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Title: Image Quality and Beauty Classification Using Deep
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The field of computer vision has grown by leaps and bounds in the past decade.

The rapid advances can be largely attributed to advances made in the field of Artificial

Neural Networks and more specifically can be attributed to the rapid advancement

of Convolutional Neural Networks (CNN) and Deep Learning. One area that is of

great interest to the research community at large is the ability to detect the quality

of images in the sense of technical parameters such as blurriness, encoding artifacts,

saturation, and lighting, as well as for its’ aesthetic appeal. The purpose of such

a mechanism could be detecting and discarding noisy, blurry, dark, or over exposed

images, as well as detecting images that would be considered beautiful by a majority

of viewers. In this dissertation, the detection of various quality and aesthetic aspects

of an image using CNNs is explored. This research produced two datasets that are

manually labeled for quality issues such as blur, poor lighting, and digital noise,

and for their aesthetic qualities, and Convolutional Neural Networks were designed

and trained using these datasets. Lastly, two case studies were performed to show

the real-world impact of this research to tra�c sign detection and medical image

diagnosis.
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CHAPTER 1

INTRODUCTION

In this dissertation two Convolutional Neural Networks (CNNs) are proposed to 1)

classify images by quality problems, and 2) rank images based on holistic aesthetic

qualities. A case study is also performed to examine the e↵ects of photo quality

issues on medical image diagnosis using deep learning. This chapter provides a brief

introduction to the topics, the motivations and contributions of this research, and the

outline of this dissertation.

1.1 OVERVIEW

The field of computer vision has grown by leaps and bounds in the past decade. The

rapid advances can be largely attributed to advances made in the field of Artificial

Neural Networks (ANNs) and CNNs in particular. On the 30th of September in 2012,

the winning CNN at the ImageNet Challenge was able to achieve a top-5 error rate

of just 15.3%, which at the time was more than 10% better than the runner up. This

was a turning point for deep learning, and a revolution was sparked. Made possible by

the use of Graphics Processing Units (GPUs), CNNs which were conceptualized more

than 3 decades earlier, took the machine learning and computer vision world by storm.

Within just a few years, the top-5 error rate for the ImageNet challenge would drop

to below 5% making classification of images by a computer more accessible than ever.

Even with these advances, there are still large challenges remaining within this field.

One area that is of great interest to the community at large is the ability to detect

the quality of images in the sense of technical parameters such as blurriness, encoding

1



artifacts, saturation, and lighting, as well as for its’ aesthetic appeal. The purpose of

such a mechanism could be for the purposes of detecting and discarding noisy, blurry,

dark, or over exposed images, or for the purposes of detecting images that would

be considered beautiful by a majority of viewers. In this dissertation, the detection

of various quality and aesthetic aspects of an image using CNNs is explored. This

research produced two datasets which are manually labeled for quality issues such as

blur, poor lighting, and digital noise, and for their aesthetic qualities. In addition,

three purpose built CNNs are designed and trained achieving high accuracy. Lastly,

two case studies were performed to show the real world impact of this research.

1.2 MOTIVATIONS AND CONTRIBUTIONS

The contributions and novelty of this research is 1) an end-to-end Machine Learning

(ML) approach to detecting quality problems in images [1], 2) a case study exploring

the e↵ects of photo quality on medical image diagnosis [2] and 2) a unique approach

for aesthetic ranking of an image using a novel CNN [3]. The motivation for this

work is, 1) to allow for ML to better understand the quality of inputs that are being

presented, 2) to use that insight to improve the overall accuracy of other tasks for

which the ML algorithms are being used, and 3) to enable Artificial Intelligence (AI)

to understand the holistic beauty of images so that we may use this system to build

systems that can provide a more insightful experience for users.

1.2.1 Datasets

Three datasets have been curated during the course of this research. The datasets

were built by collecting images from various online sources, processing, and manually

labeling the images.

