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Optimal Subcarrier-Chunk Scheduling for
Wireless OFDMA Systems

Na Gao and Xin Wang, Senior Member, IEEE

Abstract—In practical orthogonal frequency division multiple-
access (OFDMA) systems, subcarriers are grouped into chunks
and a chunk of subcarriers is regarded as the minimum unit
for subcarrier allocation. Given that the number of chunks and
the number of subcarriers in each chunk are predefined, we
consider the optimal chunk allocation that maximizes a utility
function of average user rates for a wireless OFDMA system
under different power control policies. The relevant optimization
problems are formulated as non-convex mixed-integer programs;
yet it is shown that the optimal schemes can be obtained through
Lagrange dual-based gradient iterations with fast convergence
and low computational complexity under conditions. Further-
more, novel low-complexity algorithms are developed to approach
the optimal strategies without a-priori knowledge of statistics of
the intended wireless channels. Numerical results are provided
to gauge the performance of the proposed schemes.

Index Terms—Resource allocation, wireless OFDMA networks,
subcarrier chunk, stochastic optimization.

I. INTRODUCTION

THE emerging demand for diverse data applications entails
both high data rate wireless connections and intelli-

gent multiuser scheduling designs in next-generation wire-
less networks. Orthogonal frequency division multiple-access
(OFDMA) is capable of delivering high-speed connections
in a multi-path environment by dividing an entire chan-
nel into many orthogonal narrowband subcarriers and thus
largely eliminating inter-symbol interferences, which limits
the available data rates. Furthermore, those subcarriers can
be allocated dynamically among different users, providing
a new degree of freedom in multiuser scheduling [1]. For
these reasons, OFDMA becomes the workhorse for broadband
wireless applications/standards.

Resource allocation for OFDMA networks has attracted a
lot of interest, where the goal is to jointly allocate subcarriers
and rate/power in order to maximize (respectively minimize)
the weighted sum of user rates (powers) under a prescribed
power (rate) budget. In this context, [2], [3], [4], [5] re-
ported suboptimal algorithms which tradeoff complexity for
(sub)optimality. Instead of maximizing the weighted sum of
user rates, recently there was interest to consider maximizing
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a suitable utility function of average rates to ensure fairness
among users [6], [7], [8]. In addition, stochastic optimization
tools were employed to develop on-line adaptive scheduling
schemes for time-division multiplexing networks, which are
capable of learning the intended channel distribution on-the-
fly [9], [10], [11]. Generalizing these approaches, a unifying
framework was proposed for design and analysis of stochastic
resource allocation schemes for OFDMA systems in [12].

Most of the prior works on OFDMA resource allocation
assumed that individual subcarriers can be assigned to a user.
In practical OFDMA systems, however, the single-subcarrier
based allocation schemes incur significant signaling overhead
and entail complicated implementation, since they must simul-
taneously coordinate a large number (e.g. 1024) of subcarriers
for broadband applications. To mitigate the overhead and
implementation complexity, the correlation between adjacent
subcarriers can be utilized by properly grouping a set of
subcarriers into one chunk, and making a chunk of subcarriers
as the minimum unit for subcarrier allocation. Such chunk-
based OFDMA has actually been adopted as the air-interface
for emerging wireless systems including IEEE WiMax, Euro-
pean next generation and 3GPP systems [13], [14]. Resource
allocation for the chunk-based OFDMA systems was only
addressed in a few works. The performance analysis of the
chunk-based allocation was provided to guide the multiuser
scheduling design for downlink OFDMA systems in [15].
Some heuristic algorithms were proposed in [16], [17] for
chunk-based scheduling of single-carrier frequency multiple-
access (SC-FDMA) – a modified form of OFDMA for uplink
transmission considered in the 3GPP-LTE. These algorithms
aimed to maximize the (weighted) sum of the user rates, where
constant power allocation across chunks was considered and/or
a suboptimal chunk scheduling was employed.

In this paper, we investigate the optimal chunk allocation
that maximizes a general utility function of average user rates
for wireless OFDMA systems, provided that the number of
chunks and the number of subcarriers in each chunk are
predefined. To balance the system throughput and transceiver
complexity, we consider three different power control policies
adopted in the system design: i) different transmit-powers
can be allocated across individual subcarriers, ii) different
powers can be allocated across chunks (but the same power is
employed for all subcarriers in a chunk); and iii) a constant
transmit-power is used. When different transmit-powers are
allowed across individual subcarriers, we show that a Lagrange
dual based “greedy water-filling” approach can be applied to
obtain the optimal subcarrier and power allocation with or
without the predefined subcarrier-chunks [12]; yet, the power
allocation values and subcarrier scheduling strategy can be sig-
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nificantly different for the optimal schemes with and without
predefined chunks. This approach is also generalized to find
the optimal subcarrier-chunk scheduling under the other two
power control policies. Under different power control policies,
it is shown that the optimal chunk assignment adopts a similar
greedy structure. Although the relevant optimization problems
are formulated as non-convex mixed-integer programs, we
prove that the optimal strategies can be obtained through
Lagrange dual-based gradient iterations with fast convergence
and low computational complexity per iteration. Furthermore,
we rely on stochastic optimization tools to develop a class
of on-line algorithms capable of approaching the optimal
strategies without knowing statistics of the intended wireless
channels a priori.

The rest of this paper is organized as follows. The system
model is described in Section II. The optimal chunk schedul-
ing schemes are derived under the three different power control
policies in Sections III, IV, and V, respectively. Numerical
results are provided in Section VI to demonstrate the merit of
the proposed schemes, followed by conclusions.

