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Power-Efficient Resource Allocation
for Time-Division Multiple Access

Over Fading Channels
Xin Wang, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—We investigate resource allocation policies for
time-division multiple access (TDMA) over fading channels in the
power-limited regime. For frequency-flat block-fading channels
and transmitters having full channel state information (CSI),
we first minimize power under a weighted sum average rate
constraint and show that the optimal rate and time allocation
policies can be obtained by a greedy water-filling approach with
linear complexity in the number of users. Subsequently, we pursue
power minimization under individual average rate constraints
and establish that the optimal resource allocation also amounts to
a greedy water-filling solution. Our approaches not only provide
fundamental power limits when each user can support an infi-
nite-size capacity-achieving codebook (continuous rates), but also
yield guidelines for practical designs where users can only support
a finite set of adaptive modulation and coding modes (discrete
rates).

Index Terms—Convex optimization, fading channel, time-divi-
sion multiple access (TDMA), water-filling.

I. INTRODUCTION

WITH battery-operated communicating nodes, power
efficiency has emerged as a critical issue in both

commercial and tactical radios designed to extend battery
lifetime, especially for wireless networks of sensors equipped
with nonrechargeable batteries. Capitalizing on the fact that
transmit power is an increasing and strictly convex function of
the transmission rate [1], power-efficient resource allocation
has been pursued in [2]–[8]. Among them, [2]–[5] dealt with
designs over additive white Gaussian noise (AWGN) channels
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whereas [6] and [7] considered power-efficient scheduling
for time-division multi-access (TDMA) networks over fading
channels; see also [8] where transmit power is minimized for
orthogonal frequency-division multiplexing (OFDM) systems
using quantized channel state information (CSI).

Resource allocation for fading channels also remains an ac-
tive topic in information-theoretic studies, where most existing
works aim at maximizing rate (achieve capacity) subject to av-
erage power constraints. Assuming that full CSI is available
at both transmit and receive ends, the ergodic capacity region,
the delay-limited capacity region, and optimal power allocation
have been reported in [9] and [10] for fading multiple-access
channels, and in [11], [12] for fading broadcast channels; see
also [13] and [14] for characterization of the outage capacity
regions for single-user and multiple-access fading channels, re-
spectively.

In this paper, we reconsider these information-theoretic re-
sults pertaining to rate efficiency, and mainly investigate op-
timal resource allocation for fading channels from a power ef-
ficiency perspective. Specifically, we seek to minimize power
cost under average rate constraints for fading TDMA systems,
where successive decoding is not feasible due to practical re-
strictions. Although our framework is tailored for TDMA, it
carries over to any orthogonal channelization including (orthog-
onal) frequency-division multiple access ((O)FDMA).

After modeling preliminaries described in Section II, we first
study minimization of the total weighted power under an av-
erage sum–rate constraint in Section III. This problem is dual
to [11], where rate was maximized under a sum–power con-
straint. Interestingly, we will see that the optimal resource al-
location follows a novel greedy water-filling approach which
can be implemented using a low-complexity algorithm. Besides
continuous rates, an analogous algorithm is devised to mini-
mize power when each user can only support adaptive mod-
ulation-coding (AMC) based discrete-rate transmissions. The
second problem we consider is power minimization under indi-
vidual rate constraints for multiple access (Section IV). Specif-
ically, we formulate and solve power minimization under indi-
vidual rate constraints when TDMA users rely on either con-
tinuous-, or, AMC-based discrete-rate transmissions. The re-
lated approaches can be also generalized to yield optimal ca-
pacity-achieving (rate-maximizing) resource allocation for or-
thogonal multiple-access fading channels as an important com-
plement to the results for general multiple-access channels in
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[9]. The generalizations to the capacity-achieving resource al-
location for time-division fading broadcast and multiple-access
channels are outlined in Section V. Section VI provides numer-
ical results, and Section VII concludes this paper.

II. MODELING PRELIMINARIES

Consider users in uplink TDMA communicating with an
access point (AP) over wireless fading channels adhering to the
following operating conditions:

(oc-1) The flat-fading channel coefficients

remain invariant during a block (assumed without loss of gen-
erality (w.l.o.g.) to have unit duration), but are allowed to vary
from block-to-block (block-fading model). With denoting
transposition, the resultant vector of random channel
gains is ergodic with continuous joint
cumulative distribution function (cdf) assumed known.

(oc-2) With full CSI, each user terminal trans-
mits in a separate user-specific time slot with its transmission
rate and power adapted to per block.

Each user can be scheduled by the AP to transmit per
block over nonoverlapping fractions , ,
with durations dependent on the fading state and satisfying

. If a scheduled user transmits over
its fraction with rate and power , then
clearly its overall transmission rate and power per block are

and , respectively.
With full CSI available at the transmit end, the optimal resource
allocation policies adapt and

per channel realization to
minimize the total average power usage.