2



Photo Quality Dataset

To train a model that could be generalized for a large number types of photos, there

was a need for a diverse dataset containing images of di↵erent subjects and taken

in various lighting conditions. Since such a dataset was not readily available, a new

dataset was created from the combination of images from the dataset created by Tang,

Luo, and Wang [4] and a set of blurry images that were created specifically for this

study. The blurry images were created using a Sony Alpha 6000 camera by manually

defocussing the camera. The aperture, timing, and ISO were set automatically by the

camera and vary for each image. The images were then resized prior to processing

through python for performance reasons. The dataset contains a total of 125 out

of focus images and 125 high quality images as classified in the prior publication

[4]. Motion blur images were produced by using the OpenCV Python library and

performing a motion blur operation on the reference images.

The Reference images were taken from the images labeled as high quality by Tang,

Luo, and Wang [4] which were selected to ensure clarity and lack of blurry elements.

Note that some of these images may contain out of focus or motion blurred sections,

but those types of blurriness have been judged to be desirable. There are also images

which are from the dataset by Sheikh et al. [5] which where modified to produce the

JPEG 2000 and white noise images.

Aesthetic Ranking Dataset

The image dataset used to rate an image’s aesthetic qualities was created by collecting

photos from the websites flickr.com, unsplash.com, and pixabay.com. These platforms

enable users to upload images to the site and provide the option to allow others to

download their images. Images containing forests, bodies of water, and meadows were

downloaded for this study. 2,000 images matching that criteria were downloaded at

their original size.

3



Figure 1.1: White Noise
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Figure 1.2: Clear Photo 2

Medical Image Dataset

The International Skin Imaging Collaboration (ISIC) is a partnership between academia

and industry with the aim to facilitate the application of digital skin imaging. The

archives contain thousands of labeled images of skin regions with various confirmed di-

agnosis. To conduct this study, we collected 3,408 images with a diagnosis of basal cell

carcinoma and 3,408 images within one nine diagnosis groups. These groups include

actinic keratosis, dermatofibroma, melanoma, nevus, pigmented benign keratosis, se-

borrheic keratosis, seborrheic keratosis, solar lentigo, squamous cell carcinoma, and

vascular lesion. We used this data set to conduct our study on the detection of basal

cell carcinoma using deep learning.

To collect images, the ISIC CLI tool was used. This tool allows for easy querying

and bulk downloading of data from the ISIC archives. At the time of this writing,

3,408 signifies the number of basal cell carcinoma images available on the archives.

5



1.2.2 Detection of Image Quality

The ability to automatically detect undesirable images would enable many useful

applications. Search engines would be able to automatically discard those images

that are of poor quality; digital cameras and phone camera software would be able to

alert the user of a poor quality shot so that they may correct the mistake; autonomous

driving technology would be able to ignore poorly shot frames to reduce the chances of

a mistake. To that end, the viability of using deep learning and CNNs in particular to

classify images into six categories of bad lighting, Gaussian blur, motion blur, JPEG

2000, white-noise, and high quality reference images, was studied. To accomplish this

task, a new dataset of images has been constructed from newly taken images, and

datasets from two previous studies. The first of these datasets was used to asses the

aesthetic quality of photos using machine learning techniques [4]. The second dataset

was used by [5] to classify images based on di↵erent qualitative criteria. Not all images

from these two datasets are used in this study since some of the images did not lend

themselves to this particular task. In addition to these two datasets, additional images

which were captured using a Sony Alpha 6000 camera which had been manually

defocused to produce a Gaussian blur e↵ect were included. Furthermore, the reference

images were modified using software to produce a motion blur e↵ect. Unlike previous

works, we produce a general approach capable of determining the overall quality of

images. The proposed method was shown to achieve a high accuracy of 81.6%.

1.2.3 Detection of Aesthetic Quality

In this research a novel approach to the problem of aesthetic ranking of images is in-

troduced. Such a system could be used to quickly judge if a picture that has just been

taken is aesthetically pleasing and would a↵ord the photographer the opportunity to

make adjustments and retake the shot. It could also be used to determine which of

the thousands of snapshots taken during a weekend are worthy of being shared with

6



the world.

In e-commerce, computer vision and machine learning techniques have been used

to find merchandise similar to previously purchased items from a buyer’s profile.

