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Abstract. Due to the rapid growth of e-commerce technology, secure
auction protocols have attracted much attention among researchers. The
main reason for constructing sealed-bid auction protocols is the fact that
losing bids can be used in future auctions and negotiations if they are not
kept private. Our motivation is to develop a new commitment scheme
to construct first-price auction protocols similar to proposed solutions
in [18, 17, 19]. Our constructions are auctioneer-free and unconditionally
secure whereas those protocols rely on computational assumptions and
use auctioneers. As our contribution, we first propose a multicomponent
commitment scheme, that is, a construction with multiple committers
and verifiers. Consequently, three secure first-price auction protocols are
proposed, each of which has its own properties. We also provide the
security proof and the complexity analysis of proposed constructions.

1 Introduction

The growth of e-commerce technology has created a remarkable opportunity for
electronic auctions in which various bidders compete to buy a product online. As
a result, the privacy of the proposed bids is a significant problem to be resolved.

The main motivation for privacy is the fact that bidders’ valuations can be
used in future auctions and negotiations by different parties, say auctioneers
to maximize their revenues or competitors to win the auction. As an example,
suppose a bidder proposes his bid on a specific product, if this valuation is
released and the bidder loses the auction, other parties can use this information
in the future auctions or negotiations for the same kind of the product.

In an auction mechanism, the winner is a bidder who submitted the highest
bid. To define the selling price, there exists two major approaches: first-price
auction and second-price auction. In the former, the winner pays the amount
that he has proposed, i.e., the highest bid. In the latter, the winner pays the
amount of the second-highest bid.

? Research supported by NSERC Canada Graduate Scholarship
?? Research supported by NSERC Discovery Grant 203114-06



2 Nojoumian, Stinson

Sealed-bid auction models have many fundamental properties. Correctness:
determining the winner and the selling price correctly. Privacy : preventing the
propagation of private bids, that is, losing bids. Verifiability : verifying auction
outcomes by players. Non-Repudiation: preventing bidders to deny their bids
once they have submitted them. Traits of private auctions are presented in [15].

1.1 Motivation

The stated problem can be resolved by creating privacy-preserving protocols for
computing auction outcomes, that is, the winner as well as the selling price.
Unfortunately, most of current secure auction protocols are not unconditionally
secure, i.e., they rely on computational assumptions such as hardness of factoring
or discrete logarithm.

Our motivation therefore is to focus on the construction of first-price secure
auction protocols in which bidders’ valuations are kept private while defining
auction outcomes. We would like to apply a new commitment scheme in an
unconditionally secure setting. Our intention is to enforce the verifiability in the
sense that all parties have confidence in correctness of protocols.

In our protocols, bidders first commit to their bids before the auction starts.
They then apply a decreasing price mechanism in order to define the winner
and the selling price, that is, each protocol starts with the highest price and
decreases the price step by step until the auction outcomes are defined. This is
similar to the approach in [18, 17, 19].

The authors in the first reference use undeniable signature schemes, in the
second one they apply public-key encryption schemes, and in the last one they
use collision intractable random hash functions. To show how our constructions
differ from these solutions, we can refer to the following improvements. First,
these solutions are only computationally secure whereas our protocols are uncon-
ditionally secure. Second, they all use an auctioneer to define auction outcomes
whereas our protocols only use a trusted initializer.

The main difference between all the stated constructions and the Dutch-style
auction is the early commitments where bidders decide on their bids ahead of
time and independent of whatever information they may gain during the auc-
tion. Moreover, bidders cannot change their minds while the auction is running.
Finally, we can better deal with a rush condition and its potential attacks. For
instance, in a Dutch-style auction, a malicious bidder or a group of colluders can
wait and bid immediately after the bid of an honest player.

1.2 Literature Review

In the first design of the sealed-bid auction [6], the authors apply cryptographic
techniques in a computationally secure setting to construct a secure protocol.
Subsequently, various types of secure auctions were proposed in the literature.

The authors in [11] (which is modified in [12]) demonstrate multi-round
sealed-bid auction protocols in which winners from an auction round take part in
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a consequent tie-breaking second auction round. This first-price auction protocol
is computationally secure in a passive adversary model and applies the addition
operation of the secure multiparty computation. Later, some shortcomings were
identified in this scheme, and then they were fixed in [14].

We can refer to other first-price secure auction protocols with computational
security. In [9], the authors apply secure function evaluation via ciphertexts and
present a Mix-and-Max auction protocol. In [13], the authors apply homomorphic
secret sharing and prevent attacks to existing secret-sharing-based protocols. In
[3], the authors use homomorphic encryption such as the ElGamal cryptosystem
to construct cryptographic auction protocols.

