Efficient Post-Quantum Undeniable Signature on 64-bit ARM

Amir Jalali ¹ Reza Azarderakhsh ¹ Mehran Mozaffari-Kermani ²

Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, FL, USA

Department of Computer Science and Engineering, University of South Florida, FL, USA

August 2017

Outline

Introduction

- 2 SIUS Protocol
- Proposed Choice of Implementation-Friendly Primes
- SIUS Protocol Implementation
- 5 Implementation Results

6 Conclusions

Isogeny-based Crypto History

• The first suggestions to use isogenies in crypto by Couveignes in 1997

• Supersingular isogeny-based hash function by Charles, Lauter and Goren in 2005

 Isogeny-based public-key cryptosystems by Rostovtsev and Stolbunov in 2006

• The biggest impetus by David Jao and Luca De Feo in 2011.

Undeniable Signature and SIUS

• Undeniable Signature

- Invented by Chaum in 1989
- Allows the signer to choose to whom signatures are verified
- Interactive protocol between the signer and the verifier
- Applications: e-voting, e-auction, e-cash, ...

Undeniable Signature and SIUS

Undeniable Signature

- Invented by Chaum in 1989
- 2 Allows the signer to choose to whom signatures are verified
- Interactive protocol between the signer and the verifier
- Applications: e-voting, e-auction, e-cash, ...
- This work presents the first practical implementation of the Isogeny-based Undeniable Signature (SIUS) which was first introduced by Jao and Soukharev in 2014
 - Smallest keys and signature size compared to other post-quantum candidates
 - Past and optimized implementation
 - Quantum-resistant undeniable signature scheme

Isogenies on Elliptic Curves

Definition

Let E and E' be elliptic curves over \mathbb{F} . An isogeny $\phi: E \to E'$ is a non-constant algebraic morphism (defined by polynomials)

$$\phi(x,y) = \left(\frac{p(x)}{q(x)}, \frac{s(x)}{t(x)}y\right)$$

satisfying $\phi(\infty) = \infty$ and $\phi(P+Q) = \phi(P) + \phi(Q)$.

The kernel H determines the image curve E' up to isomorphism

$$E/H := E'$$

 $deg(\phi)$ is its degree as an algebraic map

Public Parameters

- ▶ $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} f \pm 1$, where ℓ_A , ℓ_B , and ℓ_C are small primes, e_A , e_B , and e_C are positive integers, and f is a small cofactor to make the number prime.
- Starting supersingular elliptic curve, E_0/\mathbb{F}_{p^2}
- ▶ Torsion bases $\{P_A, Q_A\}$, $\{P_B, Q_B\}$, and $\{P_C, Q_C\}$ over $E_0[\ell_A^{e_A}]$, $E_0[\ell_B^{e_B}]$, and $E_0[\ell_C^{e_C}]$, respectively.

Public Parameters

- ▶ $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} f \pm 1$, where ℓ_A , ℓ_B , and ℓ_C are small primes, e_A , e_B , and e_C are positive integers, and f is a small cofactor to make the number prime.
- Starting supersingular elliptic curve, E_0/\mathbb{F}_{p^2}
- ▶ Torsion bases $\{P_A, Q_A\}$, $\{P_B, Q_B\}$, and $\{P_C, Q_C\}$ over $E_0[\ell_A^{e_A}]$, $E_0[\ell_B^{e_B}]$, and $E_0[\ell_C^{e_C}]$, respectively.
- Classical and quantum security is approximately ⁶/p and ⁹/p, respectively.
 - Based on the difficulty of computing isogenies between supersingular elliptic curves.

- Key-generation:
 - ► The signer securely generates two random integers m_A , $n_A \in \mathbb{Z}/\ell_A^{e_A}\mathbb{Z}$ and computes $K_A = [m_A]P_A + [n_A]Q_A$
 - ▶ The signer computes isogeny map $\phi_A : E \to E_A / \langle K_A \rangle$ and also evaluates $\phi_A(P_C)$ and $\phi_A(Q_C)$ using ϕ_A .
 - ► The signer publishes the public-key as: E_A , $\phi_A(P_C)$, and $\phi_A(Q_C)$, while the private-key is (m_A, n_A) .

