates that velocity
contributions from higher wavenumber ranges (regions D and above) are almost zero, and hence
play virtually no part in the spectral transfer of scalar energy.

xn xn
1 10 1 10
E ‘ ‘G‘ ‘H o H‘( ‘
P+ 8 2+ ES(K|qA_E; .
E+
E+ B 1L B
F+ =~
H— ¥ 0r B
G- =
E 4 1 Kl B
E- e 2t ]
| A . | : | - | Ll
0.01 0.1 1 0.01 0.1 1
Mg Kng

(a) (b)

FIG. 7. Contribution of scalar modes S(k|q) to the scalar transfer spectrum T(x) (Eq. (20)). S(x |¢) from wavenumber ranges
A through E are summed up in (b) to emulate the effect of filtering with a Sharp-Spectral filter (at k . & 6). (a) Decomposition
of T(k) (solid black line) into S(«x|g). (b) Comparison of full transfer spectrum 7(k), and that obtained after filtering scalar
modes beyond «x.n ~ 6.
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FIG. 8. Locality of triadic interactions for high Schmidt number cases (as discussed in Eq. (22)). The hatched region
corresponds to all non-zero contributions from scalar-velocity triadic interactions to the transfer term at wavenumber « ..

We now take a closer look at the scalar mode contributions in Fig. 7(a). We note that for
scalar modes belonging to higher wavenumber ranges (e.g., regions D and above), the effective
triadic interactions become extremely local, having a noticeable effect only on the immediately
neighboring ranges. To be more specific, scalar modes belonging to lower wavenumber ranges
contribute to transfer in non-neighboring ranges (for instance, scalar modes in range C affect transfer
in ranges A, B, C, and D). However, scalar modes in range E affect transfer only in the immediately
neighboring ranges (D, E, and F).

This locality of triadic interactions is not surprising, and is solely related to the faster decay of
the velocity spectrum compared to the scalar spectrum (Fig. 1) (it is not a consequence of bandpass
filtering). For the sake of simplicity, let us assume that the velocity Fourier coefficients beyond
k1 =2 are exactly zero. Assuming u(k) = 0 for [gn| > 2 helps us simplify the convolution integral
in Eq. (18), which now reads

<27~
2<%

T (k)= <2£ -Im (?*(g) ’li(g)?(g - B)d£)>' (22)
\

The only difference between Eqs. (18) and (22) is that the velocity modes are now restricted to those
with non-zero amplitudes. Equation (22) communicates that among all mathematically-possible
triadic interactions between velocity and scalar modes, it is only the interactions within a relatively
narrow band around |g| (in this case, k¥ £ 2/n) that result in a non-zero contribution to the transfer
term at this wavenumber. This is depicted schematically in Fig. 8, and is a direct result of the large
scale separation between 7 and 7. The locality of the triadic interactions is indeed valid only at high
Schmidt numbers and in the viscous-convective subrange, as may be confirmed by the non-local
behavior of decomposed transfer spectra (S(« |¢)) for low Schmidt number scalars.'”

B. Implications for VR-SF simulations

We now utilize the local nature of triadic interactions to analyze the cascade of scalar energy
down to successively higher wavenumbers, and how it relates to filtering in the viscous-convective
subrange. Scalar modes belonging to a particular wavenumber range, for instance E (Fig. 7(a)),
extract energy from the range to the immediate left (spike E—), and deposit energy at the end of the
range in question (spike E+). At high wavenumbers, this deposition is balanced almost exactly by
the extraction of energy by scalar modes belonging to the wavenumber range on the immediate right
(spike F—). The near-perfect balance of energy transfer among neighboring wavenumber ranges
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TABLE II. VR-SF simulation parameters.

Case N Re;, Sc v n Ken KceNB
A 128 8 1024 0.159 0.1290 8 0.250
B 256 8 1024 0.159 0.1283 16 0.500
C 512 48 1024 0.010 0.0272 7 0.218

indicates that triadic interactions originating from these high wavenumber scalar modes cannot
impact directly the transfer at intermediate (i.e., non-neighboring) wavenumbers.

