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Introduction

Isogeny-based Crypto History

The �rst suggestions to use isogenies in crypto by Couveignes in 1997

Supersingular isogeny-based hash function by Charles, Lauter and

Goren in 2005

Isogeny-based public-key cryptosystems by Rostovtsev and Stolbunov

in 2006

The biggest impetus by David Jao and Luca De Feo in 2011.
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Introduction

Undeniable Signature and SIUS

Undeniable Signature
1 Invented by Chaum in 1989
2 Allows the signer to choose to whom signatures are veri�ed
3 Interactive protocol between the signer and the veri�er
4 Applications: e-voting, e-auction, e-cash, ...

This work presents the �rst practical implementation of the
Isogeny-based Undeniable Signature (SIUS) which was �rst introduced
by Jao and Soukharev in 2014

1 Smallest keys and signature size compared to other post-quantum
candidates

2 Fast and optimized implementation
3 Quantum-resistant undeniable signature scheme
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SIUS Protocol

Isogenies on Elliptic Curves

De�nition

Let E and E ′ be elliptic curves over F.
An isogeny φ : E → E ′ is a non-constant algebraic morphism (de�ned by

polynomials)

φ(x , y) = (
p(x)

q(x)
,
s(x)

t(x)
y)

satisfying φ(∞) =∞ and φ(P + Q) = φ(P) + φ(Q).

The kernel H determines the image curve E ′ up to isomorphism

E/H := E ′

deg(φ) is its degree as an algebraic map

Jalali, Azarderakhsh, Moza�ari-Kermani Post-Quantum Undeniable Signature August 2017 5 / 21



SIUS Protocol

SIUS Overview

Public Parameters
I p = `eAA `

eB
B `

eC
C f ± 1, where `A, `B , and `C are small primes, eA, eB , and

eC are positive integers, and f is a small cofactor to make the number
prime.

I Starting supersingular elliptic curve, E0/Fp2

I Torsion bases {PA,QA}, {PB ,QB}, and {PC ,QC} over E0[`eAA ], E0[`
eB
B ],

and E0[`
eC
C ], respectively.

Classical and quantum security is approximately 6
√
p and 9

√
p,

respectively.
I Based on the di�culty of computing isogenies between supersingular

elliptic curves.
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SIUS Protocol

SIUS Overview

Key-generation:
I The signer securely generates two random integers mA, nA ∈ Z/`eAA Z

and computes KA = [mA]PA + [nA]QA

I The signer computes isogeny map φA : E → EA/〈KA〉 and also
evaluates φA(PC ) and φA(QC ) using φA.

I The signer publishes the public-key as: EA, φA(PC ), and φA(QC ), while
the private-key is (mA, nA).

Signature:
I The signer computes the message hash h = H(M), KM = PM + [h]QM .
I The signer �rst computes φM : E → EM = E/〈KM〉

The signature:

[EAM , φM,AM(φM(PC )), φM,AM(φM(QC ))]
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SIUS Protocol

Con�rmation Protocol

The signer secretly selects random integers mC , nC ∈ Z/`eCC Z and

computes the kernel KC = [mC ]PC + [nC ]QC to blind the signature

and computes φC , φC ,MC , φA,AC , φMC ,AMC

The signer commits EC , EAC , EMC , EAMC , and

ker(φC ,MC ) = φC (KM).

The veri�er randomly selects a bit b ∈ {0, 1}
If b = 0

I The signer outputs ker(φC )
I The veri�er computes ker(φA,AC ), φM,MC , φAM,AMC , φC ,MC .
I Veri�er checks the correctness of all the committed information by

signer.