II. MODELING PRELIMINARIES

For specificity, we consider a downlink air interface between
an access point (AP) and wireless users 𝑘 = 1, . . . ,𝐾
connected to it; but the results readily carry over to the
uplink operation along the similar lines of our recent work
[10], [12]. The overall bandwidth 𝐵 is divided into 𝑀 × 𝐽
orthogonal narrowband subcarriers, each with sub-bandwidth
Δ = 𝐵/(𝑀𝐽) small enough for each subcarrier to experience
only flat fading. As pre-determined by the given system or
standard, the subcarriers are grouped into 𝑀 chunks, each con-
sisting of 𝐽 subcarriers. Let 𝛾(𝑗)

𝑘,𝑚 denote the frequency-domain
power gain for the 𝑘th user at the 𝑗th subcarrier of chunk 𝑚.
Assume a block fading model where the fading coefficients
𝜸 = {𝛾(𝑗)

𝑘,𝑚, 𝑘 = 1, . . . ,𝐾, 𝑚 = 1, . . . ,𝑀, 𝑗 = 1, . . . , 𝐽}
are fixed per (coherent time) slot 𝑛 but are allowed to change
randomly from slot to slot according to a stationary and er-
godic random process with a cumulative distribution function
(cdf). Given time-domain complex channel taps ℎ𝑘,𝑙[𝑛] with
delays 𝜏𝑙, 𝑙 = 1, . . . , 𝐿𝑘, at slot 𝑛, we obtain the discrete-time
Fourier transform amplitude square:

𝛾
(𝑗)
𝑘,𝑚[𝑛] =

∣∣∣ 𝐿𝑘∑
𝑙=1

ℎ𝑘,𝑙[𝑛]𝑒
−𝑖2𝜋𝜏𝑙((𝑚−1)𝐽+𝑗)Δ

∣∣∣2. (1)

Assume that the AP has full information about 𝜸[𝑛] per slot
𝑛 through e.g., training and feedback from the users. Adapted
to 𝜸, a scheduler in the AP performs the chunk allocation and
power control for downlink transmissions.

III. ADAPTIVE POWER ALLOCATION ACROSS

SUBCARRIERS

Under different power control policies, the optimal chunk
allocation strategies differ. Consider first the general case that
transmit-powers can be adaptively allocated across individual
subcarriers. Let 𝛼𝑘,𝑚(𝜸) be the chunk allocation decision for
transmission to user 𝑘 at chunk 𝑚 upon channel realization
𝜸. An exclusive chunk allocation is typically enforced by the
practical systems such that at most one user can be allocated to

a single chunk; i.e., 𝛼𝑘,𝑚(𝜸) ∈ {0, 1} and
∑𝐾

𝑘=1 𝛼𝑘,𝑚(𝜸) ≤
1, ∀𝑚. Let 𝑝(𝑗)𝑘,𝑚(𝜸) denote the power for transmission to user
𝑘 at the 𝑗th subcarrier of chunk 𝑚 upon 𝜸. With 𝑝max being
a natural peak-power bound, we have 0 ≤ 𝑝

(𝑗)
𝑘,𝑚(𝜸) ≤ 𝑝max.

Let 𝒜 denote the set of all schedules satisfying 𝛼𝑘,𝑚(𝜸) ∈
{0, 1}, ∑𝐾

𝑘=1 𝛼𝑘,𝑚(𝜸) ≤ 1, and 0 ≤ 𝑝
(𝑗)
𝑘,𝑚(𝜸) ≤ 𝑝max,

∀𝑘,𝑚, 𝑗. Assuming without loss of generality that the additive
white Gaussian noise at the receiver has unit variance and the
subcarrier-bandwidth Δ = 1, the scheduler at the AP decides
both the chunk allocation 𝜶(𝜸) := {𝛼𝑘,𝑚(𝜸), ∀𝑘,𝑚} and the
power allocation vector 𝒑(𝜸) := {𝑝(𝑗)𝑘,𝑚(𝜸), ∀𝑘,𝑚, 𝑗} to max-
imize the utility of average user rate vector 𝒓 := {𝑟𝑘, ∀𝑘};
i.e., it solves:

max
𝒓≥0; (𝜶,𝒑)∈𝒜

𝐾∑
𝑘=1

𝑈(𝑟𝑘)

s. t. 𝑟𝑘 ≤ 𝔼𝜸

[ 𝑀∑
𝑚=1

𝛼𝑘,𝑚(𝜸)

𝐽∑
𝑗=1

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚𝑝

(𝑗)
𝑘,𝑚(𝜸)

)]

𝔼𝜸

[ 𝐾∑
𝑘=1

𝑀∑
𝑚=1

𝛼𝑘,𝑚(𝜸)

𝐽∑
𝑗=1

𝑝
(𝑗)
𝑘,𝑚(𝜸)

]
≤ 𝑃

(2)

where 𝑈 is a selected concave utility function, 𝔼𝜸 [⋅] denotes
expectation over fading realization 𝜸, and 𝑃 is the average
sum-power budget at the AP for all downlink transmissions.
Here we assume that the AP can support continuous rate
adaptation up to Shannon’s limit per subcarrier.1

The utility function in our formulation is to balance the
total throughput and fairness among users. For instance, it has
been shown that the so-called 𝛼-fairness can be attained by
the maximizer of a class of concave utility functions [7], [8]:

𝑈𝛼(𝑥) =

{
𝑥1−𝛼/(1− 𝛼), 𝛼 ∕= 1,

ln(𝑥), 𝛼 = 1.
(3)

The notion of 𝛼-fairness includes max-min fairness (with
𝛼 → ∞) [18], proportional fairness (with 𝛼 = 1) [19], and
throughput maximization (with 𝛼 = 0) as special cases. Larger
𝛼 means more fairness. These 𝛼-fair utility functions will be
used to test the proposed algorithms in simulations.