We can also refer to other kinds of sealed-bid auction protocols. The second-
price auction protocol proposed in [8], where bids are compared digit by digit
by applying secret sharing techniques. The (M + 1)st-price auction protocol
proposed in [10], where the highest M bidders win the auction and pay a uniform
price. The combinatorial auction protocol proposed in [20], where multiple items
with interdependent values are sold simultaneously while players can bid on any
combination of items. All these constructions are also computationally secure.

To conclude, the authors in [4, 5] investigate the possibility of unconditional
full privacy in auctions. They demonstrate that the first-price secure auction can
be emulated by such a full privacy, however, the protocol’s round complexity is
exponential in the bid size. On the other hand, they prove the impossibility of
the full privacy for the second-price secure auction for more than two bidders.

1.3 Contribution

As our main contribution, we initially construct a multicomponent commitment
scheme where multiple committers and verifiers act on many secrets. After that,
several unconditionally secure first-price auction protocols are constructed based
on this new commitment scheme. Each of these protocols consists of a trusted
initializer and n bidders. They also work under the honest majority assumption.

The first construction is a verifiable protocol without the non-repudiation
property. This protocol has a low computation cost. The second construction
is a verifiable protocol with the non-repudiation property. The computation cost
of this protocol has an extra multiplication factor. The last construction is an
efficient verifiable protocol with the non-repudiation property and partial privacy.
This protocol preserves the privacy of losing bids by a security relaxation with
a lower computation cost.

2 Preliminaries

2.1 Commitment Schemes

Commitment schemes were introduced by Blum [1] in order to solve the coin
flipping problem. In a commitment scheme, the first party initially commits to a
value while keeping it hidden, i.e., commitment phase. Subsequently, he reveals
the committed value to the second party in order to be checked, i.e., reveal phase.
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R. Rivest [16] proposed an unconditionally secure commitment scheme in
which the sender and receiver are both computationally unbounded. He assumes
the existence of a trusted initializer, Ted, and a private channel between each
pair of parties. The protocol is as follows:

1. Initialize: Ted randomly selects a and b which define a line, and securely
sends these values to Alice. He then selects a point (x1, y1) on this line and
sends it to Bob privately: y = ax+ b, y1 = ax1 + b where a ∈ Z∗q and b ∈ Zq.

2. Commit: at this phase, Alice computes y0 = ax0 + b as a committed value
and sends it to Bob, where x0 is her secret.

3. Reveal: Alice discloses the pair (a, b) as well as x0 to Bob. Finally, Bob
checks that the pairs (x0, y0) and (x1, y1) are on the line y = ax + b. If so,
Bob accepts x0, otherwise, he rejects it.

There exists a minor problem with this scheme. In a scenario where y0 = y1 (e.g.,
the committed value y0 is equal to the second value that Bob receives from Ted),
Bob learns x0 before the reveal phase, that is, if y0 = y1 then x0 = x1 because
y = ax + b is a one-to-one function. This problem is fixed in [2] by replacing
y0 = ax0 + b with y0 = x0 + a in the commitment phase. We further provide the
security proof of this scheme in order to show the way it works.

Theorem 1. The presented scheme is unconditionally secure, that is, parties are
computationally unbounded and the scheme satisfies binding and hiding proper-
ties with 1/q probability of cheating.

Proof. Binding: If Alice changes her mind and decides to cheat by revealing a
fake secret x′0, she needs to provide a fake line (a′, b′) such that y1 = a′x1+b′ and
y0 = a′x′0 + b′ (since she has already committed to y0). Suppose the actual line
is L and the fake line is L′. These two lines either are parallel or intersect at one
point. In the former case, since (x1, y1) ∈ L and L ‖ L′, therefore, (x1, y1) /∈ L′,
which means Bob does not accept (a′, b′) and consequently x′0. In the latter
case, Alice can cheat only if two lines intersect at (x1, y1), which means Alice
needs to guess Bob’s point (x1, y1) in order to be able to cheat. The probability
of guessing this point is 1/q since all elements in Zq have an equal chance of
occurrence. Hiding: even by having an unlimited computation power, Bob can
only learn the pair (x1, y1) and the committed value y0 in the first two phases.
Considering the modified version in [2], there is no chance for Bob to infer x0

from (x1, y1) and y0. ut

2.2 Evaluation and Interpolation Costs

Now, we review computation costs of polynomial evaluation and interpolation.
Using a naive approach to evaluate f(x) = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 at

a single point α, we need 3n − 4 operations in the finite field. First we require
n−2 multiplications to compute α2 = α×α, α3 = α×α2, . . . , αn−1 = α×αn−2.
Then, computing terms aixi requires a further n − 1 multiplications. Finally,
adding all terms together takes n− 1 additions. This approach can be improved
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slightly by the Horner’s evaluation. Therefore, the total cost of the evaluation for
a polynomial of degree at most n− 1 at a single point α is O(n), consequently,
the evaluation at n points takes O(n2). To interpolate n points and construct
a polynomial of degree at most n − 1, we need O(n2) operations using the
Lagrange/Newton interpolation [7].