If b = 1
I The signer outputs ker(φC ,AC )
I The veri�er computes φMC ,AMC ,φAC ,AMC and checks the

corresponding curves in the commitment.
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SIUS Protocol

Con�rmation Protocol

Figure: Signature and con�rmation protocol in SIUS scheme
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SIUS Protocol

Disavowal Protocol

The signer is presented with a fake signature (EF ,FP ,FQ) instead of

the real signature (EAM , φM,AM(φM(PC )), φM,AM(φM(QC )))

The signer secretly selects random integers mC , nC ∈ Z/`eCC Z and

computes the kernel KC = [mC ]PC + [nC ]QC along with all the curves

and isogeny maps as shown before

The signer commits EC , EAC , EMC , EAMC , and

ker(φC ,MC ) = φC (KM)

The veri�er randomly generates a bit b ∈ {0, 1}
The veri�er computations are all the same as before except in case of

b = 0 which requires one more isogeny computation:

φF : EF → EFC = EF/〈[mC ]FP + [nC ]FQ〉.
The veri�er computes this isogeny and compares it with EAMC

(committed value by signer). These values should be di�erent.
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Proposed Choice of Implementation-Friendly Primes

SIUS-Friendly Primes

Smooth Isogeny Prime: p = `eAA `
eB
B `

eC
C · f ± 1, where `A, `B , and `C

are small primes, eA, eB , and eC are positive integers, and f is a small

cofactor to make the number prime

Fast known point multiplications and isogeny formulas for `A = 2 and

`B = 3 in a�ne and projective coordinates

We propose new set of formulas for `C = 5 in projective coordinates

Security of a large-degree isogeny is 3
√
`e

I Quantum claw �nding problem by Childs in 2014.
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Proposed Choice of Implementation-Friendly Primes

SIUS-Friendly Primes

Find two di�erent primes at di�erent security levels for a variety of

optimizations

Prime search criteria:
I Security:

The relative security of SIUS over a prime is based on min(`aA, `
b
B , `

c
C ).

I Speed:

Primes of the form p = 2a`bB · f − 1 → Montgomery-friendly property

Prime search: e�ciency parameter θ for a prime of the form

p = `
eA
A `

eB
B `

eC
C − 1

θ =
nbits(p)

min(nbits(`eAA , `
eB
B , `

eC
C ))/3

Recall: security of a large-degree isogeny is
3
√
`e

We are interested in the primes with the smaller value of θ
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Proposed Choice of Implementation-Friendly Primes

Proposed SIUS-Friendly Primes

Table: Proposed smooth implementation-friendly primes for SIUS scheme

p = `
eA
A `

eB
B `

eC
C − 1

Prime size Quantum Classical Prev. Signature Signature

(bits) Security Security (bytes) (bytes)

225031635110 − 1 764 83 125 764 573

233032105151 − 1 1014 110 165 1014 761

By ignoring the curve coe�cient B and using projective coordinates,

each element of the signature, i.e., curve and auxiliary points is

represented by only one �eld element in Fp2

Therefore SIUS signature and public-key in our implementation are

25% smaller than the original signature sizes reported in the original

scheme by Jao and Soukharev.
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SIUS Protocol Implementation

Projective Isogeny costs

Projective 3 Isogenies
1 Isogeny map: (6M + 2S + 5a)
2 Isogeny eval.: (3M + 3S + 8a)

Projective 4 Isogenies
1 Isogeny map: (5S + 7a)
2 Isogeny eval.: (3M + 3S + 8a)

Projective 5 Isogenies
1 Isogeny map: (10M + 2S + 7a)→ slow
2 Isogeny eval.: (30M + 4S + 16a)→ very slow
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SIUS Protocol Implementation

Con�rmation Protocol Mechanism

Interactive procedure (both parties should involve)

The veri�er's computations depend on the value of b
Disavowal protocol mechanism is almost the same

Signer Verifier

Sign()
KeyGen()

Signature()
[EA, φA(PC), φA(QC)]

[EAM , φM,AM (φM (PC)), φM,AM (φM (QC))]

SignerConfirmation()
EC , EAC , EMC , EAMC , φC(KM )

b ∈ {0, 1}

(b == 0) → ker(φC)

(b == 1) → ker(φC,AC)

VerifierConfirmation()

VerifierCheck()

(b == 0) → φA,AC , φM,MC , φAM,AMC , φC,MC

(b == 1) → φMC,AMC , φAC,AMC

→ Public-key

→ Signature

1

2

3

Figure: The SIUS con�rmation protocol mechanism.
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SIUS Protocol Implementation

Finite-Field Arithmetic on ARMv8

A64 or Advanced SIMD?