A. Optimal Chunk and Power Allocation

Different from the optimal subcarrier scheduling in [12]
where each subcarrier is allowed to be time shared by users
at the outset, here we assume a fortiori an exclusive chunk
allocation, i.e., at most one user allocated to a single chunk,
for a low-complexity transceiver design. This results a (non-
convex) mixed-integer program in (2). However, we next show
that this problem (2) can be still solved using a Lagrange
dual approach under conditions. Let 𝝀 := {𝜆𝑘, ∀𝑘} collect
the Lagrange multipliers associated with the constraints
𝑟𝑘 ≤ 𝔼𝜸

[∑
𝑚 𝛼𝑘,𝑚(𝜸)

∑
𝑗 log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚𝑝

(𝑗)
𝑘,𝑚(𝜸)

)]
,

∀𝑘, and let 𝜇 denote the Lagrange multiplier for

1Generalization to continuous- or discrete-rate adaptation using practical
adaptive modulation and coding (AMC) schemes is also possible along the
lines of our work [10].
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𝔼𝜸

[∑
𝑘,𝑚 𝛼𝑘,𝑚(𝜸)

∑
𝑗 𝑝

(𝑗)
𝑘,𝑚(𝜸)

]
≤ 𝑃 . Using the convenient

notations 𝑿 := {𝒓; 𝜶(𝜸),𝒑(𝜸), ∀𝜸} and Λ := {𝝀, 𝜇}, the
Lagrangian function of (2) is:

𝐿(𝑿,Λ) =
∑
𝑘

𝑈(𝑟𝑘)−
∑
𝑘

𝜆𝑘

(
𝑟𝑘 − 𝔼𝜸

[∑
𝑚

𝛼𝑘,𝑚(𝜸)

×
∑
𝑗

log2(1 + 𝛾
(𝑗)
𝑘,𝑚𝑝

(𝑗)
𝑘,𝑚(𝜸))

])
−

𝜇
(
𝔼𝜸

[∑
𝑘,𝑚

𝛼𝑘,𝑚(𝜸)
∑
𝑗

𝑝
(𝑗)
𝑘,𝑚(𝜸)

]
− 𝑃

)
. (4)

The Lagrange dual function is then given by:

𝐷(Λ) = max
𝒓≥0; (𝜶,𝒑)∈𝒜

𝐿(𝑿,Λ), (5)

and the dual problem of (2) is:

min
Λ≥0

𝐷(Λ). (6)

To solve the dual problem (6), we need to specify the dual
function 𝐷(Λ) in (5). Upon defining

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)
𝑘,𝑚(𝜸)) := 𝜆𝑘 log2(1 + 𝛾

(𝑗)
𝑘,𝑚𝑝

(𝑗)
𝑘,𝑚(𝜸))− 𝜇𝑝

(𝑗)
𝑘,𝑚(𝜸),

(7)
we can rewrite (4) as:

𝐿(𝑿,Λ) = 𝜇𝑃 +
∑
𝑘

[𝑈(𝑟𝑘)− 𝜆𝑘𝑟𝑘]

+𝔼𝜸

[∑
𝑘

∑
𝑚

𝛼𝑘,𝑚(𝜸)
∑
𝑗

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)
𝑘,𝑚(𝜸))

]
. (8)

From (8), the optimal 𝑟∗𝑘(Λ) maximizing 𝐿(𝑿,Λ) in (5)
should solve: max𝑟𝑘≥0 [𝑈(𝑟𝑘) − 𝜆𝑘𝑟𝑘], ∀𝑘. Provided that
the selected concave function 𝑈 , e.g., the one in (3), is
differentiable and its first derivative 𝑈 ′ has a well-defined
inverse 𝑈 ′−1, then we clearly have:

𝑟∗𝑘(Λ) = 𝑈 ′−1(𝜆𝑘), ∀𝑘. (9)

On the other hand, the optimal chunk and power allocation
solves:

max
(𝜶,𝒑)∈𝒜

𝔼𝜸

[∑
𝑘

∑
𝑚

𝛼𝑘,𝑚(𝜸)
∑
𝑗

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)
𝑘,𝑚(𝜸))

]
. (10)

Regardless of 𝛼𝑘,𝑚(𝜸) ≥ 0, the optimally allocated
power should maximize 𝜑

(𝑗)
𝑘,𝑚(𝑝

(𝑗)
𝑘,𝑚(𝜸)), ∀𝑘,𝑚, 𝑗, ∀𝜸. Since

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)
𝑘,𝑚(𝜸)) in (7) is a concave function of 𝑝

(𝑗)
𝑘,𝑚(𝜸), its

maximizer is:

𝑝
(𝑗)∗
𝑘,𝑚(𝜸;Λ) =

[ 𝜆𝑘

𝜇 ln 2
− 1

𝛾
(𝑗)
𝑘,𝑚

]𝑝max

0
(11)

where [⋅]𝑝max

0 denotes the projection into the interval [0, 𝑝max].
Based on 𝑝

(𝑗)∗
𝑘,𝑚(𝜸;Λ), define subsequently

𝜑∗
𝑘,𝑚(𝜸;Λ) :=

∑
𝑗

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)∗
𝑘,𝑚(𝜸;Λ)).

Then the chunk allocation solves per 𝜸:

max
∑
𝑘

∑
𝑚

𝛼𝑘,𝑚(𝜸)𝜑∗
𝑘,𝑚(𝜸;Λ).

Under the constraints 𝛼𝑘,𝑚(𝜸) ∈ {0, 1} and
∑

𝑘 𝛼𝑘,𝑚(𝜸) ≤ 1,
the optimal chunk allocation should adopt a “winner-takes-all”
strategy per chunk; i.e., chunk 𝑚 is assigned to the user

𝑘∗𝑚(𝜸;Λ) = argmax
𝑘

𝜑∗
𝑘,𝑚(𝜸;Λ), ∀𝑚, ∀𝜸. (12)

This establishes the following lemma:
Lemma 1: For a given Λ, the optimal 𝑟∗𝑘(Λ) for (5) is given
by (9), and the optimal chunk and power allocation amounts
to: ∀𝜸,{

𝛼∗
𝑘∗
𝑚,𝑚(𝜸;Λ) = 1, 𝑝

(𝑗)∗
𝑘∗
𝑚,𝑚(𝜸;Λ) = 𝑝

(𝑗)∗
𝑘∗
𝑚,𝑚(𝜸;Λ),

𝛼∗
𝑘,𝑚(𝜸;Λ) = 𝑝

(𝑗)∗
𝑘,𝑚(𝜸;Λ) = 0, ∀𝑘 ∕= 𝑘∗𝑚(𝜸;Λ)

(13)
where the “winner” 𝑘∗𝑚(𝜸;Λ) per chunk 𝑚 is chosen by (12).