These techniques can be improved by using the fast multipoint evaluations
(n points) and the fast interpolation of a polynomial of degree at most n − 1.
These methods take O(C(n) log n), where C(n) is the cost of multiplying two
polynomials of degree at most n − 1. Therefore, the multipoint evaluation and
the fast interpolation take O(n log2 n) arithmetic operations using fast fourier
transform, which requires the existence of a primitive root of unity in the field.

C(n) :


O(n2) classical method
O(n1.59) Karatsuba’ s method
O(n log n) Fast Fourier Transform

3 Multicomponent Commitment Scheme (MCS)

We first provide the formal definition of a multicomponent commitment scheme
(MCS), i.e., a construction with multiple committed values and verifiers.

Definition 1. A multicomponent commitment scheme is a construction with
multiple committers and several verifiers, and is said to be unconditionally secure
if the following conditions are hold:

1. Hiding: each receiver is computationally unbounded and cannot learn any-
thing regarding secret values before the reveal phase except with a negligible
probability Pr[ε1].

2. Binding: each sender is computationally unbounded and cannot cheat with
the help of colluders in the reveal phase by sending a fake secret except with
a negligible probability Pr[ε2].

3. Validating: assuming the sender is honest, other honest players should be
able to correctly validate each secret during the reveal phase in the presence
of colluders.

In the following constructions, we have n players P1, P2, . . . , Pn and a trusted
initializer T who leaves the scheme before starting protocols. We consider the
existence of a private channel between each pair of parties, and an authenticated
public broadcast channel. We also assume the majority of players are honest.
For the sake of simplicity, first a scheme with one committer, say Pi, and several
verifiers P1, . . . , Pi−1, Pi+1, . . . , Pn is presented.

1. Initialize: T randomly selects a polynomial g(x) ∈ Zq[x] of degree n − 1,
and privately sends g(x) to committer Pi. He then selects n − 1 distinct
points (xj , yj) uniformly at random on this polynomial, and sends (xj , yj)
to Pj for 1 ≤ j ≤ n and j 6= i through the private channels.

y1 = g(x1) y2 = g(x2) . . . yn = g(xn)
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2. Commit: Player Pi first selects the secret xi and computes yi = g(xi) as a
committed value. He then broadcasts yi to other players.

3. Reveal: Pi discloses the polynomial g(x) and his secret xi to other parties
through the public broadcast channel. First, other players investigate the
validity of yi = g(xi), where yi is the value that Pi has already committed
to. After that, each Pj checks to see if his point is on g(x), i.e., yj = g(xj)
for 1 ≤ j ≤ n and j 6= i. If yi = g(xi) and the majority of players confirm
the validity of g(x) (or an equal number of confirmations and rejections is
received), xi is accepted as the secret of Pi, otherwise, it is rejected.

Now, we extend our approach to a construction with multiple committers and
several verifiers, that is, n independent instances of the previous scheme.

1. Initialize: T randomly selects n polynomials g1(x), g2(x), . . . , gn(x) ∈ Zq[x]
of degree n−1, and privately sends gi(x) to Pi for 1 ≤ i ≤ n. He then selects
n−1 distinct points (xij , yij) uniformly at random on each polynomial gi(x),
and sends (xij , yij) to Pj for 1 ≤ j ≤ n and j 6= i through private channels.
The following matrix shows the information that each player Pj receives,
i.e., all entries in jth row:

En×n =


g1(x) y21 = g2(x21) . . . yn1 = gn(xn1)

y12 = g1(x12) g2(x) . . . yn2 = gn(xn2)
...

...
. . .

...
y1n = g1(x1n) y2n = g2(x2n) . . . gn(x)


2. Commit: each player Pi computes yi = gi(xi) as a committed value and

broadcasts yi to other players, where xi is the secret of Pi, i.e., y1, y2, . . . , yn
are committed values and x1, x2, . . . , xn are secrets of players accordingly.