III. AVERAGE SUM–RATE CONSTRAINT

In this section, we consider the problem of minimizing total
weighted power given a sum average rate constraint. Such a con-
straint may arise in a wireless (e.g., sensor) network, where the
AP (fusion center) requires an aggregate rate to perform
a certain task (e.g., distributed estimation) using data from dif-
ferent users (sensors).

A. Average Power Region

With standing for the -dimensional space of nonnega-
tive reals and for the expectation with respect to (w.r.t.) the
vector of channel gains, let denote the set of all feasible

rate and time allocation policies satisfying the average rate con-
straint with1 , , and

. We assume henceforth w.l.o.g. that
the system bandwidth and the AWGN at the receiver has
unit variance. Then using transmit power , user can the-
oretically transmit with arbitrarily small error a number of bits
per second per hertz (bits/s/Hz) up to the Shannon capacity

hence, the (minimum) power required for a given rate is

Taking into account the TDMA time fractions , the min-
imum power per block to attain rate is

for . When , this power is given by
, if ;

and also if , then clearly .
Summarizing, the instantaneous transmit power can be deter-
mined from the time fractions and rate per channel realization
as shown in (1) at the bottom of the page. With ,

, and in accordance with the definition of the
ergodic capacity region, it is possible to define a power region
as follows.

Definition 1: The power region for achieving an average pre-
scribed rate over a TDMA fading channel with transmit and
receive ends having full CSI available, is given by

(2)

It will prove useful to establish that the power function in (1)
and the region in (2) are convex.

Lemma 1: Function is jointly convex in
and ; and the power region is a convex set of

vectors.
Proof: See Appendix A.

B. Continuous Rate Adaptation

Since is convex, with nonnegative weights collected
in a vector , each boundary point of the

1The trivial nonnegativity constraint on, e.g., the time fractions will be
omitted when it is clear from the context.

,
.

(1)
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power region can be obtained as the solution of the convex op-
timization problem:

subject to (s. to) (3)

Solving (3) for all (inequalities for vectors are defined
element-wise), yields all the boundary points, and thus the en-
tire power region . When one or more of the entries of
are zero, the solution to (3) corresponds to an extreme point of
the boundary surface of ; see also [9]–[12], [14] for ex-
plicit characterization of extreme points in the capacity region
boundary.

Since power is determined by time and rate [cf. (1)], the op-
timal power vector for a given is attained
by a certain pair . Finding this pair amounts to
solving

s. to

, .

(4)

As is convex, it is easy to recognize (4) as a
convex optimization problem, which can be efficiently solved
using a dual-based approach that we pursue next.

With denoting the Lagrange multiplier corresponding to
the sum–rate constraint, the Lagrangian of (4) without the time
allocation constraint is

(5)

The Lagrange dual function which includes the time allocation
constraint is then given by

s. to (6)

and the dual problem of (4) is

(7)

Using standard results from convex optimization theory, it fol-
lows readily that the optimal value of (7) coincides with that of
(4); i.e., there is no duality gap [15, p. 226].

To solve (7), we need to first find the dual function in
(6). To this end, we treat as a rate reward weight and define a
net-cost (power cost minus rate reward) function per user as

(8)

Using (8), we can rewrite (5) as

(9)

Because channel gains are nonnegative, it follows from the def-
inition of that minimizing amounts to minimizing

per . This allows us to specify the optimum
time and rate allocation in the dual function of (6) for any given

value of the Lagrange multiplier , as summarized in the fol-
lowing lemma.

Lemma 2: For any fixed , if we define per the link quality
indicators

.
(10)

and select the (almost surely) unique user index

(11)

then the optimal resource allocation satisfying (6) is a greedy
one assigning

(12)
and , .

Proof: See Appendix B.

Instead of water-filling the power as in rate-maximizing for-
mulations, the power-minimizing allocation in(12) amounts to
water-filling the optimal rate across fading states. (In both cases,
however, the Lagrange multiplier determines the “water level.”)
The optimal time and rate allocations (which are in fact decou-
pled in Lemma 2) can be interpreted as follows. If terminal
transmits with rate over its time fraction

, the corresponding net cost will be [cf. (1) and (8)]

(13)
And the optimal rate allocation will be to water-fill its rate across

realizations; i.e., use

(14)

to attain its smallest net cost . As
represents each user’s link quality indicator (the

smaller the better), we should then allow only the user
defined in (11) with the minimal net cost to transmit since this
user can utilize the time slot in the most power-efficient manner
per channel realization . Therefore, the optimal allocation
is to assign ,

, and let all other users defer
their transmissions.

A couple of remarks are now due to clarify the almost sure
uniqueness alluded to before (11).

Remark 1: The obvious setting where a single “winner user”
is impossible is when , ; that is, when all
users have identical . However, (12) confirms that
when , , the optimal and thus
whichever terminal we select as the single winner is irrelevant
because no one will waste rate or power resources anyway. (This
case corresponds to a setting where all channels undergo deep



1228 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 3, MARCH 2008

fading and the unique most power-efficient act is for all users to
defer in such channel realizations).

