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A TOA-Based Location Algorithm Reducing
the Errors Due to Non-Line-of-Sight

(NLOS) Propagation
Xin Wang, Zongxin Wang, and Bob O’Dea

Abstract—An effective location algorithm, which considers non-
line-of-sight (NLOS) propagation, is presented. By using a new
variable to replace the square term, the problem becomes a mathe-
matical programming problem, and then the NLOS propagation’s
effect can be evaluated. Compared with other methods, the pro-
posed algorithm has high accuracy.

Index Terms—Maximum-likelihood (ML) estimation, non-line-
of-sight (NLOS) propagation, time difference of arrival (TDOA),
time of arrival (TOA).

I. INTRODUCTION

I N LAND cellular wireless location systems, one of the
key parts is the location algorithm. Generally, a number

of receivers distributed separately are used to receive the
transmitted signal from a source and make the measurements
accurately for the time of arrival (TOA) or the time difference
of arrival (TDOA) [1]–[3]. In the multipath propagation
environment, TOA is the measured propagation delay of the
earliest distinguished path in the receivers. With the data of
TOA or TDOA, the location algorithms are used to estimate the
position of the source in the location service center.

The problem of location estimation is simplified when
the receivers are distributed along a straight line, and many
optimum processing techniques for this situation have been
proposed [4]–[6]. But when receivers are distributed arbi-
trarily, the estimation becomes more complex. In this case,
Chan and Ho proposed a two-step maximum-likelihood (ML)
TDOA–based location algorithm, which has high accuracy
when the non-line-of-sight (NLOS) propagation interference is
not very serious [11].

Although other methods [7]–[10] have also been studied,
these algorithms do not consider the inferences of NLOS
propagation on the location estimation. Because NLOS prop-
agation always exists in cities or other builtup environments
so that actually the signals arrive at the different receivers via
NLOS propagation, the influences of NLOS propagation on
the location estimation must be taken into account. The NLOS
error is roughly estimated in [12]. It is indicated that a large
deviation of measurement would be caused by NLOS errors,
and these errors would degrade the mean location accuracy
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Fig. 1. Localization in a 2-D plane.

dramatically. The algorithm in [13], which incorporates known
statistics of NLOS into a probability density function (pdf)
model, could reduce the NLOS errors. However, not only is
the pdf difficult to set up, but also this pdf should vary flexibly
with the changing of the NLOS errors. And since the numerical
search in [13] is used to find the solution of location, large
computation is needed to obtain the high estimation accuracy.
Therefore, the efforts for finding an efficient method to reduce
the NLOS errors are still needed. One method is to distinguish
NLOS by counting the standard deviation of the TOA mea-
surement; then the NLOS receivers can be excluded or given
less weight in location algorithms [14]–[16]. An alternative
approach is to exploit the property that the NLOS errors are
always positive errors, then to search the true position by
adding some constraints such as penalty function in [17] and
[18]. The NLOS algorithm proposed in this paper is also one of
these alternative approaches. According to the simulation and
comparison, this method shows higher accuracy.

II. THE NLOS LOCATION ALGORITHM

Here, for simplification, we consider the location in a two-
dimensional (2-D) plane. The extension to three-dimensional
space can also be done with the same steps described as below.
In Fig. 1, receivers are distributed arbitrarily in a 2-D plane.

Assuming that ( ) is the position of the source, ( ) is
the position of theth receiver and is the TOA measured in
receiver . TOA can be estimated by an extended Kalman filter
[19] or other methods. Since in practice, especially in big cities
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or in mountainous areas, the signals from the source are usu-
ally unable to arrive at the receivers directly, they always take
a longer path than the direct one. So by incorporating the influ-
ences of NLOS propagation on wireless location, there exists

(1)

where , is the measured distance between
the source and theth receiver, and is the signal propagation
speed. And by defining a new variable , we rewrite
(1) through a set of linear expressions

(2)

Let , and express (2) in matrix form

(3)

where

...

...
...

...
(4)

When LOS propagation exists between the source and all the
receivers, (3) turn into equalities. In this case, the ML solution
is given by [11]

(5)

where

(6)

is the covariance matrix of measured noise, and
are denoted as the true values of distances between the source
and the receivers. In the estimation, we need to use matrix.
But as shown in (6), the entries in the diagonal ofare the
unknown true distances from source to receivers. So, we can
firstly use measured values instead of true values

for estimating an initial solution, then calculate
the corresponding using this initial solution and afterwards
get a further accurate result using again this new matrix. The
process can be iterated until the results converge. Simulation
shows the processing can quickly converge after several itera-
tions in most cases. Denote the solution of this LOS algorithm
as ( , ).