Here the optimal scheduling at the AP amounts to a greedy
water-filling solution where power allocation and chunk al-
location are decoupled. In the first stage, transmit-power is
allocated per user 𝑘 across subcarriers following a water-filling
principle, i.e., with higher power assigned to better channel
realizations 𝛾

(𝑗)
𝑘,𝑚; see (11). In the second stage, 𝜑∗

𝑘,𝑚(𝜸;Λ)
represents the maximum net-reward (rate reward minus power
cost) that user 𝑘 can obtain over all subcarriers of chunk
𝑚. Comparing the net-rewards across users, chunk 𝑚 is then
assigned to the user 𝑘∗𝑚(𝜸;Λ) with the highest net-reward.

With 𝑿∗(Λ) := {𝒓∗(Λ); 𝜶∗(𝜸;Λ),𝒑∗(𝜸;Λ), ∀𝜸} pro-
vided by Lemma 1 for a given Λ, the dual function 𝐷(Λ) in
(5) can be specified. Using the notation 𝑿 and Λ, we arrange
the constraints in (2) into a compact form: 𝒈(𝑿) ≥ 0. Then
it can be also shown that 𝒈(𝑿∗(Λ)) is a (sub-)gradient of
the dual function 𝐷(Λ) [20]. Therefore, the dual problem (6)
can be solved through the following (sub-)gradient descent
iteration [5], [12]:

Λ[𝑛+ 1] = [Λ[𝑛]− 𝛽𝒈(𝑿∗(Λ[𝑛]))]
+
. (14)

Specifically, we have:

𝜆𝑘[𝑛+ 1] =
[
𝜆𝑘[𝑛] + 𝛽

(
𝑟∗𝑘(Λ[𝑛]) − 𝔼𝜸

[∑
𝑚

𝛼∗
𝑘,𝑚(𝜸;Λ[𝑛])

×
∑
𝑗

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)∗
𝑘,𝑚(𝜸;Λ[𝑛]))

])]+

𝜇[𝑛+ 1] =
[
𝜇[𝑛] + 𝛽

(
𝔼𝜸

[∑
𝑘

∑
𝑚

𝛼∗
𝑘,𝑚(𝜸;Λ[𝑛])

×
∑
𝑗

𝑝
(𝑗)∗
𝑘,𝑚(𝜸;Λ[𝑛])

]
− 𝑃

)]+

(15)
where 𝛽 is a small stepsize, 𝑛 is the iteration index, and
[𝑥]+ := max(0, 𝑥). Convergence of the gradient descent
iteration (15) to the optimal Lagrange multipliers Λ∗ :=
{𝝀∗, 𝜇∗} for (6) is guaranteed from any initial Λ[0] ≥ 0,
and this convergence can be geometrically fast under general
conditions [20], [21].

For the non-convex mixed-integer program (2), there may
exist non-zero duality gap; hence solving the dual problem
(6) via (15) may not yield the optimal solution for (2).
Under the condition that the channel coefficient vector 𝜸
has a continuous cdf, however, we can show the following
proposition:
Proposition 1: For ergodic fading channels with continuous
cdf, the problem (2) has a zero duality gap with its dual (6),
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and the almost surely optimal solution for (2) is given by
{𝒓∗(Λ∗); 𝜶∗(𝜸;Λ∗),𝒑∗(𝜸;Λ∗), ∀𝜸} specified in Lemma 1,
where Λ∗ is obtained from (15) with any initial Λ[0] ≥ 0.

Proof: The “winner-takes-all” chunk allocation policy per
chunk 𝑚 at channel realization 𝜸 in Lemma 1 subsumes three
cases: i) If 𝜑∗

𝑘,𝑚(𝜸;Λ) = 0, ∀𝑘, and thus max𝑘 𝜑
∗
𝑘,𝑚(𝜸;Λ) =

0, all users’ channels indeed experience deep fading over all
subcarriers of chunk 𝑚 such that 𝛾(𝑗)

𝑘,𝑚 ≤ 𝜇 ln 2/𝜆𝑘, ∀𝑗, ∀𝑘.
Upon such a deep fading state, any user 𝑘, even if scheduled,
will be allocated with transmit-power 𝑝

(𝑗)∗
𝑘,𝑚(𝜸;Λ) = 0, ∀𝑗

[cf. (11)]. Therefore, the unique optimal strategy for AP is to
defer its transmission at chunk 𝑚, which can be represented
by the policy in (13) where the chunk is assigned to an
arbitrary “winner” but zero transmit-powers are allocated. ii) If
max𝑘 𝜑

∗
𝑘,𝑚(𝜸;Λ) > 0 and it is attained by a single “winner”,

the optimal allocation given by (13) is clearly unique. iii) If
max𝑘 𝜑

∗
𝑘,𝑚(𝜸;Λ) > 0 and it is attained by multiple users,

the chunk allocation becomes non-unique. However, it can
be shown that having multiple “winners” in case iii) is an
event of Lebesgue measure zero, provided that the random
channels have a continuous cdf. The non-unique “winner”
selection in this case then has a “measure-zero” effect, since
our criterion is to maximize the average net-reward in (10).
Therefore, the optimal chunk and power allocation policy
{𝜶∗(𝜸;Λ),𝒑∗(𝜸;Λ)} in Lemma 1 is almost surely unique.

This almost sure uniqueness is the key to establish the zero
duality gap result for the non-convex mixed-integer program
(2). By relaxing the chunk allocation decision 𝛼𝑘,𝑚(𝜸) to
a real number ∈ [0, 1] in (2), we have an optimization
over continuous variables. By further taking a viable change
𝑝
(𝑗)
𝑘,𝑚(𝜸) := 𝛼𝑘,𝑚(𝜸)𝑝

(𝑗)
𝑘,𝑚(𝜸), this optimization problem can

be reformulated into:

max
𝒓≥0; (𝜶,𝒑)∈𝒜′

𝐾∑
𝑘=1

𝑈(𝑟𝑘)

s. t. 𝑟𝑘 ≤ 𝔼𝜸

[ 𝑀∑
𝑚=1

𝛼𝑘,𝑚(𝜸)

𝐽∑
𝑗=1

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚

𝑝
(𝑗)
𝑘,𝑚(𝜸)

𝛼𝑘,𝑚(𝜸)

)]