Remark 2: Going beyond the case of the previous remark, for
two users and to have identical but nonzero net costs
it must hold that

But since the cdf of the fading process is assumed continuous
under (oc-1), the event has probability mea-
sure zero. Likewise, having more than two “winner users” tie
is a measure-zero event for ergodic fading channels with con-
tinuous cdf. This explains why an almost surely unique winner
was asserted in (11).

With Lemma 2 providing the optimal rate and power alloca-
tion for each and channel realization , we can proceed to
show that is a subgradient of the dual func-
tion at ; see, e.g., [16, p. 604] from the definition of the
subgradient. This fact ensures that the optimal for the dual
problem (7) can be obtained using a subgradient iteration (in-
dexed by )

(15)

where denotes a positive step size. With sufficiently small ,
geometric convergence of the iteration in (15) to is guaran-
teed from any initial , thanks to convexity [16, p. 621].

Summarizing, the dual problem (7) can be solved with the
following algorithm.

Algorithm 1: Subgradient projection iterations
initialize with any ; and

repeat: with available from the previous iteration,
find the winner user via (11) and optimal rate

via (12) per ; and update as in (15);

stop the iterations when for a preselected
tolerance .

With ensured convergence of Algorithm 1 to , we are ready
to state our first basic result.

Theorem 1: The (almost surely) optimal time and rate allo-
cation for (4) is given by and in Lemma 2,
where the optimal is obtained via Algorithm 1 and satisfies

and .
Proof: See Appendix C.

It is worth to emphasize that complexity of the power-min-
imizing resource allocation scheme implied by Theorem 1 is
linear in the number of users . This is because both Algo-
rithm 1 employed to find has geometric (i.e., linear) conver-
gence; and also the greedy policy of assigning the entire block
to a single winner user involves just comparisons of the link
indicators per realization [cf. Lemma 2]. Using such

a computationally efficient scheme, the optimal allocation for
(4) and, subsequently, every boundary point of can be ob-
tained by solving (3).

Remark 3: Almost sure optimality of the allocation claimed
in Theorem 1 follows from the almost sure uniqueness of the
winner user in Lemma 2 argued under Remark 2. Since having
multiple winners corresponds to a measure-zero event, choosing
at random a single winner for each channel realization over
which net costs of more than one user tie, has measure-zero ef-
fect to Theorem 1’s allocation scheme that minimizes average
weighted sum–power subject to an average sum–rate constraint;
see also [9, Lemma 3.15], where almost sure optimality is as-
serted in the rate-maximizing context. In both contexts, almost
sure optimality of the greedy allocation is ensured for channels
with continuous cdf. Notwithstanding, if is deterministic or
drawn from a discontinuous cdf , the optimal sharing of
the bock by multiple winners must be determined to satisfy the
average rate constraint with equality; and the optimal allocation,
in general, will not be greedy.

C. AMC-Based Discrete Rate Adaptation

User terminals in practice will not be able to support the con-
tinuous rates implied by an infinite-size codebook. Moreover,
the codewords in use may not be capacity achieving. These con-
siderations motivate the power-efficient resource allocation pur-
sued in this section, where each user can only support a fi-
nite number of, say , discrete rates obtained through the use
of distinct AMC modes [21]. If scheduled, each user will se-
lect a (modulation, channel code) pair to transmit over its active
time fraction with an AMC rate . In addition to

nonzero rates (AMC modes) that can differ per user
, let denote the zero “defer-rate” (cf. Re-

mark 1). Clearly, for the prescribed rate to be feasible it must
satisfy . To minimize power with discrete
rates, we first need to replace the power function in(1) with one
relating transmit power not only with AMC rates
and time fractions but also with the bit-error rate (BER ) per
channel realization . For constellation- and code-specific
constants and , the BER can be accurately approximated
as [18]

(16)

Given and a maximum allowable BER , the minimum
transmit power can be determined for each AMC mode

such that . From (16), this power is
given by

where denotes the excess signal-to-
noise ratio (SNR) required for the AMC-based system to attain
the same transmission rate as the capacity-achieving system.

Connecting with straight-line segments the points rep-
resenting the AMC pairs , we obtain the
piecewise linear power–rate function , depicted in
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Fig. 1. Piecewise linear function � (� (hhh)) relating transmit-rates and
powers.

Fig. 1, which is also convex [2]. Note that as and
the SNR gap , approaches Shannon’s contin-
uous power-rate function, i.e., ,
which is also plotted in Fig. 1. Points on any linear segment of

can be attained via time sharing. Specifically, using
the mode over percentage of the fraction and letting

, user can transmit with rate and power given,
respectively, by

(17)

(18)

Since each denotes a known AMC rate and the
required to attain this rate with the prescribed BER

is also known, the only variables to minimize over the average
power are the time fractions collected in the vector

. To formulate the
power minimization problem in this discrete rate setup, let

denote a set including all the feasible satisfying the

average rate constraint

and . Then the average power
region can be defined as [cf. (2)]

(19)

As in Lemma 1, it is possible to show that in (19) is a
convex set of vectors, and each boundary point of solves
for a weight vector the problem

s. to (20)

This amounts to finding the optimal time allocation vector by
solving [cf. (4)]

s. to

, .