- Key-generation:
 - ► The signer securely generates two random integers m_A, n_A ∈ Z/ℓ_A^{e_AZ and computes K_A = [m_A]P_A + [n_A]Q_A}
 - ▶ The signer computes isogeny map $\phi_A : E \to E_A / \langle K_A \rangle$ and also evaluates $\phi_A(P_C)$ and $\phi_A(Q_C)$ using ϕ_A .
 - ► The signer publishes the public-key as: E_A , $\phi_A(P_C)$, and $\phi_A(Q_C)$, while the private-key is (m_A, n_A) .
- Signature:
 - The signer computes the message hash h = H(M), $K_M = P_M + [h]Q_M$.
 - The signer first computes $\phi_M : E \to E_M = E/\langle K_M \rangle$

- Key-generation:
 - ► The signer securely generates two random integers m_A, n_A ∈ Z/ℓ_A^{e_AZ and computes K_A = [m_A]P_A + [n_A]Q_A}
 - ▶ The signer computes isogeny map $\phi_A : E \to E_A / \langle K_A \rangle$ and also evaluates $\phi_A(P_C)$ and $\phi_A(Q_C)$ using ϕ_A .
 - ► The signer publishes the public-key as: E_A , $\phi_A(P_C)$, and $\phi_A(Q_C)$, while the private-key is (m_A, n_A) .
- Signature:
 - The signer computes the message hash h = H(M), $K_M = P_M + [h]Q_M$.
 - The signer first computes $\phi_M : E \to E_M = E/\langle K_M \rangle$
- The signature:

$$[E_{AM}, \phi_{M,AM}(\phi_M(P_C)), \phi_{M,AM}(\phi_M(Q_C))]$$

• The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ to blind the signature and computes $\phi_C, \phi_{C,MC}, \phi_{A,AC}, \phi_{MC,AMC}$

- The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ to blind the signature and computes $\phi_C, \phi_{C,MC}, \phi_{A,AC}, \phi_{MC,AMC}$
- The signer commits E_C , E_{AC} , E_{MC} , E_{AMC} , and $\ker(\phi_{C,MC}) = \phi_C(K_M)$.
- The verifier randomly selects a bit $b \in \{0,1\}$

- The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ to blind the signature and computes $\phi_C, \phi_{C,MC}, \phi_{A,AC}, \phi_{MC,AMC}$
- The signer commits E_C , E_{AC} , E_{MC} , E_{AMC} , and $\ker(\phi_{C,MC}) = \phi_C(K_M)$.
- The verifier randomly selects a bit $b \in \{0,1\}$
- If *b* = 0
 - The signer outputs ker(\u03c6_C)
 - The verifier computes ker($\phi_{A,AC}$), $\phi_{M,MC}$, $\phi_{AM,AMC}$, $\phi_{C,MC}$.
 - Verifier checks the correctness of all the committed information by signer.
- If *b* = 1
 - The signer outputs ker(\u03c6_{C,AC})
 - The verifier computes $\phi_{MC,AMC}$, $\phi_{AC,AMC}$ and checks the corresponding curves in the commitment.

Figure: Signature and confirmation protocol in SIUS scheme

• The signer is presented with a fake signature (E_F, F_P, F_Q) instead of the real signature $(E_{AM}, \phi_{M,AM}(\phi_M(P_C)), \phi_{M,AM}(\phi_M(Q_C)))$

- The signer is presented with a fake signature (E_F, F_P, F_Q) instead of the real signature $(E_{AM}, \phi_{M,AM}(\phi_M(P_C)), \phi_{M,AM}(\phi_M(Q_C)))$
- The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ along with all the curves and isogeny maps as shown before

- The signer is presented with a fake signature (E_F, F_P, F_Q) instead of the real signature $(E_{AM}, \phi_{M,AM}(\phi_M(P_C)), \phi_{M,AM}(\phi_M(Q_C)))$
- The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ along with all the curves and isogeny maps as shown before
- The signer commits E_C, E_{AC}, E_{MC}, E_{AMC}, and ker(φ_{C,MC}) = φ_C(K_M)