The above TOA-based LOS location algorithm has high ac-
curacy when the NLOS propagation is not heavy. As the NLOS
propagation becomes heavy, its accuracy degrades because the
equalities are not held in (3). So in the NLOS propagation case,
we have to take into account the inequalities in (3). This means
that we should find the ML estimate under the conditions given
by (3) instead of searching it in full space, if the ML estimator

is still used here. Therefore, we have a mathematical program-
ming problem as below

such that
(7)

where , , , and have the same definitions as (4) and
(6). For estimating , we use , which are calculated
from ( , ) instead of true values as the diagonal
entries of in (6).

It is obvious that (7) is a constrained linear least square
problem, a type of quadratic programming (QP) problem. There
are many algorithms developed to solve this type of problem
[20]; here, the Matlab function quadprog is used to find the
solution. When the satisfied solution of (7), , is found, the
covariance matrix of can be calculated as [11]

(8)

Since we have used the independence supposition of variables
, , and in the estimation of though the variable is

dependent on the variableand , we should revise the results
as follows. Let the estimation errors of, , and be , ,
and . Here and below, denote the (, )th entry of a matrix
as ; then the entries in vector become

(9)

where , , and are denoted as the true values of, , and
. Let another error vector

(10)

where

(11)

and . Substituting (9) into (10), we have

(12)

Obviously, the above approximations are valid only when the
errors , , and are fairly small. Subsequently, the covari-
ance matrix of is

(13)

As an approximation, elements and in matrix can
be replaced by the first two elementsand in . Similarly,
the ML estimate of is given by

(14)

So the final position estimation is

or (15)
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Here the sign of should coincide with the sign of calcu-
lated by solving (7), and the sign ofcoincides with the sign of

.

III. SIMULATION RESULTS AND COMPARISON

Simulations are done in two cases. In the first case, we as-
sume that there are ten receivers, and the receivers are close
to each other. Their positions are ( m m),
( m m), ( m m),
( m m), ( m m),
( m m), ( m m),
( m m), ( m m),and
( m m), and the source moves randomly
in the square space m m

m

m (16)

where is a random number from zero to one. And in
the second case, we assume that there are still ten receivers
but the distances between them are larger. Their positions are
( km km), ( km km),
( km km), ( km km),
( km km), ( km km),
( km km), ( km km),
( km km), and ( km km),
and the source moves randomly in the square spacekm

km

km

km (17)

In both cases, let

(18)

where is the possible maximum error introduced by NLOS,
and assume that is a Gaussian random noise, which is zero
mean with the same variance. The covariance matrix of esti-
mation noise in (6) is

(19)

It can be easily proved that the LOS algorithm, which is used
to obtain ( ) in Section II, is the optimal estimator and
the estimation error can theoretically reach Cramer–Rao lower
bound when there exists LOS propagation (the proof is very sim-
ilar to that in [11]). So we can evaluate the performance of the
proposed NLOS algorithm through comparing its average loca-
tion errors (ALEs) with those of the LOS algorithm. In the simu-
lation, ALE is obtained from
the average of 10 000 independent runs. When the ALEs are
changed with the number of receivers, used in localization,
taking m , m, the ALEs of the proposed
NLOS algorithm and the LOS algorithm are given in Figs. 2
and 5, respectively, in case 1 and case 2. When m,

, the ALEs of the NLOS algorithm and the LOS algo-
rithm and their relationship with the power of Gaussian random
noise are shown in Figs. 3 and 6, respectively, in case 1 and
case 2. And when , m , the ALEs of the
NLOS algorithm and the LOS algorithm and their relationship

Fig. 2. Comparison of ALEs changed withM in the situationN = 300 m,
� = 100 m in case 1. (a) ALEs of TOA-based LOS algorithm. (b) ALEs of
TOA-based NLOS algorithm.