𝔼𝜸

[ 𝐾∑
𝑘=1

𝑀∑
𝑚=1

𝐽∑
𝑗=1

𝑝
(𝑗)
𝑘,𝑚(𝜸)

]
≤ 𝑃

(16)

where 𝒜′ denotes the set of all schedules satisfying: 0 ≤
𝛼𝑘,𝑚(𝜸) ≤ 1,

∑𝐾
𝑘=1 𝛼𝑘,𝑚(𝜸) ≤ 1, and 0 ≤ 𝑝

(𝑗)
𝑘,𝑚(𝜸) ≤

𝛼𝑘,𝑚(𝜸)𝑝max, ∀𝑘,𝑚, 𝑗.
Following the similar lines of [12], it can be shown that (16)

is a convex program. Using the Lagrange multipliers 𝝀 and 𝜇,
we have the similar Lagrangian function (5) for (16). It is not
difficult to see that the almost surely unique “winner-takes-all”
policy holds true when we maximize the Lagrangian function
𝐿(𝑿,Λ) in (5) even if 𝛼𝑘,𝑚(𝜸) is allowed to take continuous
value. Therefore, we will have exactly the same dual function
𝐷(Λ) and dual problem (6) for the relaxed problem (16).
Since the convex program (16) has zero duality gap with
its dual (6), the chunk allocation and power control strategy
{𝜶∗(𝜸;Λ∗),𝒑∗(𝜸;Λ∗)} in Proposition 1 is almost surely
optimal for (16) [21]. Clearly, the relaxed problem (16) always
has an optimal value 𝑃 ′∗ not less than the optimal value 𝑃 ∗

of the original problem (2); i.e., 𝑃 ′∗ ≥ 𝑃 ∗. On the other hand,
since the “winner-takes-all” policy {𝜶∗(𝜸;Λ∗),𝒑∗(𝜸;Λ∗)}
lies within the feasible set of (2), it is clear that the value
𝑃 ′∗ obtained by the latter policy is not greater than 𝑃 ∗; i.e.,
𝑃 ′∗ ≤ 𝑃 ∗. Therefore we must have 𝑃 ′∗ = 𝑃 ∗. Let 𝐷∗

denote the optimal value for the dual problem (6). Due to
zero duality gap between (16) and (6), we have 𝑃 ′∗ = 𝐷∗.
This implies that (2) has a zero duality gap with its dual (6),
i.e., 𝑃 ∗ = 𝐷∗, and thereby {𝜶∗(𝜸;Λ∗),𝒑∗(𝜸;Λ∗)} is also
almost surely optimal for (2).

Proposition 1 shows that the dual-gradient iteration (15) can
find the optimal chunk allocation and power control strategy
for (2). A similar approach was employed to derive the optimal
subcarrier scheduling for OFDMA system in [12], where it
was assumed that each individual subcarrier can be assigned to
a user. Given that transmit-powers can be adaptively allocated
across individual subcarriers, the optimal power allocation
follows a “water-filling” principle in (11) with or without
predefined subcarrier-chunks. When chunk is the minimum
unit for subcarrier allocation, the net-reward 𝜑∗

𝑘,𝑚(𝜸;Λ) needs
to be calculated for each chunk (instead of for each subcarrier)
per user to determine the subcarrier-chunk allocation. Clearly
this chunk-based optimal resource allocation specifies to the
subcarrier-based one in [12], when the number of subcarriers
per chunk 𝐽 = 1. But in general the subcarrier allocation
policy is different, and thus the optimal Lagrange multipliers
𝜆∗
𝑘 and 𝜇∗ in the power control (11) are different for the

cases with or without predefined chunks. Therefore, albeit in a
similar form, the power allocation values (as well as subcarrier
scheduling strategy) are significantly different for the optimal
schemes with and without predefined chunks.

B. Stochastic Scheduling

To implement the dual-gradient iteration (14), we need a-
priori knowledge of fading cdf to evaluate the two expected
values in (15). Since mobile applications motivate schedulers
that can learn the required cdf on-the-fly, we next develop an
on-line scheduling scheme to approach the optimal strategy
using a stochastic optimization paradigm [9], [10], [22], [23].
To this end, we drop 𝔼𝜸 from (15) and get a stochastic version
of (15) based on per slot channel realization 𝜸[𝑛] as follows:

�̂�𝑘[𝑛+ 1] =
[
�̂�𝑘[𝑛] + 𝛽

(
𝑟∗𝑘(Λ̂[𝑛])−

∑
𝑚

𝛼∗
𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛])

×
∑
𝑗

𝜑
(𝑗)
𝑘,𝑚(𝑝

(𝑗)∗
𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛]))

)]+

�̂�[𝑛+ 1] =
[
�̂�[𝑛] + 𝛽

(∑
𝑘

∑
𝑚

𝛼∗
𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛])

×
∑
𝑗

𝑝
(𝑗)∗
𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛]) − 𝑃

)]+

(17)
where the hat notation with 𝜆𝑘 and 𝜇 is used to stress the fact
that these iterations are stochastic estimates of those in (15),
based on instantaneous (instead of average) power and rates.

In (17), a stochastic dual-gradient is employed for Lagrange
multiplier updates. For stationary and ergodic channel pro-
cesses, convergence of this stochastic gradient based iteration
(17) to the optimal Λ∗ in probability as the stepsize 𝛽 → 0
can be established along the similar lines with those in [9],
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[10], [11]. As a result, the companion chunk and power
allocation scheme {𝜶∗(𝜸; Λ̂[𝑛]),𝒑∗(𝜸; Λ̂[𝑛])} also converges
(in probability) to the globally optimal one for (2).

Since the stochastic iteration (17) can yield the optimal
chunk and power allocation for (2) without knowing the
channel cdf a priori, a simple on-line scheduling algorithm
can be implemented at the AP as follows:

s1) Starting from arbitrary Λ̂[0] ≥ 0, determine the on-line
chunk and power allocation upon channel realization
𝜸[𝑛] per slot 𝑛 using (13);

s2) Update Λ̂[𝑛+1] from Λ̂[𝑛] using (17); then implement
s1) and s2) again for the next slot 𝑛+ 1.