- The signer is presented with a fake signature (E_F, F_P, F_Q) instead of the real signature $(E_{AM}, \phi_{M,AM}(\phi_M(P_C)), \phi_{M,AM}(\phi_M(Q_C)))$
- The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ along with all the curves and isogeny maps as shown before
- The signer commits E_C , E_{AC} , E_{MC} , E_{AMC} , and $\ker(\phi_{C,MC}) = \phi_C(K_M)$
- ullet The verifier randomly generates a bit $b\in\{0,1\}$

- The signer is presented with a fake signature (E_F, F_P, F_Q) instead of the real signature $(E_{AM}, \phi_{M,AM}(\phi_M(P_C)), \phi_{M,AM}(\phi_M(Q_C)))$
- The signer secretly selects random integers $m_C, n_C \in \mathbb{Z}/\ell_C^{e_C}\mathbb{Z}$ and computes the kernel $K_C = [m_C]P_C + [n_C]Q_C$ along with all the curves and isogeny maps as shown before
- The signer commits E_C , E_{AC} , E_{MC} , E_{AMC} , and $\ker(\phi_{C,MC}) = \phi_C(K_M)$
- The verifier randomly generates a bit $b \in \{0,1\}$
- The verifier computations are all the same as before except in case of b = 0 which requires one more isogeny computation: $\phi_F : E_F \to E_{FC} = E_F / \langle [m_C] F_P + [n_C] F_O \rangle.$
- The verifier computes this isogeny and compares it with *E_{AMC}* (committed value by signer). These values should be different.

イロト イポト イヨト イヨト

• Smooth Isogeny Prime: $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} \cdot f \pm 1$, where ℓ_A , ℓ_B , and ℓ_C are small primes, e_A , e_B , and e_C are positive integers, and f is a small cofactor to make the number prime

- Smooth Isogeny Prime: $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} \cdot f \pm 1$, where ℓ_A , ℓ_B , and ℓ_C are small primes, e_A , e_B , and e_C are positive integers, and f is a small cofactor to make the number prime
- Fast known point multiplications and isogeny formulas for $\ell_A = 2$ and $\ell_B = 3$ in affine and projective coordinates

- Smooth Isogeny Prime: $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} \cdot f \pm 1$, where ℓ_A , ℓ_B , and ℓ_C are small primes, e_A , e_B , and e_C are positive integers, and f is a small cofactor to make the number prime
- Fast known point multiplications and isogeny formulas for $\ell_A = 2$ and $\ell_B = 3$ in affine and projective coordinates
- We propose new set of formulas for $\ell_C = 5$ in projective coordinates

- Smooth Isogeny Prime: $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} \cdot f \pm 1$, where ℓ_A , ℓ_B , and ℓ_C are small primes, e_A , e_B , and e_C are positive integers, and f is a small cofactor to make the number prime
- Fast known point multiplications and isogeny formulas for $\ell_A = 2$ and $\ell_B = 3$ in affine and projective coordinates
- We propose new set of formulas for $\ell_C = 5$ in projective coordinates
- Security of a large-degree isogeny is $\sqrt[3]{\ell^e}$
 - Quantum claw finding problem by Childs in 2014.

(人間) トイヨト イヨト

^{11 / 21}

• Find two different primes at different security levels for a variety of optimizations

э

∃ >

- Find two different primes at different security levels for a variety of optimizations
- Prime search criteria:
 - Security:
 - The relative security of SIUS over a prime is based on min $(\ell_A^a, \ell_B^b, \ell_C^c)$.