Filtering the data (as done in VR-SF with a low pass filter) may still have an indirect effect on
the scalar transfer spectrum. For demonstration purposes, we suppose that the low-pass filter cutoff
is placed at the boundary of regions E and F. The resulting transfer spectrum after filtering, shown
in Fig. 7(b), is obtained by summing the scalar mode contributions from wavenumber ranges A
through E. The excellent agreement between the full and filtered spectra at low and intermediate
wavenumbers yet again emphasizes the minimal influence of high wavenumber modes. However,
we note that there is no longer a cancellation of the E4- spike from an F— spike since the F modes
have been filtered out. The E+4 spike, if left unchecked, can lead to a pile-up of scalar energy at the
large wavenumbers. This could have an indirect effect on the scalar transfer, especially for spectral
and scalar energy conserving transport schemes. The analysis of the impact of possible discretization
errors on scalar mixing and the energy spectrum is the subject of Sec. V.

As a side note, we mention that the pile-up of energy discussed in this section is often observed in
scalar spectra obtained using spectral transport schemes. The pile-up manifests as an upturned peak
at the end of the spectrum (e.g., Fig. 1), since any spatial discretization removes higher wavenumber
modes, which would otherwise have led to energy cascading down to even smaller scales.

V. VR-SF SIMULATIONS

The essence of the VR-SF technique lies in the assumption that running simulations on a semi-
resolved grid is equivalent to filtering with a Sharp-Spectral filter. We now present results from
VR-SF runs of homogeneous isotropic turbulence. The simulation parameters used for these VR-SF
runs (Table II) resemble closely to those used in generating the baseline DNS data (Table I). This
was necessary to allow direct comparisons with data from the baseline cases.

The velocity field for the VR-SF runs, as well as for baseline Cases 1, 2, and 6, was forced
spectrally by injecting energy in a low wavenumber shell.”’ The scalar was maintained statistically
stationary using an imposed uniform mean scalar gradient (Eq. (B2) with G = 1).

A. Impact of numerical discretization errors

In Secs. II-1V, we have found that the behavior of the SGF term in the viscous-convective
subrange is very different from that in the inertial subrange (Sec. III C 2). We have also shown that
the relative magnitude of the SGF term is very small for k. > 5 (Fig. 4). Finally, in Sec. IV, we
observed that the SGF does not have a direct impact on an overwhelming majority of the resolved
scales. Based on these observations, one might wonder if the SGF term could be neglected altogether.
Towards that goal, and in order to test for the impact of numerical discretization errors, we perform
VR-SF simulations without an SGF (i.e., by setting SGF = 0), using high order upwinded convective
(HOUC) schemes .'7-?!

Figure 9 shows results from simulation runs with increasing order of accuracy, namely, HOUC
3,5, and 7. These results indicate that the scalar energy spectrum in the viscous-convective subrange
is unaffected by the scheme used: the expected x~! slope is unchanged. Using higher order schemes
results in merely a larger extent of the constant slope. This is expected since a higher order scheme
is characterized by lower artificial numerical diffusivity and leads to smaller errors at the large
wavenumbers. Nevertheless, it is important to note that the low numerical diffusion associated with
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FIG. 9. Scalar spectra comparison for Case A (VR-SF: Table II) run with 3 different upwind convective schemes.

even high order upwinded schemes (5th and 7th order, as used in our VR-SF simulations) is sufficient
to damp out the positive spike in the filtered transfer spectrum (akin to the E4 spike shown in
Fig. 7(b)), thereby keeping the simulations stable. This suggests that no SGF terms are necessary
when using non energy-conserving scalar schemes, as the numerical errors introduced by these
schemes (albeit already small) remain larger than the magnitude of the SGF term.

Using the discrete derivative operator associated with upwind transport schemes as an energy
sink may be considered to be a variant of the ILES approach.!® Nevertheless, there are subtle
differences in the working assumptions of the two methods. ILES often employs second order
schemes with some form of flux-limiting, and the resulting leading-order truncation error terms
are used as replacement for explicit subgrid models. On the contrary, VR-SF relies on physical
arguments which indicate that the subgrid terms in high Schmidt number cases are very nearly zero
for k.n > 1 (Sec. II A). The only task that remains in VR-SF is the damping of any possible energy
pile-up as discussed in Sec. IV B. This damping may be carried out using any high order scheme
that entails sufficient, but minimal numerical diffusion (so as to avoid disrupting spectral transfer at
the intermediate scales), as opposed to being limited to the second order discrete operators specially
tailored for use in ILES. Unlike ILES, VR-SF simulations may be performed with an energy-
conserving scheme (such as a spectral scheme). In such a case, a model for the SGF term would be
necessary to damp the energy pile-up close to the filter cutoff.