3. Reveal: each player Pi discloses gi(x) and his secret xi to other parties
through the public broadcast channel. First, other players investigate the
validity of yi = gi(xi), where yi is the value that Pi has already committed
to. In addition, they check to see if all those n − 1 points corresponding to
gi(x) are in fact on this polynomial (i.e., the validity of gi(x): yij = gi(xij)
for 1 ≤ j ≤ n and j 6= i). If yi = gi(xi) and the majority of players confirm
the validity of gi(x) (or an equal number of confirmations and rejections is
received), xi is accepted as a secret, otherwise, it is rejected.

Theorem 2. The proposed multicomponent commitment scheme MCS is an
unconditionally secure construction under the honest majority assumption in an
active adversary setting, that is, it satisfies the hiding, binding, and validating
properties of Definition 1.

Proof. Malicious participants might be able to provide fake polynomials and
consequently incorrect secrets, or disrupt the voting result.
Hiding: when a player Pi commits to a value, each player Pj for 1 ≤ j ≤ n
and j 6= i only knows his pair (xij , yij) and the committed value yi in the first
two phases even by having an unlimited computation power. In the worst case
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scenario, even if n−1
2 players Pj collude, they are not able to construct gi(x) of

degree n−1 to reveal xi. In the case where the committed value yi of Pi is equal
to yij of a player Pj , Pj might be able to infer some information about the secret
xi. This occurs with the following probability:

Pr[yi = yij ] ≤
n− 1
q

for some j ∈ [1, n] and j 6= i (1)

Although a polynomial is not a one-to-one function (that is, two points on
the polynomial with an equal y-coordinate may or may not have the same x-
coordinate), a polynomial of degree n−1 has at most n−1 roots, meaning that,
given (xi, yi) and (xij , yij) ∈ gi(x):

if ∃j s.t. yi = yij then
1

n− 1
≤ Pr[xi = xij ] ≤ 1 (2)

Consequently, with the probability Pr[ε1] = Pr[yi = yij ∧ xi = xij ], player Pj
may know the secret xi before the reveal phase:

Pr[ε1] ≤ n− 1
q

by (1) and (2)

Binding: if a player Pi changes his mind and decides to cheat by revealing a
fake secret x′i, he needs to provide a fake polynomial g′i(x) of degree n− 1 such
that (a) yi = g′i(x

′
i), since he has already committed to yi, and (b) yij = g′i(xij)

for 1 ≤ j ≤ n and j 6= i, meaning that gi(x) and g′i(x) must pass through
n− 1 common points, that is, Pi needs to guess all points of other players. The
alternative solution for Pi is to collude with malicious players and change the
voting result such that a sufficient number of players accept the fake secret x′i.
It is clear that two distinct polynomials gi(x) and g′i(x) of degree n− 1 agree at
most on n− 1 points, therefore, for a randomly selected point (xij , yij) we have:

Pr[yij = gi(xij) ∧ yij = g′i(xij)] ≤
n− 1
q

(3)

Therefore, suppose we have the maximum number of colluders to support Pi and
assume n− 1 is an even number. To hold the honest majority assumption, there
are always two more honest voters, i.e,

(
n−1

2 + 1
)
−
(
n−1

2 − 1
)

= 2. Since the
committer Pi is dishonest, he can only change the voting result if he guesses at
least one point of honest players, which leads to an equal number of confirmations
and rejections. As a consequence, the probability of cheating with respect to the
binding property is as follows:

Pr[ε2] ≤
(
n− 1

2
+ 1
)
×
(
n− 1
q

)
= O

(
n2

q

)
by (3)

Validating: suppose the committer Pi is honest and n − 1 is an even number,
to hold the honest majority assumption, there is an equal number of honest and
dishonest voters Pj for 1 ≤ j ≤ n and j 6= i, that is, players who are validating
gi(x) belonging to Pi. Therefore, gi(x) and consequently xi are accepted since
an equal number of confirmations and rejections is achieved. ut
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Theorem 3. The multicomponent commitment scheme MCS takes 3 rounds of
communications and O(n2 log2 n) computation cost.

Proof. It can be seen that every stage takes only one round of communications
which comes to 3 rounds in total. To achieve a better performance, suppose we
use a primitive element ω in the field to evaluate polynomials, i.e., yij = gi(ωxij ).
As a consequence, in the first two stages, each gi(x) of degree n− 1 is evaluated
at n points with O(n log2 n) computation cost. This procedure is repeated for
n polynomials, consequently, the total cost is O(n2 log2 n). In the third stage,
everything is repeated with the same computation cost of the first two steps,
therefore, the total computation cost is O(2n2 log2 n) = O(n2 log2 n). ut

4 Sealed-Bid First-Price Auction Protocols

Now, three first-price sealed-bid auction protocols based on the multicomponent
commitment scheme are presented. Our constructions are auctioneer-free in an
unconditionally secure setting, i.e., bidders define auction outcomes themselves.