- Find two different primes at different security levels for a variety of optimizations
- Prime search criteria:
 - Security:

The relative security of SIUS over a prime is based on min(ℓ^a_A, ℓ^b_B, ℓ^c_C).
Speed:

- Primes of the form $p = 2^a \ell^b_B \cdot f 1 o Montgomery-friendly property$
- Prime search: efficiency parameter θ for a prime of the form $p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} 1$

$$heta = rac{\mathsf{nbits}(p)}{\mathsf{min}(\mathsf{nbits}(\ell_A^{e_A}, \ell_B^{e_B}, \ell_C^{e_C}))/3}$$

- Recall: security of a large-degree isogeny is $\sqrt[3]{\ell^e}$
- $\bullet\,$ We are interested in the primes with the smaller value of $\theta\,$

• • = • • =

Proposed SIUS-Friendly Primes

Table: Proposed smooth implementation-friendly primes for SIUS scheme

$p = \ell_A^{e_A} \ell_B^{e_B} \ell_C^{e_C} - 1$	Prime size (bits)	Quantum Security	Classical Security	Prev. Signature (bytes)	Signature (bytes)
$2^{250}3^{163}5^{110} - 1$	764	83	125	764	573
$2^{330}3^{210}5^{151} - 1$	1014	110	165	1014	761

- By ignoring the curve coefficient B and using projective coordinates, each element of the signature, i.e., curve and auxiliary points is represented by only one field element in \mathbb{F}_{p^2}
- Therefore SIUS signature and public-key in our implementation are 25% smaller than the original signature sizes reported in the original scheme by Jao and Soukharev.

Projective Isogeny costs

• Projective 3 Isogenies

- **1** Isogeny map: (6M + 2S + 5a)
- 2 Isogeny eval.: (3M + 3S + 8a)

Projective 4 Isogenies

- **1** Isogeny map: (5S + 7a)
- 2 Isogeny eval.: (3M + 3S + 8a)

Projective 5 Isogenies

- 1 Isogeny map: $(10M + 2S + 7a) \rightarrow \text{slow}$
- 2 Isogeny eval.: $(30M + 4S + 16a) \rightarrow \text{very slow}$

э

Confirmation Protocol Mechanism

- Interactive procedure (both parties should involve)
- The verifier's computations depend on the value of b
- Disavowal protocol mechanism is almost the same

Figure: The SIUS confirmation protocol mechanism.

• A64 or Advanced SIMD?

3

- A64 or Advanced SIMD?
 - A64: General-purpose register file with thirty one 64-bit registers (radix-2⁶⁴)

э

- A64 or Advanced SIMD?
 - A64: General-purpose register file with thirty one 64-bit registers (radix-2⁶⁴)
 - ► Adv. SIMD: 256-bit vectors which can be used to implement 32×32-bit multiplication in parallel (radix-2³²)

- A64 or Advanced SIMD?
 - A64: General-purpose register file with thirty one 64-bit registers (radix-2⁶⁴)
 - Adv. SIMD: 256-bit vectors which can be used to implement 32×32-bit multiplication in parallel (radix- 2^{32})
 - Both take the same number of multiplications for the implementation of field multi-precision multiplication
 - A64 implementation is faster because ASIMD multiplications are more expensive!

Figure: 8×A64 multiplications

Figure: 8×ASIMD multiplications イロト イポト イヨト イヨト

-

Jalali, Azarderakhsh, Mozaffari-Kerman	Post-Quantum Undeniable Signature	August 2017 16 / 21
--	-----------------------------------	---------------------

Finite-Field Multiplication

- $A \times B = C$, where $A, B, C \in \mathbb{F}_p$
- Requires a reduction from 2*m* bits to *m* bits, so Montgomery reduction was used
- Perform separated multiply and reduce with Cascade Operand Scanning (COS) method

Finite-Field Multiplication

- $A \times B = C$, where $A, B, C \in \mathbb{F}_p$
- Requires a reduction from 2*m* bits to *m* bits, so Montgomery reduction was used
- Perform separated multiply and reduce with Cascade Operand Scanning (COS) method
 - ► Utilizes ARMv8 A64 registers in radix-2⁶⁴ representation
 - ► With choice of primes, we reduce the complexity from k² + k to k² single-precision multiplications, where k is the number of words in the field
 - Also reduction over p̂ = p + 1 which eliminates several single-precision multiplications by "0" limbs:
 - p764 + 1 and p1014 + 1 have three and five 64-bit words equal to "0" in the lower half.