However, these algorithms are limited to finding similarity between various products

in a catalog, or finding purchasing patterns amongst a group of buyers. This lacks

the ability to account for the aesthetic characteristics that a particular buyer finds

appealing. A system that is capable of building an aesthetic profile for a buyer, could

be used to quickly find artwork, clothing, furniture, and other merchandise which is

in agreement with the buyer’s aesthetic sense, even when the buyer has not previously

shown interest in items within the same category.

1.3 OUTLINE

The remainder of this dissertation is organized as follows. Chapter 2 covers the

preliminary concepts used through this dissertation. Chapter 3 provides a literature

review of the current state of art in the field. Chapters 4, 6, 5, propose methods for

solving various image quality and aesthetic challenges. Finally, chapter 7 provides

conclusions and closing remarks.
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CHAPTER 2

PRELIMINARY TECHNICAL MATERIALS

The research presented in this dissertation is based on machine learning and CNNs.

In this chapter the preliminary technical concepts used throughout the dissertation

are covered.

2.1 MACHINE LEARNING

ML refers to a class of programs and techniques which allow a computer program to

learn the behavior of a complex system without being explicitly programmed to un-

derstand it. ML includes Decision Trees, Random Forests, Support Vector Machines

(SVMs), and ANNs.

2.2 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are deep artificial neural networks (ANNs)

applied primarily to classify images, cluster images by similarity, and perform object

recognition within scenes. CNN consists of convolutional and sub-sampling layers

followed by one or more fully connected layers. The architecture of CNN is designed to

take advantage of the 2D structures of an input images. In addition, compared to fully

connected networks, CNNs are easier to train and have fewer parameters. To train and

test CNN model, each input image will pass through a series of convolution layers and

pooling for feature learning. Finally, an activation function such as Softmax, Sigmoid,

or ReLU is applied to classify an object. Along with other advanced machine learning

algorithms, CNNs have become fundamental to the field of computer vision.

8



2.2.1 Convolution Operation

The key layer in any CNN, is the convolution layer. This layer performs a math-

ematical convolution operation, denoted by ⇤. Equation 2.1 shows the convolution

operation.

O[u, v] = F [m,n] ⇤ I[u, v] =
X

m

X

n

F [m,n] · I[u+m, v + n] (2.1)

2.2.2 Filtering

Filters are nothing more than a mask that is applied to a part of an image to determine

if a segment of an image contains a particular feature such as a diagonal line, or a

horizontal line. The filter is then moved throughout parts of the image by moving it

from its current location to the next location by an o↵set known as a stride (rate of

movement). The resulting matrix is known as a feature map and is always smaller

than the starting image.

Output Size As convolutions are performed, the resulting feature map will have

a size that is di↵erent from the input. It is important to be able to calculate the

resulting feature map size when designing a network to ensure optimal performance.

We can calculate the output width and output height using equations 2.2 and 2.3,

respectively.

widthoutput =
W � Fw

Sw
+ 1 (2.2)

heightoutput =
H � F h

Sh
+ 1 (2.3)

where W is the width of image, H is the height of image, Fw is the width of the filter,

F h is the height of the filter, Sw is the horizontal stride, and Sh is the vertical stride.

9



Pooling

A common practice in the design of CNNs is to periodically, or often after every

convolutional layer, insert a pooling layer. The function of the pooling layer is to

reduce the size of the feature maps that are being worked with in order to lower

the number of parameters which must be learned and hence increase the training

performance of the network. There are di↵erent types of pooling algorithms, however

they all work on the basic idea of having some size N ⇥M which is used to combine

values. For example, given a 4 ⇥ 4 starting image and a pooling layer of 2 ⇥ 2, the

values of [0,0], [0,1], [1,0], and [1,1] will be combined to become the new [0,0] cell.

[2,0], [2,1], [3,0], and [3,1] will be combined to become the new [1,0] cell. [0,2], [0,3],

[1,2], and [1,3] will be combined to become the new [0,1] cell. [2,2], [2,3], [3,2], and

[3,3] will be combined to become the new [1,1] cell. The resulting image will be a

2⇥ 2 image.

The pooling of values is often performed using a max function, where the maximum

value of the cells being combined is taken as the new value. Other functions such as

min, or average can also be used to perform the pooling function.