Our protocols consist of a trusted initializer T and n bidders B1, . . . , Bn
where bidders valuations βi ∈ [η, κ]. Let θ = κ− η + 1 denotes our price range.
In cryptography constructions, an initializer leaves the scheme before running
protocols while a trusted authority may stay in the scheme until the end of
protocols. We consider existence of private channels between the initializer and
each bidder as well as each pair of bidders. There exists an authenticated public
broadcast channel on which information is transmitted instantly and accurately
to all parties. Let Zq be a finite field and let ω be a primitive element in this
field; all computations are performed in the field Zq. We need n2/q to be very
small due to our commitment scheme MCS. Therefore, q must be large enough
to satisfy this requirement.

4.1 Verifiable Protocol with Repudiation Problem (VR)

We assume majority of bidders are honest, and at most n/2 of bidders may
collude to disrupt auction outcomes or learn losing bids.

1. Initialize: T randomly selects n polynomials g1(x), g2(x), . . . , gn(x) ∈ Zq[x]
of degree n−1, and privately sends gi(x) to Bi for 1 ≤ i ≤ n. He then selects
n − 1 distinct points (ωxij , yij) uniformly at random on each polynomial
gi(x), and sends (ωxij , yij) to Bj for 1 ≤ j ≤ n and i 6= j through the
private channels. Subsequently, T leaves the scheme.

2. Start: when the auction starts, each Bi commits to βi by αi = gi(ωβi) and
broadcasts αi to other bidders, where βi is the bidder’s valuation. There is
a specific time interval in which bidders are allowed to commit to their bids.

3. Close: after the closing time, bidders set the initial price γ to be the highest
possible price, i.e., γ = κ, and then define winners as follows:
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(a) The bidder Bk who has committed to γ claims that he is the winner.
Consequently, he must prove βk = γ. Ties among multiple winners can be
simply handled by assigning priority to bidders or by a random selection
after providing valid proofs by different winners.

(b) Bk also reveals gk(x) so that other bidders are able to investigate the
validity of αk = gk(ωβk). They then check to see if all those n− 1 points
are on gk(x). If these conditions are hold based on the MCS protocol,
Bk is accepted as the winner, otherwise, his claim is rejected.

(c) If no one claims as a winner or the bidder who claimed as a potential
winner could not prove his plea, then bidders decrease the selling price
by one, i.e., γ = κ− 1, and the procedure is repeated from stage (a).

This new protocol has many useful properties. First of all, it is a verifiable scheme
in which bidders are able to investigate the correctness of auction outcomes
while preserving privacy of losing bids. Second, it is a simple construction with
a low computation cost. Finally, bidders are able to define auction outcomes
without any auctioneers in an unconditionally secure setting. However, it has a
shortcoming in the sense that a malicious player (or a group of colluders) may
refuse to claim as the winner when his bid is equal to the current price γ, that
is, the repudiation problem.

Theorem 4. Excluding the repudiation problem, the first-price auction protocol
VR determines auction outcomes correctly with a negligible probability of error
and protects losing bids.

Proof. Under the honest majority assumption and the proof in Theorem 2, the
scheme protects all losing bids with a negligible probability of error and only
reveals the highest bid. Moreover, bidders are able to verify the claim of the
winner and consequently define the selling price with a negligible probability
of cheating. It is worth mentioning that the protocol has definitely a winner
since more than half of players are honest. In other words, in the case of the
repudiation problem, the first honest bidder who has proposed the highest bid
or the first malicious player who claims as the winner and has the highest bid is
the winner. ut

Theorem 5. The first-price auction protocol VR takes at most O(θ) rounds of
communications and O(n2 log2 n) computation cost.