(21)

Clearly, (21) is a convex optimization problem (in fact a linear
program), which can be solved using a dual-based approach
analogous to that detailed in Section III-B. To outline the basic
steps, the Lagrangian is now given by

(22)

The Lagrange dual function is

s. to (23)

and the dual problem of (21) is

(24)

Upon defining the net-cost per user-mode pair as

(25)

it is possible to rewrite (22) as

Based on the latter, we have established the following counter-
part of Lemma 2 for discrete rates.

Lemma 3: For any fixed , the optimal time allocation
solving (23) is a greedy one assigning each block to a single
user-mode pair per channel gain realization ; i.e.,

if
if ,

(26)

where the winner user-mode pair is found using (23) as

(27)

Proof: See Appendix D.

With the optimal allocation established in Lemma 3, we can
obtain the optimal for the dual problem (24) using the sub-
gradient iterations (indexed by )

(28)
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Fig. 2. Piecewise linear net-cost.

Following the steps used to prove Theorem 1, we can subse-
quently establish the following optimal allocation result for dis-
crete rates.

Theorem 2: The (almost surely) optimal time allocation for
(21) is given by in Lemma 3, where the optimal can
be obtained via subgradient iterations (28) and satisfies
and .

Remarks 1 and 2 on the possibility of all users deferring and
almost sure optimality of the power-efficient allocation with
continuous rates carry over to the discrete-rate allocation of The-
orem 2. Likewise, the complexity in determining each boundary
point of is linear, i.e., .

Remark 4: A water-filling interpretation analogous to that
described after Lemma 2 for continuous-rate transmissions
can be also provided for the optimum allocation of Lemma 3
with discrete-rate transmissions. To illustrate this, consider the
net-cost [cf. (13)] ,
where is the piecewise linear power–rate function
of Fig. 1, with its line segments having slopes denoted
by . This net-cost depicted in Fig. 2 is a piecewise
linear and convex function of the rate . Its minimum must
occur at a vertex , which corresponds to a corner point

of the power–rate function . For rates

to the left of this point, the derivative of w.r.t.
must be negative and for rates to the right of this point it should
be positive; hence

(29)

Recall that with continuous rates too, the derivative of
changes sign before and after the optimal , which
turns out (after equating this derivative to zero) to obey
the continuous water-filling principle [cf. (14)]. Finding
the mode for which the before-and-after slopes satisfy
(29) constitutes a discrete water-filling approach to deter-
mining the optimal . In fact, this approach
is equivalent to that in Lemma 3, where the optimization

in (27) is performed over the vertices of the net cost; i.e.,
.

Remark 5: Instead of the average sum–rate constraint, the
formulation in this and the previous sections can be gener-
alized to an average weighted-sum–rate constraint, namely,

, where can be viewed as a
rate–reward weight for user . To accommodate
this generalization, it suffices to replace the net cost for contin-
uous rates in (8) with

(30)

and the net-cost for discrete rates in (25) with

(31)

With these modifications the optimal policies are still given by
Theorems 1 or 2.

IV. AVERAGE INDIVIDUAL-RATE CONSTRAINTS

In this section, power minimization is pursued for multiple-
access orthogonal (TDMA) channels under individual average
rate requirements . The set here in-
cludes all feasible rate and time allocation policies satisfying the
individual rate constraints ,
and , . And the average power region is
correspondingly given by [cf. (2)]

(32)

A. Continuous Rate Adaptation

As in Lemma 1, is a convex region of vectors; and
thus, each boundary point of minimizes a weighted sum
of average powers; i.e.,

(33)

By solving (33) for all , we determine all the boundary
points, and hence the entire region . Again, we will explic-
itly characterize the optimal resource allocation policies and the
resultant boundary point for any .

At a boundary point associated with a weight vector , we
must have the optimal power vector for a certain

, which can be found by solving

s. to ,
, .

(34)

It is easy to see that (34) is a convex optimization problem and
similar to (4) it can be solved using a dual-based approach. The
individual average rate constraints give rise to a vector of La-
grange multipliers with associated with

, . The net-cost per user is now defined as

(35)
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Different from (8), here depends only on
its own rate reward weight .

Based on , the link quality indicator per
is defined as

(36)
and the winner user index is selected according to

(37)

The optimal resource allocation for a given is again a greedy
one assigning [cf. Lemma 2], see equation (38) at the bottom of
the page.

As with (15), we can show that the optimal for the dual
problem of (34) can be iteratively obtained using subgradient
iterations

(39)

Convexity again guarantees that iterates in (39) converge to
from any initial .