B. Comparison to DNS

Following the results in Subsection V A, all further VR-SF simulations are performed without
a SGF term, and using the fifth order HOUC scheme. The results from the VR-SFs are com-
pared to those from the corresponding baseline DNS dataset. The focus is on assessing the ef-
fectiveness of the technique in retaining expected physical behavior at the large scales, despite
the fact that a majority of the relevant information at the higher wavenumbers has been neglected
entirely.

Figures 10(a) and 10(b) show the energy spectra and energy dissipation spectra (D(k)
= Dk?E(k)) of the filtered scalar fields for different filter cutoffs. We observe that even the coars-
est grid simulation («.n = 8, N = 128) is in excellent agreement with the baseline data at the
small wavenumbers (i.e., the large physical scales), and exactly matches the DNS scalar energy and
dissipation spectra all the way up to kn = 3. Nevertheless, there are some differences at higher
wavenumbers, as is clearly evident from the dissipation spectra. This can be attributed to two el-
ements. First, performing a simulation on a coarser mesh is not strictly equivalent to filtering the
data with a Sharp-Spectral filter. The “underlying/effective” filter is most likely a combination of
Spectral and Gaussian filters. Second, the effect of numerical diffusion is strongest at the smaller
scales owing to large values of the scalar gradient. A non-diffusive scalar transport scheme would
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FIG. 10. Scalar spectra comparison for Cases A, B (VR-SF: Table II), and baseline Case 5 (DNS: Table I). The mean
scalar dissipation rate () used for the filtered runs was estimated from an unfiltered run using the finite difference solver.
(a) Normalized scalar energy spectra. (b) Normalized scalar dissipation spectra.

show better agreement with the DNS result, but would still require energy damping at the highest
wavenumbers as noted in Subsection V A.

C. Increasing the Re,

In order to obtain results comparable to experiments, simulations need to achieve a minimum
of Re; ~ 100. Figure 11 shows scalar and velocity spectra from a VR-SF run at Re, = 48,
Sc = 1024, and «.n = 7 (Case C). The scalar spectrum exhibits the expected x~! scaling in the
viscous-convective subrange, all the way up to xn = 2, beyond which the effects of numerical
diffusion dominate. This result, along with those presented in Subsections V A and V B, reinforces
the idea that the SGF terms can be safely modeled to be zero, without disrupting the turbulent
transport process at the large scales. To capture correctly the behavior in the viscous-convective
subrange, we simply need to ensure that k.1 >> 1, and that some form of mechanism exists for
damping out energy pile-up close to the filter cutoff.

VI. SUMMARY AND CONCLUSION

In this paper, we have investigated the validity of performing velocity-resolved, scalar-filtered
numerical simulations of high Schmidt number scalar turbulent transport. The conceptual basis of the
technique relies on the observation that the velocity energy spectrum decays much more rapidly than
the energy spectrum of a high Schmidt number scalar. Based on this observation, the contribution of
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FIG. 11. VR-SF run at Re; = 48, Sc = 1024, and «.n = 7 (Case C).
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the subgrid scalar flux to the supergrid scalar dynamics has been shown (a priori and a posteriori)
to be negligible at very large wavenumbers (k. > 1). Thus, simulations that resolve sufficiently far
into the viscous-convective subrange account for the majority of the effective scalar-velocity triadic
interactions, thereby eliminating the need of a subgrid scale model for this purpose. Some form of
energy damping is still required to prevent the build up of unphysical energy, and may be achieved
through the use of discrete derivative operators that contain sufficient upwinding. In fact, the present
results indicate that implementing a SGF model is not justified unless the numerical errors are shown
explicitly to be smaller than the SGF term.