In this algorithm, the AP needs only to calculate the net-
rewards 𝜑∗

𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛]) for all the 𝐾 users per chunk 𝑚,
and then adopts the “winner-takes-all” strategy in Lemma 1 to
determine the chunk allocation and associated power control
per slot 𝑛. Calculating all the power values via (11) and the
net-reward 𝜑∗

𝑘,𝑚(𝜸;Λ) for each chunk per user requires a
computational complexity of 𝒪(𝐾𝑀𝐽), whereas determining
the chunk allocation via (13) needs a computational com-
plexity of 𝒪(𝑀 log𝐾). Hence, all required operations per
slot have a linear computational complexity 𝒪(𝐾𝑀𝐽) in the
number of users and total subcarriers. Yet, this low-complexity
algorithm is capable of learning the channel distribution to
approach the optimal scheduling and resource allocation on-
line. Moreover, convergence of the algorithm could be geo-
metrically fast under conditions due to the geometrically fast
convergence of (15) and the trajectory locking of the stochastic
(17) and “ensemble” gradient iterations (15) [10], [11].

IV. ADAPTIVE POWER ALLOCATION ACROSS CHUNKS

Allowing channel-adaptive power allocation across individ-
ual subcarriers enables derivation of an optimum benchmark
for system performance. For chunk-based OFDMA systems,
however, it is certainly desirable to make “chunk” the min-
imum unit for overall resource (instead of only subcarrier)
allocation. This requires that the same transmit-power is
allocated to all the subcarriers of a chunk; i.e., we enforce
𝑝
(𝑗)
𝑘,𝑚(𝜸) = 𝑝𝑘,𝑚(𝜸), ∀𝑗. Upon defining the new power

allocation vector 𝒑(𝜸) := {𝑝𝑘,𝑚(𝜸), ∀𝑘,𝑚}, the problem to
solve becomes [cf. (2)]:

max
𝒓≥0; (𝜶,𝒑)∈𝒜

𝐾∑
𝑘=1

𝑈(𝑟𝑘)

s. t. 𝑟𝑘 ≤ 𝔼𝜸

[ 𝑀∑
𝑚=1

𝛼𝑘,𝑚(𝜸)

𝐽∑
𝑗=1

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚𝑝𝑘,𝑚(𝜸)

)]

𝔼𝜸

[ 𝐾∑
𝑘=1

𝑀∑
𝑚=1

𝛼𝑘,𝑚(𝜸)(𝐽𝑝𝑘,𝑚(𝜸))
]
≤ 𝑃

.

(18)

Using a similar Lagrange dual approach, we obtain the

Lagrangian function of (18):

𝐿(𝑿,Λ) =
∑
𝑘

𝑈(𝑟𝑘)−
∑
𝑘

𝜆𝑘

(
𝑟𝑘 − 𝔼𝜸

[∑
𝑚

𝛼𝑘,𝑚(𝜸)

×
∑
𝑗

log2(1 + 𝛾
(𝑗)
𝑘,𝑚𝑝𝑘,𝑚(𝜸))

])
−

𝜇
(
𝔼𝜸

[∑
𝑘,𝑚

𝛼𝑘,𝑚(𝜸)𝐽𝑝𝑘,𝑚(𝜸)
]
− 𝑃

)
. (19)

To obtain the dual function 𝐷(Λ) as in (5), we need to
maximize 𝐿(𝑿,Λ) over 𝑿 . For a given Λ, it is clear that
the optimal 𝑟∗𝑘(Λ) is still given by (9).

Upon (re-)defining

𝜑𝑘,𝑚(𝑝𝑘,𝑚(𝜸)) := 𝜆𝑘

[∑
𝑗

log2(1 + 𝛾
(𝑗)
𝑘,𝑚𝑝𝑘,𝑚(𝜸))

]
− 𝜇𝐽𝑝𝑘,𝑚(𝜸),

the optimal chunk and power allocation maximizing
𝐿(𝑿,Λ) should solve:

max
(𝜶,𝒑)∈𝒜

𝔼𝜸

[∑
𝑘

∑
𝑚

𝛼𝑘,𝑚(𝜸)𝜑𝑘,𝑚(𝑝𝑘,𝑚(𝜸))
]
.

It is easy to see that 𝜑𝑘,𝑚(𝑝𝑘,𝑚(𝜸)) is a concave function of
𝑝𝑘,𝑚(𝜸). Its first derivative

𝜑′
𝑘,𝑚(𝑝𝑘,𝑚(𝜸)) =

𝜆𝑘

ln 2

∑
𝑗

𝛾
(𝑗)
𝑘,𝑚

1 + 𝛾
(𝑗)
𝑘,𝑚𝑝𝑘,𝑚(𝜸)

− 𝜇𝐽

is a decreasing function of 𝑝𝑘,𝑚(𝜸) ≥ 0. Let 𝜑′−1
𝑘,𝑚(0) denote

the unique solution to the equation 𝜑′
𝑘,𝑚(𝑝𝑘,𝑚(𝜸)) = 0. The

optimal power value maximizing 𝜑𝑘,𝑚(𝑝𝑘,𝑚(𝜸)) is clearly:

𝑝∗𝑘,𝑚(𝜸;Λ) =
[
𝜑′−1
𝑘,𝑚(0)

]𝑝max

0
,

which can be easily obtained by a bi-sectional search over
[0, 𝑝max]. Upon defining 𝜑∗

𝑘,𝑚(𝜸;Λ) := 𝜑𝑘,𝑚(𝑝∗𝑘,𝑚(𝜸;Λ)),
the optimal chunk allocation is to allocate chunk 𝑚 to a user
𝑘∗𝑚(𝜸;Λ) with the largest 𝜑∗

𝑘,𝑚(𝜸;Λ). Therefore, the optimal
chunk and power allocation amounts to: ∀𝜸,{

𝛼∗
𝑘∗
𝑚,𝑚(𝜸;Λ) = 1, 𝑝∗𝑘∗

𝑚,𝑚(𝜸;Λ) = 𝑝∗𝑘∗
𝑚,𝑚(𝜸;Λ),

𝛼∗
𝑘,𝑚(𝜸;Λ) = 𝑝∗𝑘,𝑚(𝜸;Λ) = 0, ∀𝑘 ∕= 𝑘∗𝑚(𝜸;Λ)

(20)
where the “winner” per chunk 𝑚 is: 𝑘∗𝑚(𝜸;Λ) =
argmax𝑘 𝜑

∗
𝑘,𝑚(𝜸;Λ).