The counterpart of Theorem 1 is as follows.

Theorem 3: The (almost surely) optimal time and rate al-
location for (44) is given by and in (46),
where the optimal is obtained via iterations (48) and satisfies

and , .

Clearly, the power-efficient resource allocation under indi-
vidual rate constraints also obeys a greedy water-filling prin-
ciple and its solution incurs linear complexity . As with
Theorem 1, the winner-takes-all policy in Theorem 3 is almost
surely optimal for reasons analogous to those elaborated in Re-
marks 2 and 3.

To gain further insight, consider a special case where the
fading channels are independent. Let stand for the cdf of
user ’s fading channel, and for the value of
which satisfies2 . We can then estab-
lish the following corollary of Theorem 3:

Corollary 1: If the fading channels across users are indepen-
dent, the optimal solution to (33) for a given can be
obtained in closed form as:

2Notice that the value of ' (� ;hhh) in (36) indeed depends on h only.

(40)

where each entry of the vector is the unique solution of
the equations:

(41)
Proof: See Appendix E.

Independence of channel gains led to the analytical expres-
sions (40) and (41) for the optimum Lagrange multiplier and the
minimum power. However, even when channels are correlated it
is possible to obtain the expected values needed to carry out the
subgradient iterations using a Monte Carlo approach, so long
as the joint cdf is known. Specifically,

in (39) can be replaced by , where
are realizations of generated from .

B. Discrete Rate Adaptation

Here we consider individual average rate constraints when
each user can only support a finite number of AMC modes. As
with Section III-C, finding power-efficient resource allocation
with a finite number of AMC modes amounts to optimizing
over the user–mode time allocation

. Let denote a set including
all the feasible vectors satisfying the average individual

rate constraints ,

, and . The average
power region is then [cf. (19)]

(42)

For this convex region , each boundary point solves for a
weight vector the problem

s. to (43)

which amounts to finding the optimal time allocation as [cf.
(21)]

s. to ,

, .
(44)

, ;
, .

(38)
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With denoting the Lagrange multipliers

associated with , , the net-
cost depends on individual rate reward weights per user

(45)

The optimal time allocation for a given is again to assign each
block to a single user–mode pair per ; i.e.,

if
if

(46)

where the winner user–mode pair is now found using (45) as

(47)

As with (28), the optimal for the dual problem of (44) can
be iteratively obtained using subgradient iterations:

(48)

Again, the convergence of iterations in (48) to is guaranteed
from any initial .

The counterpart of Theorem 2 is as follows.

Theorem 4: The (almost surely) optimal time allocation
for (44) is given by in (46), where the optimal is
obtained via subgradient iterations (48) and satisfies and

, .

Once more, the complexity is linear in the number of
user–modes, i.e., . Using the resource alloca-

tion policy in Theorem 4, all the boundary points of and
hence the entire power region can be determined.

Remark 6: Theorems 1–4 can be extended to frequency-se-
lective fading channels, which are often encountered in wide-
band communication systems; see similar extensions in [11],
[9], [20], [21], and references therein. If the channel remains in-
variant over the multipath delay spread, it can be cast in the fre-
quency domain as a set of parallel time-invariant Gaussian mul-
tiple-access subchannels [19]. Consider such a -user spectral
Gaussian block-fading TDMA channel with continuous fading
spectra , , where frequency
ranges over the system bandwidth and is the fading state at
a given time block. Then the optimal resource allocation strate-
gies can be obtained from Theorems 1-4 by replacing the fading
state with the frequency and fading state pair to deter-
mine power regions for frequency-selective channels.

V. CAPACITY-ACHIEVING RESOURCE ALLOCATION

The novel greedy water-filling algorithms developed in Sec-
tions III and IV for power-minimizing resource allocation can
be generalized to provide rate-maximizing resource allocation
schemes for time-division fading broadcast or multiple-access

channels. These schemes complement rather nicely the avail-
able capacity-achieving policies in [11], [17] and [9].

A. Time-Division Broadcast Channel

In the time-division broadcast setting, rate maximiza-
tion is sought under an average sum–power constraint

. Given and , Shannon’s
capacity formula dictates that the maximum achievable rate per
user is

.
(49)

With and , (49) yields the asymptotic rate
. On

the other hand, , if .
With denoting the set of all feasible time and power

allocations satisfying the sum average power constraint, the ca-
pacity region is defined as [11] follows.

Definition 2: The capacity region for the time-division
broadcast fading channel under a prescribed power and with
transmit/receive ends having full CSI, is given by

Analogous to Lemma 1, is convex because the
rate–power function in (49) is jointly
concave in and . Each boundary point of now
maximizes a weighted sum of average rates; i.e., it solves the
convex optimization problem

s. to (50)

The optimal in (50) can be determined by finding the optimal
solution of

s. to ,

, .