Fig. 3. Comparison of ALEs changed with� in the situationN = 300 m,
M = 10 in case 1. (a) ALEs of TOA-based LOS algorithm. (b) ALEs of
TOA-based NLOS algorithm.

with the NLOS interference are shown in Figs. 4 and 7, re-
spectively, in case 1 and case 2. Shown in Figs. 2–4, the ALEs
increase slightly as the number of receiversdecreases or the
power of noise increases, while the ALEs increase largely as
the NLOS interference increases. This means that NLOS inter-
ference plays a dominating role in the ALEs among the above
three factors. Also, from Figs. 2–4, we know clearly that the
ALEs of the NLOS algorithm are significantly improved com-
pared with those of the LOS algorithm. The results in Figs. 5–7
are very similar to those in Figs. 2–4, except that the accuracy
of the NLOS algorithm degrades a little in case 2. It can also be
seen from Figs. 5–7 that the ALEs of the proposed NLOS al-
gorithm are significantly improved compared with those of the
LOS algorithm.

In [11], by comparing the proposed TDOA-based location
algorithm with common penalty function SI method [8] and
Taylor series method [9], [10], the author proved that the pro-
posed algorithm has higher accuracy and the estimation error
can theoretically reach Cramer–Rao lower bound, which is for
any unbiased parameter estimation, when there is no or little
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Fig. 4. Comparison of ALEs changed withN in the situation� = 100 m ,
M = 10 in case 1. (a) ALEs of TOA-based LOS algorithm. (b) ALEs of
TOA-based NLOS algorithm.

Fig. 5. Comparison of ALEs changed withM in the situationN = 300 m,
� = 100 m in case 2. (a) ALEs of TOA-based LOS algorithm. (b) ALEs of
TOA-based NLOS algorithm.

Fig. 6. Comparison of ALEs changed with� in the situationN = 300 m,
M = 10 in case 2. (a) ALEs of TOA-based LOS algorithm. (b) ALEs of
TOA-based NLOS algorithm.

Fig. 7. Comparison of ALEs changed withN in the situation� = 100 m ,
M = 10 in case 2. (a) ALEs of TOA-based LOS algorithm. (b) ALEs of
TOA-based NLOS algorithm.

Fig. 8. Comparison of ALEs between TDOA-based algorithm in [11] and
TOA-based algorithms proposed here. (a) ALEs of TDOA-based LOS algorithm
when� = 5m . (b) ALEs of TOA-based LOS algorithm when� = 500m .
(c) ALEs of TOA-based LOS algorithm when� = 5000 m . (d) ALEs of
TOA-based NLOS algorithm when� = 500 m . (e) ALEs of TOA-based
NLOS algorithm when� = 5000 m .

NLOS propagation. So it can be safely said that the algorithm
in [11] can achieve the optimum performance without NLOS
propagation. Thus we choose the algorithm in [11] as the rep-
resentative of the TDOA-based algorithm not considering the
NLOS propagation’s effect to compare with the TOA-based al-
gorithm given in this paper.

The errors in the TOA measurement induced due to the mo-
tion of mobile and the delay between the receiving and transmit-
ting signal in moving are assumed as the Gaussian random noise
with zero average. We compare the simulation results in case 1.
In the simulation of the TDOA-based algorithm [11], because
the initial value of in (6) is difficult to obtain, we assume
that the source’s position is fixed at m, m
when the position of the source is not far away from the re-
ceivers. When the TOA-based algorithm is used, the source’s
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position still moves randomly in the square space: m
m. This is even though, as shown in Fig. 8, if

the NLOS interference is not very small, when the noise vari-
ance in the TOA-based algorithm is 100 or 1000 times greater
than that in the TDOA-based algorithm, the position estimates
of the TOA-based algorithm are still much better than that of
the TDOA-based algorithm. Here, ten receivers are used, and
the ALEs are also obtained from the average of 10 000 indepen-
dent runs. In the case where the position is estimated to become
a complex number, the real part of the estimate is taken to be the
result in the TDOA-based algorithm.

IV. CONCLUSION AND DISCUSSION

In the presence of NLOS propagation, a location algorithm
is proposed to reduce the induced errors. In the proposed algo-
rithm, mathematical programming is used to find the ML es-
timate of the source position in the restricted domain defined
by the inequalities induced due to NLOS propagation. The pro-
posed algorithm has higher accuracy than the LOS algorithm
because more restricted conditions are applied based on the re-
sults of the LOS algorithm. Because the ML estimator used in
the proposed NLOS algorithm is evolved from the ML estimator
with LOS propagation, some deviations might be induced in the
very heavy NLOS propagation environment. Hence, if possible,
another more suitable cost function should be set up in the pro-
posed algorithm; then more accurate results are expected. This
is one of the goals in our future work.
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