With 𝑟∗𝑘(Λ) given by (9) and {𝛼∗
𝑘,𝑚(𝜸;Λ), 𝑝∗𝑘,𝑚(𝜸;Λ)}

specified in (20), the optimal Λ∗ can be then obtained through
the stochastic gradient iteration [cf. (17)]:

�̂�𝑘[𝑛+ 1] =
[
�̂�𝑘[𝑛] + 𝛽

(
𝑟∗𝑘(Λ̂[𝑛]) −

∑
𝑚

𝛼∗
𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛])

×𝜑𝑘,𝑚(𝑝∗𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛]))
)]+

�̂�[𝑛+ 1] =
[
�̂�[𝑛] + 𝛽

(∑
𝑘

∑
𝑚

𝛼∗
𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛])

×𝐽𝑝∗𝑘,𝑚(𝜸[𝑛]; Λ̂[𝑛]) − 𝑃
)]+

(21)
It can be shown that the non-convex mixed-integer program
(18) has a zero duality gap with its dual problem. Con-
sequently, the on-line chunk and power allocation scheme
{𝜶∗(𝜸; Λ̂[𝑛]),𝒑∗(𝜸; Λ̂[𝑛])} resulting from (21) converges to
the optimal one for (18) without a-priori knowledge of channel
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cdf. It is easy to see that the required operations for the pro-
posed algorithm have a computational complexity 𝒪(𝐾𝑀𝐽),
and convergence of the algorithm could be geometrically fast.

V. CONSTANT POWER ALLOCATION

To avoid large peak-to-average-power ratio that is detrimen-
tal to mobile terminals, practical OFDMA systems actually
often require a constant transmit-power allocated to all subcar-
riers. It is of interest to consider the chunk assignment under
such a constant power allocation. With an equally divided
power 𝑝

(𝑗)
𝑘,𝑚(𝜸) = 𝑃/(𝑀𝐽) spent per subcarrier, the utility

maximization problem becomes:

max
𝒓≥0; 𝜶∈𝒜

𝐾∑
𝑘=1

𝑈(𝑟𝑘)

s. t. 𝑟𝑘 ≤ 𝔼𝜸

[ 𝑀∑
𝑚=1

𝛼𝑘,𝑚(𝜸)
𝐽∑

𝑗=1

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚

𝑃

𝑀𝐽

)].

(22)

Here the power constraint is naturally met; hence, it is absent.
With the optimization variable vector 𝑿 := {𝒓, 𝜶(𝜸), ∀𝜸}
and Lagrange multiplier vector 𝝀, the Lagrangian function of
(22) is:

𝐿(𝑿,𝝀) =
∑
𝑘

𝑈(𝑟𝑘)−
∑
𝑘

𝜆𝑘

(
𝑟𝑘 − 𝔼𝜸

[∑
𝑚

𝛼𝑘,𝑚(𝜸)

×
∑
𝑗

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚𝑃/(𝑀𝐽)

)])

To maximize 𝐿(𝑿,𝝀), the optimal 𝑟∗𝑘(𝝀) is again given by
(9), and the optimal chunk allocation should solve:

max
𝜶∈𝒜

𝔼𝜸

[∑
𝑘

∑
𝑚

𝛼𝑘,𝑚(𝜸)
∑
𝑗

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚

𝑃

𝑀𝐽

)]
.

It is clear that this amounts to a greedy assignment: ∀𝜸,{
𝛼∗
𝑘∗
𝑚,𝑚(𝜸;𝝀) = 1,

𝛼∗
𝑘,𝑚(𝜸;𝝀) = 0, ∀𝑘 ∕= 𝑘∗𝑚(𝜸;𝝀)

(23)

where the “winner” per chunk 𝑚 is: 𝑘∗𝑚(𝜸;𝝀) =

argmax𝑘
∑

𝑗 log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚

𝑃
𝑀𝐽

)
.

The optimal 𝝀∗ can be obtained through the stochastic
gradient iteration:

�̂�𝑘[𝑛+ 1] =
[
�̂�𝑘[𝑛] + 𝛽

(
𝑟∗𝑘(�̂�[𝑛]) −

∑
𝑚

𝛼∗
𝑘,𝑚(𝜸[𝑛]; �̂�[𝑛])

×
∑
𝑗

log2

(
1 + 𝛾

(𝑗)
𝑘,𝑚𝑃/(𝑀𝐽)

))]+

(24)
Again the chunk allocation 𝜶∗(𝜸; �̂�[𝑛]) resulting from (24)
converges to the optimal one for (22) without a-priori knowl-
edge of channel cdf. The on-line algorithm is fast convergent
and has a computational complexity 𝒪(𝐾𝑀𝐽) per slot.

VI. NUMERICAL RESULTS

In this section, we provide numerical examples to test the
algorithms developed in the previous sections. We consider
𝐾 = 4 user OFDMA downlink transmissions over frequency-
selective wireless channels. The total bandwidth is 𝐵 = 20

MHz, and there are 512 subcarriers, each with sub-bandwidth
Δ = 40 KHz. The subcarriers are grouped into 𝑀 = 64
chunks, each consisting of 𝐽 = 8 subcarriers. These parame-
ters are the typical setup for European next generation wireless
systems in urban scenario [13]. For each user’s wireless link,
a profile of 20 𝜇𝑠 exponentially and independently decaying
tap gains is assumed changing independently across slots of
500 𝜇𝑠. The average signal-to-noise ratios (SNRs) for users
𝑘 = 1, . . . , 4 are 10 dB, 8 dB, 6 dB, and 4 dB, respectively.