I A64: General-purpose register �le with thirty one 64-bit registers
(radix-264)

I Adv. SIMD: 256-bit vectors which can be used to implement 32×32-bit
multiplication in parallel (radix-232)

I Both take the same number of multiplications for the implementation
of �eld multi-precision multiplication

I A64 implementation is faster because ASIMD multiplications are more
expensive!

b0b1

a0a1

MUL(a0,b0) UMULH(a0,b0)

a0a1a2a3

b0b1b2b3

MUL(a1,b0) UMULH(a1,b0)
MUL(a0,b1) UMULH(a0,b1)

MUL(a1,b1) UMULH(a1,b1)

UMULL(a0,a1,b0)
UMULL(a0,a1,b1)
UMULL(a0,a1,b2)
UMULL(a0,a1,b3)

UMULL2(a2,a3,b0)
UMULL2(a2,a3,b1)
UMULL2(a2,a3,b2)
UMULL2(a2,a3,b3)

64-bit

32-bit

Figure: 8×A64 multiplications

b0b1

a0a1

MUL(a0,b0) UMULH(a0,b0)

a0a1a2a3

b0b1b2b3

MUL(a1,b0) UMULH(a1,b0)
MUL(a0,b1) UMULH(a0,b1)

MUL(a1,b1) UMULH(a1,b1)

UMULL(a0,a1,b0)
UMULL(a0,a1,b1)
UMULL(a0,a1,b2)
UMULL(a0,a1,b3)

UMULL2(a2,a3,b0)
UMULL2(a2,a3,b1)
UMULL2(a2,a3,b2)
UMULL2(a2,a3,b3)

64-bit

32-bit

Figure: 8×ASIMD multiplications
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SIUS Protocol Implementation

Finite-Field Multiplication

A× B = C , where A,B,C ∈ Fp

Requires a reduction from 2m bits to m bits, so Montgomery

reduction was used

Perform separated multiply and reduce with Cascade Operand
Scanning (COS) method

I Utilizes ARMv8 A64 registers in radix-264 representation
I With choice of primes, we reduce the complexity from k2 + k to k2

single-precision multiplications, where k is the number of words in the
�eld

I Also reduction over p̂ = p + 1 which eliminates several single-precision
multiplications by �0� limbs:

p764+ 1 and p1014+ 1 have three and �ve 64-bit words equal to �0�

in the lower half.
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SIUS Protocol Implementation

Finite-Field Inversion

Finds some A−1 such that A · A−1 = 1, where A,A−1 ∈ Fp

Fermat's little theorem performs A−1 = Ap−2

I Complexity O(log3n)

Since we implemented the whole point arithmetic in projective

coordinates, the number of �led inversions are scarce

We implemented constant-time FLT �eld inversion with �xed-window
method

I We prioritize security over a small amount of performance improvement
in using non-constant time algorithms
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Implementation Results

Benchmark Targets

The �rst empirical implementation of a quantum-resistant undeniable

signature

Target processor: Huawei Nexus 6P smart phone with a 2.0 GHz

Cortex-A57 and a 1.55 GHz Cortex-A53 processors running Android

7.1.1

Portable version is benchmarked on:
I 2.3 GHz NVIDIA Jetson TK1 equipped with a 32-bit ARMv7

Cortex-A15 running Ubuntu 14.04 LTS
I 2.1 GHz Intel x64 i7-6700 running Ubuntu 16.04 LTS
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Implementation Results

Results

Veri�er's operations (server-side) are more computationally intensive
I Performance bottleneck → b = 0

More e�cient degree 5 isogenies formulas → signi�cant performance

improvement (future work)
Table: Performance results (×106 CPU clock cycles)
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Conclusions

Conclusions

E�cient implementation of SIUS on ARMv8 platforms

Proposed SIUS-friendly primes with an e�ciency parameter

Hand-optimized �nite-�eld arithmetic → up to 5 times faster than

generic C implementation

Analysis of the ARMv8 capabilities for �nite �eld arithmetic

implementation

Implementations on Huawei Nexus 6P → practical benchmark on a

smart phone

We reduce the signature and public-key sizes of SIUS protocol by 25%

compared to the original scheme

Thank you!
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