Simulations run using the technique outlined are shown to capture accurately the expected
physical behavior at large scales, even in the absence of a subgrid model, so long as the filter
cutoff is placed in the viscous-convective subrange. The substantial reduction in computational cost,
coupled with the high fidelity of the technique makes VR-SF an ideal candidate for studying the
transport and mixing of high Schmidt number scalars.
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APPENDIX A: EFFECT OF USING VARIOUS FILTERING KERNELS

The a priori tests discussed in Secs. III B and III C were repeated using the Gaussian and Box
filtering kernels. The resulting m vs. «.n curves are compared (Fig. 12) with the appropriate SGF
magnitude curve from Sec. III C, which was obtained using a Sharp-Spectral filter. The Gaussian
and Box filters result in approximately an order of magnitude drop in the value of m. However,
closer inspection reveals that the calculated subgrid term magnitude seems to be much too small,
particularly at very low k.1 when the majority of the available information has been neglected.
Another notable inconsistency is that the Gaussian and Box filters do not exhibit the expected rapid
decrease in error beyond the dealiasing limit x .7 = 33, at which point the SGF should theoretically
become zero.

In order to investigate the cause of these anomalies, we make use of the filtered 1D flux energy
spectra shown in Fig. 13. We can clearly see that for a moderate cutoff wavenumber (x.n = 6),
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FIG. 12. m vs. k.n plot with 3 different filtering kernels. Baseline Case 5 averaged over 4 stationary snapshots.
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FIG. 13. Spectra comparison of w? and wz (z component only) using the Gaussian and Sharp-Spectral filtering kernels
(baseline Case 5). Superscript “G” corresponds to filtering with the Gaussian filter, and superscript “S” corresponds to the
Sharp-Spectral filter. (a) Filter cutoff at x.n = 6. (b) Filter cutoff at k .n = 1.

the Gaussian filtered spectra for the two SGF terms are virtually identical, but not so for the sharp
filtered spectra. At very low cutoff («.n = 1), the two Gaussian filtered spectra are still in very good
agreement, whereas the Sharp-Spectral spectra are considerably dissimilar. The difference between
w? and wz in physical space will, hence, be much smaller when using a Gaussian filter, resulting in
an appreciably smaller value of m.

This “agreeable” behavior can be attributed to the gradual rolloff in the attenuation factor for the
Gaussian filtering kernel, which results in extraneous contribution from wavenumbers beyond the
specified cutoff. The continuous attenuation of the Gaussian and Box filters introduces a “smearing
out” effect, which reduces the sharp differences that should theoretically exist between the two SGF
terms. Due to this occurrence of “one error cancelling out another,” the Gaussian and Box filters
have been excluded from use in the @ priori analysis.

APPENDIX B: ANISOTROPY DUE TO THE IMPOSED MEAN SCALAR GRADIENT

In order to mimic the mixing of scalars in experimental setups, the baseline datasets use an
imposed mean scalar gradient in the transport equation. This maintains statistical stationarity and
stops the spectrum from decaying. The modified transport equation is shown in Eq. (B2), and is
obtained by decomposing the scalar into its mean and spatially fluctuating parts as follows:

Z=z4+G-x, (B1)

where G represents the imposed mean scalar gradient in the x-direction, and scalar fluctuation is

given by z. The transport equation shown in Eq. (2), under the assumption of incompressibility
(V - u = 0), now becomes

5
a—j+g~Vz — DV — uG. (B2)

The additional source term (uG) is responsible for maintaining the variance at a constant level,
but introduces anisotropy in the scalar field in the x-direction.?>>* Upon inspection of the scalar
fluxes (Figs. 14(a) and 14(b)) in the baseline data, it was found that the x-component (uz) has a
non-negligible negative mean value and its probability density function (PDF) is skewed. In order
to avoid unforseen complications that this large anisotropy in the baseline dataset might give rise
to in the a priori analysis, we chose to use a combination of only the y and z components of the

scalar flux. Figure 14(b) confirms that the combined PDF for the y and z fluxes (vz and wz) is indeed
centered at zero.
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FIG. 14. Probability Density Function (PDF) of scalar flux components. Baseline Case 5 averaged over 4 stationary snapshots.
(a) PDF of scalar flux in the x-direction. Mean value = —1.34. (b) Combined PDF of scalar flux in the y and z directions.
Mean value = 0.11.
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