(51)

With denoting the Lagrange multiplier corresponding to
the sum–power constraint, we can in a dual fashion define a
net-reward (rate reward minus power cost) function per user
as

(52)

The optimal capacity-achieving resource allocation for a fixed
can then be obtained via a greedy water-filling approach as

follows. With the whole time block assigned to user , i.e.,
, optimal allocation comprises power water-filling

across fading states

(53)
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Accordingly, we define the link quality indicator (the larger
the better)

(54)

which is the maximum net-reward user can obtain. The op-
timal resource allocation then assigns the entire time block to
the best user link with largest net-reward at ; i.e.,

,

,
(55)

where the winner user index is given by

(56)

Using the resource allocation policy in (55), the optimal
power price can then be iteratively obtained using a subgra-
dient iteration (indexed by )

(57)

With sufficiently small , convexity ensures that iterations in
(57) will converge geometrically to from any nonnegative

. Summarizing, we have the following.

Theorem 5: The (almost surely) optimal time and power al-
location for (51) is given by and in (51),
where the optimal is obtained using (55) and satisfies
and .

Theorem 5 establishes that the capacity-achieving resource
allocation for time-division broadcast transmissions should as-
sign the entire block to the (almost surely) single user per .
Notice that over deep fades, i.e., when , the
“winner” user will transmit with power

In this case, all users will do what is intuitively reasonable,
namely, defer their transmissions.

B. Time-Division Multiple-Access Channel

In a TDMA setup, users transmit to the AP subject to in-
dividual average power constraints ; i.e.,

. With denoting the set of all feasible
time and power allocation options satisfying these constraints,
the achievable capacity region is

Each boundary point of then maximizes

s. to (58)

and finding the optimal amounts to solving

, ,
, .

(59)

With denoting the Lagrange multipliers
associated with the individual power constraints, the net-reward
per user is now given by

(60)

Upon defining the link quality indicators

(61)
the optimal resource allocation then assigns

,

,
(62)

where the winner user index is

(63)

The optimal is found with properly modified subgradient it-
erations

(64)
Summarizing, we have established the following.

Theorem 6: The (almost surely) optimal time and power al-
location for (59) is given by and in (55),
where the optimal is obtained using (64) and satisfies
and , .

C. Comparison With Existing Results

For time-division fading broadcast channels, [11] and [17]
have shown that the capacity-achieving resource allocation poli-
cies can be obtained by a “water-filling over concave envelopes”
procedure. However, determining concave envelopes requires
numerical solution of as many as nonlinear equa-
tions per fading state , and is only computationally tractable
when the number of users is small. More importantly, opti-
mality of the resource allocation schemes in [11], [17] has not
been proved for the general case ( ). Theorem 5 pro-
vides a provably (almost surely) optimal time and power allo-
cation solution implemented through a low-complexity greedy
water-filling approach. Having obtained the optimal power price

, this solution maximizes a net-reward per by scheduling
transmission to a single user . Relying on convex optimiza-
tion tools, a subgradient algorithm with linear complexity
and fast convergence is also developed to determine . The
novel greedy water-filling approach can be further generalized
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Fig. 3. Power regions for the infinite-size codebook case when two users have identical average normalized SNRs: �h =(N B) = �h =(N B) = 0 dBW.

to develop optimal resource allocation schemes for the fading
TDMA channel.

Rate-maximizing resource allocation under individual power
constraints for fading multiple-access channels was dealt with
in [9], where it was shown that superposition coding and suc-
cessive decoding should be employed to achieve capacity using
a greedy algorithm based on a polymatroid structure. In the
TDMA setting considered here, there is no need for such a poly-
matroid structure since Theorem 6 shows that a greedy water-
filling based winner-takes-all policy is almost surely optimal.
This is an important complement to the results for general mul-
tiple-access channels as many wireless standards typically rely
on orthogonal access schemes for multiple-user communica-
tions.

In a nutshell, this paper has developed a unified framework
providing the capacity-achieving resource allocation schemes
for orthogonal (time-division as a special case) fading broad-
cast and multiple-access channels. In fact, based on greedy dis-
crete-water-filling approaches dual to those given by Theorems
2 and 4, rate-maximizing resource allocation strategies can be
also developed for adaptive transmissions relying on discrete
AMC modes, a topic not considered in [11] and [9].

VI. NUMERICAL RESULTS

In this section, we present numerical tests of our power-ef-
ficient resource allocation for a two-user Rayleigh flat-fading
TDMA channel. The available system bandwidth is
100 kHz , and the AWGN has two-sided power spectral den-
sity 2 W/Hz . The user fading processes are independent
and , , are generated from a Rayleigh distribution

with variance . The average normalized SNR for user is
. (The receive SNR is dBW multiplied

by the transmit power measured in Watts.)
Supposing 0 dBW for , we test power-

efficient resource allocation under a weighted sum average rate
constraint 200 kbits/second
(kbps) [cf. Remark 5], for two sets of weights: i) ,

, and ii) , ; and for two sets of indi-
vidual rate constraints: iii) 100 kbps, 100 kbps, and iv)