Proof. There exist two rounds of communication for the first two stages. In
addition, the third phase takes at most θ rounds, which comes to O(θ) in total.
To compute the computation cost, each gi(x) of degree n − 1 is evaluated at
n points in the first two steps with O(n log2 n) computation cost, i.e, n − 1
evaluations in the first step and one evaluation in the second step. This procedure
is repeated for n bidders, as a consequence, the total cost is O(n2 log2 n). In
the third stage, a constant number of polynomials equivalent to the number
of winners are evaluated, therefore, the total computation cost for the entire
protocol is O(n2 log2 n). Even if all players propose a unique value and we have
n winners, the computation cost is the same. ut
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4.2 Verifiable Protocol with Non-Repudiation (VNR)

Similar to the previous approach, we assume majority of bidders are honest and
at most n/2 of bidders may collude to disrupt auction outcomes or learn losing
bids. To handle the repudiation problem, we modify our earlier construction such
that all losers prove that their bids are less than the winning price at the end of
the protocol.

1. Initialize: The trusted initializer T first provides some private data through
pair-wise channels and then leaves the scheme.

(a) He randomly selects θ polynomials gi1(x), gi2(x), . . . , giθ(x) ∈ Zq[x] of
degree n − 1 for each bidder Bi, and privately sends these polynomials
to Bi for 1 ≤ i ≤ n.

(b) He then selects n − 1 distinct points (ωx
k
ij , ykij) for 1 ≤ k ≤ n and

k 6= i uniformly at random on each polynomial gij(x), where 1 ≤ j ≤ θ.
He finally sends these points to Bk. The following matrix shows the
information that each Bk receives, i.e., all entries in kth row:

En×θn =


g11(x) . . . g1θ(x) . . . (ωx

1
n1 , y1

n1) . . . (ωx
1
nθ , y1

nθ)
(ωx

2
11 , y2

11) . . . (ωx
2
1θ , y2

1θ) . . . (ωx
2
n1 , y2

n1) . . . (ωx
2
nθ , y2

nθ)
...

. . .
...

. . .
...

. . .
...

(ωx
n
11 , yn11) . . . (ωx

n
1θ , yn1θ) . . . gn1(x) . . . gnθ(x)


2. Start: when the auction starts, there is a specific time interval in which

bidders are allowed to commit to their bids.

(a) Each Bi first defines his bid βi as shown below. In fact, bij ’s are elements
of the vector Bi = [bi1, bi2, . . . , biθ]. By having a constant number of 1’s,
elements of each Bi can have different permutations in this vector.

βi = κ−
θ∑
j=1

bij where bij ∈ {0, 1}

(b) Each Bi then applies a random mappingMi(x) : {0, 1} → Zq to convert
Bi to a new vector B′i so that its elements b′ij ∈ Zq. Mi(x) ∈ [0, q/2) if
x = 0, otherwise, Mi(x) ∈ [q/2, q).

(c) Finally, each bidder Bi for 1 ≤ i ≤ n commits to b′ij by αij = gij(ωb
′
ij )

for 1 ≤ j ≤ θ and broadcasts all αij to other bidders.

3. Close: after the closing time, bidders set the initial price γ to be the highest
possible price, i.e., γ = κ, and then define winners as follows:

(a) Bk who has committed to γ claims he is the winner. Consequently, he
must prove βk = γ. Therefore, he reveals gkj(x) and b′kj for 1 ≤ j ≤ θ.
By using the inverse mappings [0, q/2) → 0 and [q/2, q) → 1, bkj for
1 ≤ j ≤ θ are recovered and βk = κ−

∑κ
j=η bkj is computed.
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(b) If βk = γ, other bidders then investigate the validity of αkj = gkj(ωb
′
kj )

for 1 ≤ j ≤ θ. They also check to see if each set of n−1 points (ωx
i
kj , yikj)

for 1 ≤ i ≤ n and i 6= k are on gkj(x)’s. If these conditions are hold, Bk
is accepted as the winner, otherwise, his claim is rejected.

(c) Each loser Bl must prove βl < βk. Therefore, each Bl reveals any subset
of his commitments b′lj for some j ∈ {1, . . . , θ} such that the following
condition is hold: ∑

j∈{1,...,θ}

blj = κ− βk + 1

where blj is the inverse mapping of b′lj . Obviously, Bl needs to provide
valid proofs for b′lj ’s.

(d) If no one claims as a winner or the bidder who claimed as a potential
winner could not prove his plea, then bidders decrease the selling price
by one, i.e., γ = κ− 1, and the procedure is repeated from stage (a).

By a simple modification in this protocol, it is feasible to catch malicious bidders
before determining the winner. As we decrease the price one by one, each bidder
Bi must reveal one b′ij ∈ [q/2, q) (i.e, bij = 1) at each round, otherwise, he is
removed from the scheme as a malicious bidder.