Finite-Field Inversion

- Finds some A^{-1} such that $A \cdot A^{-1} = 1$, where $A, A^{-1} \in \mathbb{F}_p$
- Fermat's little theorem performs $A^{-1} = A^{p-2}$
 - Complexity O(log³n)

Finite-Field Inversion

- Finds some A^{-1} such that $A \cdot A^{-1} = 1$, where $A, A^{-1} \in \mathbb{F}_p$
- Fermat's little theorem performs $A^{-1} = A^{p-2}$
 - Complexity O(log³n)
- Since we implemented the whole point arithmetic in projective coordinates, the number of filed inversions are scarce

Finite-Field Inversion

- Finds some A^{-1} such that $A \cdot A^{-1} = 1$, where $A, A^{-1} \in \mathbb{F}_p$
- Fermat's little theorem performs $A^{-1} = A^{p-2}$
 - Complexity O(log³n)
- Since we implemented the whole point arithmetic in projective coordinates, the number of filed inversions are scarce
- We implemented constant-time FLT field inversion with fixed-window method
 - We prioritize security over a small amount of performance improvement in using non-constant time algorithms

Benchmark Targets

• The first empirical implementation of a quantum-resistant undeniable signature

э

Benchmark Targets

- The first empirical implementation of a quantum-resistant undeniable signature
- Target processor: Huawei Nexus 6P smart phone with a 2.0 GHz Cortex-A57 and a 1.55 GHz Cortex-A53 processors running Android 7.1.1

Benchmark Targets

- The first empirical implementation of a quantum-resistant undeniable signature
- Target processor: Huawei Nexus 6P smart phone with a 2.0 GHz Cortex-A57 and a 1.55 GHz Cortex-A53 processors running Android 7.1.1
- Portable version is benchmarked on:
 - 2.3 GHz NVIDIA Jetson TK1 equipped with a 32-bit ARMv7 Cortex-A15 running Ubuntu 14.04 LTS
 - 2.1 GHz Intel x64 i7-6700 running Ubuntu 16.04 LTS

Results

- Verifier's operations (server-side) are more computationally intensive
 - Performance bottleneck $\rightarrow b = 0$
- More efficient degree 5 isogenies formulas → significant performance improvement (future work)

Table: Performance results ($\times 10^6$ CPU clock cycles)

Field	PQ	Long	Keygen	Signer	Verifier $(b = 0)$		Verifier $(b = 1)$			
Size	Security	Lang.	Sign.	Conf. / Disv.	Conf.	Disv.	Conf. / Disv.			
Huawei Nexus 6P ARMv8-A57 at 2.0 GHz										
764	83	C	1,068	1,416	2,638	2,980	1,138			
		ASM	230	290	544	614	232			
1014	110	C	2,646	3,592	6,854	7,726	2,918			
	110	ASM	512	684	1,310	1,466	552			
Huawei Nexus 6P ARMv8-A53 at 1.55 GHz										
764	02	C	2,024	2,595	4,834	5,463	2,085			
	00	ASM	516	652	1,213	1,378	549			
1014	110	C	4,515	6,142	11,724	13,153	4,972			
		ASM	1,227	1,671	3,199	3,585	1,350			
Desktop PC Intel x64 i7-6700 at 2.1 GHz										
764	83	С	493	655	1,222	1379	684			
1014	110		1,136	$1,\!545$	2,973	3,357	1,623			
NVIDIA Jetson TK1 ARMv7-A15 at 2.3 GHz										
764	83	С	3,433	4,549	8,473	9,574	3,657			
1014	110		8,052	10,957	20,913	23,453	8,868			

Conclusions

- Efficient implementation of SIUS on ARMv8 platforms
- Proposed SIUS-friendly primes with an efficiency parameter
- Hand-optimized finite-field arithmetic \rightarrow up to 5 times faster than generic C implementation
- Analysis of the ARMv8 capabilities for finite field arithmetic implementation
- $\bullet~$ Implementations on Huawei Nexus 6P $\rightarrow~$ practical benchmark on a smart phone
- We reduce the signature and public-key sizes of SIUS protocol by 25% compared to the original scheme
- Thank you!

3