100 kbps, 50 kbps. Fig. 3 depicts the power regions of
the Rayleigh-fading TDMA channels for the infinite-size code-
book case. It is seen that power regions I and III under the
weighted sum rate constraint i) and under the individual rate
constraints iii) are symmetric with respect to the line .
Since the individual rate constraints can be seen as a realization
of the weighted sum–rate constraint, i.e., , the
power region I contains power region III. It is clear that when

, due to the symmetry in channel quality and rate-re-
ward weights between the two users, the resultant optimal re-
source allocation under the weighted sum rate constraint should
coincide with that under . For this reason, the two power
regions touch each other in this case. Power regions II and IV
under the weighted sum average rate constraint ii) and under in-
dividual rate constraints iv), are similarly related. They are not
symmetric with respect to because rate-reward weights
or individual rate constraints are unequal. Power region II con-
tains power region IV, and the two regions touch each other at
one point.

To test our finite rate allocation schemes, we consider that
each user supports three uncoded -QAM modes: 4-QAM,



WANG AND GIANNAKIS: POWER-EFFICIENT RESOURCE ALLOCATION FOR TDMA OVER FADING CHANNELS 1235

Fig. 4. Power regions for the finite rate set case when two users have identical average normalized SNRs: �h =(N B) = �h =(N B) = 0 dBW.

Fig. 5. Power regions for the infinite-size codebook case when two users have 10-dB difference in average normalized SNRs: �h =(N B) = 10 dBW, and
�h =(N B) = 0 dBW.

16-QAM, and 64-QAM ( or ). For these rect-
angular signal constellations, the BER is given by (16) with

and [18], from which we can determine the
rate–power pairs for .

The corresponding power regions I–IV under constraints i)–iv)
for this discrete rate case with prescribed are de-
picted in Fig. 4. Trends similar to those in Fig. 3 are observed.
However, the power regions shrink since more power is required
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Fig. 6. Power regions for the finite rate set case when two users have 10–dB difference in average normalized SNRs: �h =(N B) =10 dBW, and �h =(N B) =
0 dBW.

Fig. 7. Power savings for the infinite-size codebook case when two users have identical average normalized SNRs: �h =(N B) = �h =(N B) = 0 dBW. (Policy
A: equal time allocation and separate water-filling; Policy B: equal time allocation among users and equal power per fading state for each user).

to achieve the same transmission rate with uncoded -QAM
relative to that using capacity-achieving codewords.

With 10 dBW and 0 dBW, we also
test our power-efficient resource allocation under the same four

sets of rate constraints i)–iv). The power regions for continuous
rates and finite rates are plotted in Figs. 5 and 6, respectively.
Since the first user has a considerably more reliable channel (i.e.,
higher average SNR) than user 2, the required average transmit-
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Fig. 8. Power savings for the finite rate set case when two users have identical average normalized SNRs: �h =(N B) = �h =(N B) = 0 dBW. (Policy A: equal
time allocation and separate water-filling. Policy B: equal time allocation among users and equal power per fading state for each user).

power of user 1 is much lower than that of user 2 most of the
time. Apart from this difference, the results are similar to those
in Figs. 3 and 4.

We next compare this paper’s optimal power-efficient re-
source allocation with two alternative suboptimal policies.
Policy A assigns equal time fractions (i.e.,

) to the two users per block. Then each user terminal
implements water-filling separately to adapt its transmission
rate per assigned time fraction. In policy B, each user is as-
signed equal time fraction and transmits with equal power per
block. Fig. 7 depicts the power savings of the optimal policies
under two different sets of rate constraints i) and iii), over
the policies A and B for the infinite-size codebook case when
two users have identical average normalized SNRs. It is seen
that when the ratio of two users’ power prices is far
away from , the optimal policies under a sum–rate constraint
result in huge power savings (near 20 dB) over the other two
suboptimal polices. However, in this case, the optimal policies
under individual rate constraints exhibit a smaller advantage
(around 3 dB) in power savings over the suboptimal policies.
This is because with the sum average rate constraint, this
paper’s policies offer more flexible time and rate allocations
From Fig. 7, we also observe that the separate water-filling of
policy A only achieves small power savings (less than 1 dB)
over the equal power strategy in policy B.

Fig. 8 depicts the same comparison with finite rates. The same
trends are observed. However, in this case separate water-filling
of policy A achieves considerable power savings (4 dB) over the
equal-power policy B. Fig. 9 depicts similar power savings with

continuous rates under two different sets of rate constraints ii)
and iv), when two users have 10 dB in SNR difference. Note that
the optimal policies under individual rate constraints achieve
sizable power savings (near 9 dB), over the suboptimal policies.

VII. CONCLUDING REMARKS

Based on full transmit-CSI, we developed power-efficient
resource allocation strategies for TDMA fading channels. For
power minimization either under an average sum–rate con-
straint or under average individual rate constraints, the (almost
surely) optimal allocation policies boil down to a low-com-
plexity greedy water-filling approach. Analogous (in fact
dual) approaches can be developed also for capacity-achieving
resource allocation over time-division fading broadcast and
multiple-access channels.