Example 1. Suppose each βi ∈ [0, 7] and all computations are performed in the
field Z13. Assume βi = 7 − 5 = 2 and the winning price is βk = 5 or βk = 3
in two different scenarios. Mi(x) ∈ [0, 7) if x = 0, otherwise, Mi(x) ∈ [7, 13).
Therefore, we have the following vectors:

Bi = {1, 0, 1, 1, 0, 0, 1, 1} and B′i = {12, 6, 10, 7, 5, 3, 11, 9}

When βk = 5, the loser Bi reveals 7−5+1 = 3 values larger than q/2 in order to
prove he has at least three 1’s in Bi, which shows his bid is less than the winning
price. When βk = 3, Bi reveals 7− 3 + 1 = 5 values larger than q/2 to prove his
bid is less than the winning price.

Theorem 6. The proposed first-price auction protocol VNR determines auction
outcomes correctly with a negligible probability of error and protects losing bids.
It also satisfies the non-repudiation property.

Proof. We need to follow the same proof in Theorem 2 for the verifiability and
privacy. Moreover, it is required to show that losers do not reveal any information
in part (c) of stage 3. As shown in the protocol VNR, each bidder Bi commits
to θ values such that the protocol can handle the repudiation problem. Suppose
the bidder Bk wins the auction.

βk = κ−
θ∑
j=1

bkj where bkj ∈ {0, 1}

βk = κ−
∑

j∈{1,...,θ}

bkj where each bkj = 1 by excluding all bkj = 0

βk > κ−
∑

j∈{1,...,θ}

bkj − 1 = κ− (
∑

j∈{1,...,θ}

bkj + 1)
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This illustrates that the bid of each loser Bl is exactly less than βk if he reveals
only an extra 1 compared to the winner, that is, blj = 1 and its corresponding
commitment b′lj ∈ [q/2, q). Therefore, losers do not reveal any extra information
regarding their bids. ut

Theorem 7. The protocol VNR takes at most O(θ) rounds of communications
and O(θn2 log2 n) computation cost where θ denotes the price range.

Proof. The analysis is similar to the computation cost of the protocol VR except
that here we have θn polynomials gij(x) of degree n − 1 to be evaluated at n
points for n bidders. ut

4.3 Efficient Verifiable Protocol with Non-Repudiation (EVNR)

We modify our previous approach in order to construct a more efficient protocol
with partial privacy of bids. Let λ = dlog2 θe where θ denotes our price range.

1. Initialize: The trusted initializer T first provides some private data through
pair-wise channels and then leaves the scheme.

(a) He randomly selects λ polynomials gi1(x), gi2(x), . . . , giλ(x) ∈ Zq[x] of
degree n − 1 for each bidder Bi, and privately sends these polynomials
to Bi for 1 ≤ i ≤ n.

(b) He then selects n − 1 distinct points (ωx
k
ij , ykij) for 1 ≤ k ≤ n and

k 6= i uniformly at random on each polynomial gij(x), where 1 ≤ j ≤ λ.
He finally sends these points to Bk. The following matrix shows the
information that each Bk receives, i.e., all entries in kth row:

En×λn =


g11(x) . . . g1λ(x) . . . (ωx

1
n1 , y1

n1) . . . (ωx
1
nλ , y1

nλ)
(ωx

2
11 , y2

11) . . . (ωx
2
1λ , y2

1λ) . . . (ωx
2
n1 , y2

n1) . . . (ωx
2
nλ , y2

nλ)
...

. . .
...

. . .
...

. . .
...

(ωx
n
11 , yn11) . . . (ωx

n
1λ , yn1λ) . . . gn1(x) . . . gnλ(x)


2. Start: when the auction starts, there is a specific time interval in which

bidders are allowed to commit to their bids.

(a) Each bidder Bi first defines his bid βi as shown below. The second term
(biλ . . . bi2 bi1)2 is the binary representation of a positive integer in Zq.

βi = κ− (biλ . . . bi2 bi1)2 where bij ∈ {0, 1}

(b) Each bidder Bi then applies a random mapping Mi(x) : {0, 1} → Zq to
convert set {biλ , . . . , bi2 , bi1} to a new set {b′iλ , . . . , b′i2 , b′i1} so that
each b′ij ∈ Zq. Mi(x) ∈ [0, q/2) if x = 0, otherwise, Mi(x) ∈ [q/2, q).