For the simulated chunk-based OFDMA downlink, four
schemes are tested: i) the optimal scheme with adaptive power
control across subcarriers (denoted as APS) in Section III;
ii) the optimal scheme with adaptive power control across
chunks (denoted as APC) in Section IV; iii) the optimal
chunk allocation with constant power allocation (denoted as
OCP) in Section V; and iv) a baseline fixed-access scheme
(denoted as FCP) where each user is allocated to a fixed
set of 16 chunks in order and constant power allocation
is adopted. For the first three schemes, the utility function∑

𝑘 𝑈(𝑟𝑘) :=
∑

𝑘 ln(𝑟𝑘) is used as the objective, which
corresponds to a proportional fair scheduling strategy that
is widely adopted in wireless standards. Fig. 1 shows the
resulting average sum-rates (i.e., network throughput) from
the four schemes under different average sum-power budget
𝑃 . For comparison, Fig. 1 also includes the average sum-
rates achieved by the optimal subcarrier and power allocation
scheme (denoted as subcarrier-based APS) when the chuck
size is only one subcarrier (i.e., 𝑀 = 512 and 𝐽 = 1);
in this case each user can be assigned an arbitrary number
of subcarriers. It is clear that both the chunk-based APS
and APC schemes substantially outperform the OCP scheme.
This shows that the adaptive power control can collect large
throughput gain. The subcarrier-based APS scheme yields
the highest network throughput; however, it only has an
almost negligible performance gain over the chunk-based APS
scheme (the two lines are almost identical such that the one
for subcarrier-based APS is almost invisible in the figure).
Compared to the chunk-based APC scheme, the gain from
the APS schemes is also marginal. This evidently indicates
that using subcarrier-chunks as minimum unit for resource
allocation only incurs small throughput loss while decreasing
considerably signaling overhead for practical OFDMA sys-
tems. For the baseline FCP scheme, the fairness among the
users is not considered. Despite this, all the proposed schemes
with optimally adaptive chunk allocation, including the OCP
scheme, significantly outperform the baseline FCP scheme.
This is because adaptive chunk allocation can attain the multi-
user diversity, thereby bringing large gain in throughput.

The channel cdf was assumed unknown in all simulations,
and the proposed stochastic schemes were supposed to learn
this knowledge on-line to approach the optimal strategies. To
verify this, Fig. 2 depicts the evolution of Lagrange multipliers
�̂�𝑘 , 𝑘 = 1, . . . , 4, and �̂� in (17) for the APS scheme when
the power budget 𝑃 = 1 Watt and the stepsize 𝛽 = 0.001.
It is well-known that there exists a tradeoff between conver-
gence speed and optimality for stochastic optimization in the
adaptive signals and systems literature [9], [10], [11], [22],
[23]. As with any stochastic approximation scheme, Lagrange
multipliers in the stochastic gradient iteration (17) can only
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converge to (or hover within) a small neighborhood with a
size proportional to stepsize 𝛽 around the optimal values;
hence, one needs a small 𝛽 to come “closer” to optimality,
but the smaller 𝛽 is chosen, the slower convergence speed is
experienced. With the given stepsize, such a stochastic con-
vergence is clearly observed, since the Lagrange multipliers
quickly converge to the neighborhood of the optimal values.

It is seen from Fig. 1 that both the APS and APC schemes
can attain noticeable throughput gains over the OCP scheme.
These gains brought by adaptive power control (across sub-
carriers or chunks) are accompanied by large variation in
transmit-powers, thereby large peak-to-average-power ratios.
To see it, Fig. 3 shows the ratios of current power to average
power at subcarriers 29 and 30 for the APS scheme and
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Fig. 3. Ratios of the current power to average power.

that at chunk 4 (subcarriers 25–32) for the APC scheme
during the time window 6.0–6.5 second, resulted from the
stochastic iterations (17) and (21), respectively, with the power
budget 𝑃 = 1 Watt and the stepsize 𝛽 = 0.001. It is
clear that implementing adaptive power control results large
peak-to-average power ratio (PAPR), whereas the constant
power allocation with the OCP scheme maintains a minimum
PAPR. To achieve the throughput gain from the APS scheme,
coordination of individual subcarriers and very large PAPR
need to be dealt with, leading to a high-complexity transceiver
design. Compared with the OCP scheme, the throughput gain
from the APC scheme is also accompanied by the large
PAPR. Therefore, the constant power allocation could be
still favored for practical systems in some scenarios from an
implementation viewpoint.

To see the effect of utility function selection, the APC
scheme based on (21) is employed to solve (18) when different
𝛼-fair utility functions defined in (3) are adopted. Fig. 4
(top) shows the average sum-rate of four users, while Fig.
4 (bottom) depicts the resulting average rates for individual
users, when the power budget 𝑃 = 1 Watt and the stepsize
𝛽 = 0.001. Since the user-links experience different average
SNRs, the resultant average rates differ significantly for small
𝛼. It is observed that the fairness improves at the cost of
decreasing total throughput as 𝛼 increases. For instance, when
𝛼 = 16, all users have almost the same average rates, but
about 14% total network throughput is lost when compared to
the 𝛼 = 1 case. This demonstrates that different 𝛼-fair utility
functions can trade off network throughput for fairness.

VII. CONCLUSIONS

We formulated and solved the optimal chunk allocation for
OFDMA downlink transmission with different power control
policies. Relying on optimization tools, we proved that the
optimal schemes adopt a similar greedy structure and they
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individual users (bottom).

can be obtained through dual-gradient iterations with fast con-
vergence and linear computational complexity per iteration.
Stochastic optimization methods were also employed to de-
velop on-line algorithms capable of dynamically learning the
channel statistics and converging to the optimal benchmarks.

In development of the optimal chunk scheduling, we as-
sumed that the number of chunks and the number of subcar-
riers in each chunk are predefined by the OFDMA system. It
will be interesting to investigate how to perform the subcarrier
pairing, i.e., how to determine number of subcarriers per chunk
and how to select the (consecutive or interleaved) sets of
subcarriers to form the chunks, in the system design, and
incorporate it with the optimal chunk scheduling for further
performance enhancement. In performance evaluation, we
provided the PAPR as an independent performance indicator.
Realistically, the PAPR could cause power saturation and this
affects the rate and power performance assessment, especially
when the nonlinearity of power amplifiers of the transceivers
is taken into account. The physical layer effects of the PAPR
will be also properly accounted for in future work.
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