Interestingly, although arbitrary time sharing among users
was allowed per time block at the outset, the optimal resource al-
location turned out to comprise a winner-takes-all policy, which
avoids the difficulty of implementing arbitrary time- sharing in
practice, where time is usually divided with granularity of one
time unit determined by the available bandwidth. Another inter-
esting feature of the novel power-efficient resource allocation
strategies is that the access point (which naturally has full CSI)
is the one determining the time allocation and feeding it back to
users. Then given the optimal scalar or vector Lagrange mul-
tiplier , the terminals only need their own CSI to determine
the optimum transmission rate. If uplink and downlink transmis-
sions are operated in a time-division duplexing mode, the users
can even obtain their own CSI without feedback from the access
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Fig. 9. Power savings for the infinite-size codebook case when two users have 10-dB difference in average normalized SNRs: �h =(N B) = 10 dBW, and
�h =(N B) = 0 dBW. (Policy A: equal time allocation and separate water-filling. Policy B: equal time allocation among users and equal power per fading state
for each user).

point since CSI at the transmitters can be acquired via training
over the reciprocal uplink and downlink channels. Together with
the fact that the access point needs only a few bits to indicate the
time allocation (since the optimal policy is a winner-takes-all
one), this feature is attractive from a practical implementation
viewpoint.

As far as future research is concerned, it is interesting to study
power minimization over fading channels with delay constraints
and/or using quantized (instead of full) CSI. Delay-constrained
power minimization can be possibly viewed as dual to the delay-
limited capacity maximization in [10]. Results on quantized CSI
with finite rate transceivers can be found in [22].3

APPENDIX

A. Proof of Lemma 1

To prove the convexity of in (1), it suffices to
show that for a convex combination

with , we have
. Consider the following three

cases.

3The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Govern-
ment.

c1) and : In this case, we have also and
. Because

is a convex function of , it follows that its perspective
is also jointly convex in and when

[15, Sec. 2.6]. Using the latter, it follows readily
from (1) that .

c2 , , and : In this case, (1) yields
; and thus

c3) , and : Since
and , it follows that

because

and

From c1)–c3), it clearly holds that
and thus is convex.

To prove that is convex, for two vectors ,
we must have two allocation policies
such that and

, . Now consider a convex com-
bination , where

. It is easy to see that this new policy .
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As is a jointly convex function of , it holds that
. The

latter implies that for a vector , we have

Since , we have any convex combination
for any two vectors .

The convexity of thus follows.

B. Proof of Lemma 2

To prove the lemma, we will need the following two proper-
ties.

Property 1: For any fixed , it holds that
, , .

Proof: Consider the following two cases:

c1) : From the definition of in
(1), the net-cost in (8) becomes

. Upon defining
, we have

where

It is easy to see that is a convex function for
; and after equating its derivative w.r.t. to

zero, the optimal minimizing is given
by

Substituting into yields the link
quality indicator . It then fol-
lows readily that .

c2) : In this case, we have .
And for , it follows that [cf. (1)]: i)
if , then ; and ii) if

, then . But i) and ii)
imply that .

The property clearly follows from c1) and c2).

Property 2: For any fixed , it holds that ,
.
Proof: By the definition of in (10), it follows after

differentiation that

(65)

and thus , . Since is a
continuous function of and ,
the property follows readily.

We are now ready to prove Lemma 2 based on Properties 1
and 2. With the winner user index defined in (11), it
holds that

where the first inequality is due to Property 1, the second in-
equality is due to from (11), and the
last inequality holds because from Property 2
and the time allocation constraint . Further-
more, the equality can be achieved using the allocation specified
in (12); i.e., . It is then
clear that (12) is optimal for (6), and the proof is complete.

C. Proof of Theorem 1

Since the primal problem (4) is a strictly feasible and convex
optimization problem, it follows from the strong duality the-
orem [15, p. 226] that its solution coincides with the optimal

and in Lemma 2, which solves (6) for
. Furthermore, the optimal should satisfy the com-

plementary slackness condition [15, p. 243]: either and
; or and . But

if , we have from (12) and thus
, which does not satisfy the average

sum-rate constraint. Therefore, we must have and
.

D. Proof of Lemma 3

With the winner user–mode pair de-
fined in (27), we first note that

(66)

Subsequently, we have

where the first inequality is due to the definition of
, and the second inequality is due to

(66) and . Furthermore, the equality
is achieved using the allocation in (26), which thus minimizes

per and is in turn optimal
for (23).
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(67)

(68)

E. Proof of Corollary 1

Let denote the indicator function ( if is true and

zero otherwise). Since from (65) in Appendix C,
we have (67) and (68) (shown at the top of the page) [cf. The-
orem 3]; and the corollary follows readily.
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