(c) Finally, each bidder Bi for 1 ≤ i ≤ n commits to b′ij by αij = gij(ωb
′
ij )

for 1 ≤ j ≤ λ and broadcasts all αij to other bidders.
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3. Close: after the closing time, bidders set the initial price γ to be the highest
possible price, i.e., γ = κ, and then define winners as follows:

(a) Bk who has committed to γ claims he is the winner. Consequently, he
must prove βk = γ. Therefore, he reveals gkj(x) and b′kj for 1 ≤ j ≤ λ.
By using the inverse mappings [0, q/2) → 0 and [q/2, q) → 1, bkj for
1 ≤ j ≤ λ are recovered and βi = κ− (biλ . . . bi2 bi1)2 is computed.

(b) If βk = γ, other bidders then investigate the validity of αkj = gkj(ωb
′
kj )

for 1 ≤ j ≤ λ. They also check to see if each set of n−1 points (ωx
i
kj , yikj)

for 1 ≤ i ≤ n and i 6= k are on gkj(x)’s. If these conditions are hold, Bk
is accepted as the winner, otherwise, his claim is rejected.

(c) Each loser Bl must prove βl < βk. Therefore, each Bl reveals a minimum
subset of his commitments b′lj for some j ∈ {1, . . . , λ} such that the
following condition is hold:∑

j∈{1,...,λ}

(blj × 2j−1) > κ− βk

where blj is the inverse mapping of b′lj . Obviously, Bl needs to provide
valid proofs for b′lj ’s.

(d) If no one claims as a winner or the bidder who claimed as a potential
winner could not prove his plea, then bidders decrease the selling price
by one, i.e., γ = κ− 1, and the procedure is repeated from stage (a).

Example 2. Suppose each βi ∈ [0, 7] and all computations are performed in
the field Z13. Assume βi = 7 − (101)2 = 7 − 5 = 2 and the winning price is
βk = 5 or βk = 3 in two different scenarios. Mi(x) ∈ [0, 7) if x = 0, otherwise,
Mi(x) ∈ [7, 13). Therefore, we have the binary representation {1, 0, 1} and its
corresponding mapping {11, 5, 9}. When βk = 5, Bi reveals his 3rd commitment
to prove (1× 22) > 7− 5. This shows his bid is at most 3 which is less than the
winning price. When βk = 3, Bi reveals his 3rd and 1st commitments to prove
(1× 22 + 1× 20) > 7− 3. This shows his bid is at most 2 which is less than the
winning price.

Theorem 8. The first-price auction protocol EVNR defines auction outcomes
correctly with a negligible probability of error. This protocol partially protects
losing bids and satisfies the non-repudiation property.

Proof. Similar to the previous theorem, we only analyze part (c) of stage 3 to
show the partial information leakage. Suppose the bidder Bk wins the auction,
each loser Bl must reveal a subset of his commitments such that

∑
j∈{1,...,λ}(blj×

2j−1) > κ− βk. We also know:

βl = κ− (blλ . . . bl2 bl1)2

βl = κ−
λ∑
j=1

(blj × 2j−1)

βl ≤ κ−
∑

j∈{1,...,λ}

(blj × 2j−1)
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This illustrates that by revealing a subset of commitments, an upper bound of the
losing bid is also revealed, that is, the losing bid is at most κ−

∑
j∈{1,...,λ}(blj ×

2j−1). Therefore, depending on the winning bid βk, losers may reveal some extra
information regarding their bids. ut

Theorem 9. The first-price auction protocol EVNR takes at most O(θ) rounds
of communications and O(λn2 log2 n) = O(log2 θ × n2 log2 n) computation cost
where θ denotes the price range.

Proof. The analysis is similar to the computation cost of the protocol VNR
except that here we have λn polynomials gij(x) of degree n−1 where λ = dlog2 θe.

ut

5 Conclusion

We initially illustrated the lack of unconditional security in sealed-bid auction
protocols, and then proposed three unconditionally secure constructions. We
constructed a multicomponent commitment scheme MCS and proposed three
secure first-price auction protocols base on that construction. Table 1 represents
outlines of our contributions.

Protocol Assumption Private Verifiable Non-Rep Round Cost

VR honest majority yes yes no O(θ) O(n2 log2 n)

VNR honest majority yes yes yes O(θ) O(θn2 log2 n)

EVNR honest majority partial yes yes O(θ) O(n2 log2 θ log2 n)

Table 1. Unconditionally Secure First-Price Auction Protocols Using MCS

Our constructions are unconditionally secure. They work under the honest
majority assumption without using any auctioneers. It is quite challenging to
construct protocols in this setting. In other words, if one relaxes any of these
assumptions, he can subsequently decrease the computation and communication
complexities. For instance, constructing the proposed schemes by relying on
computational assumptions, or considering the simple passive adversary model,
or using many auctioneers in the protocols.
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