Image Resizing

In order to make training easier and to allow for consistent network designs, the input

images to CNNs are often resized to something which is lower than the actual image

size. Images are often reshaped to a square size so that square filters can be applied

to them with ease.

2.2.3 Optimizers

During training the actual labels of the data are compared to the predicted label and

the cost function is minimized. A cost function of zero denotes completed learning. An

optimizer is needed to minimize the cost function. TensorFlow provides a variety of
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optimizers which can be used during the training process. The three most commonly

used optimizers are Adam, RMSProp, and SGD.

SGD The Stochastic Gradient Descent (SGD) optimizer allows for updating of net-

work weights per training image. Because of the noisiness of per image weight updates,

a special case of SGD is implemented TensorFlow known as Mini-Batch Gradient De-

scent. This special case of SGD is where the number of samples is more than one.

SGD is implemented by TensorFlow and uses equations 2.4 and 2.5 for weight updates.

wt + 1 = wt � ⌘
@C

@wt
(2.4)

@C

@wt
= rwC(wt; x

(i+i+n); y(i:i+n)) (2.5)

where wt are the weights at step t, ⌘ is the learning rate, n is the number of data

points in the batch, and C() is the cost function. rwC(wt) is the gradient of the

weight parameters for an image x, and its corresponding label y.

One of the disadvantages of SGD is oscillations during the updating of weights.

These oscillations often interfere with the learning process and increase the time to

convergence. To overcome this, a technique known as momentum based gradient

descent is employed.

Vt = �Vt�1 + ⌘
@C

@wt
(2.6)

@C

@wt
= rwC(wt; x

(i+i+n); y(i:i+n)) (2.7)

wt+1 = wt � Vt (2.8)

Momentum based gradient descent uses equations 2.6, 2.7, and 2.8 during weight

update, where V is the velocity initialized to 0, � is the momentum carried forward
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from the previous update, wt are the weights at step t, ⌘ is the learning rate, n is

the number of data points in the batch, and C() is the cost function. rwC(wt) is the

gradient of the weight parameters for an image x, and its corresponding label y [6].

Adam Optimizer

The Adam optimizer was introduced to combine the benefits of several optimization

methods, including Nesterov momentum, AdaGrad and RMSProp. Weight updates

in Adam are handled by equation 2.9.

wi
t = wi

t�1 �
⌘p
v̂ + ✏

· m̂t (2.9)

m̂t =
mt

1� �t
1

(2.10)

v̂t =
vt

1� �t
2

(2.11)

mt = �1mt�1 + (1� �1)G (2.12)

vt = �2vt�1 + (1� �2)[G]2 (2.13)

G = rwC(Wt) (2.14)

where wt are the weights at step t, ⌘ is the learning rate, n is the number of data points

in the batch, and C() is the cost function. rwC(wt) is the gradient of the weight

parameters for an image x, and its corresponding label y. �i is used to determine the

information passed forward from previous layers and mt is the running average of the

squared gradients.
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2.3 RESNET

Since the introduction of AlexNet in 2012, researchers have begun to increase the

depth of their networks with reasonable success. However, the depth wise growth

reached a limit with deeper networks leading to higher training accuracy. Table 2.1

shows the error rates of various networks as presented by He et al. [7]. This clearly

shows the performance degradation with the 34 layer plain network showing worse

performance than the much shallower VGG-16 network. The interesting thing noted

by the authors was that this degradation is not attributed to overtraining, and they

noted that this issue was not caused by the vanishing gradient problem since batch

normalization was used and neither forward nor backward signals vanish. Although

some research has been carried out to understand the mechanism by which Residual

Netoworks (ResNets) improve accuracy, this topic is not yet well understood and

more research is needed [8, 9].

The ResNet architecture has four main concepts: 1) the majority of convolutional

layers have 3 ⇥ 3 filters and have the same number of filters for the same output

map size; 2) the number of filters is doubled when the feature map size is doubled

which preserves the time complexity per layer; 3) downsampling is applied directly

by convolutional layers with a stride of 2; 4) shortcut connections are made from the

input of each layer to the following layer’s output, prior to activation [7]. Figure 2.1

shows the fundamental residual block. The proposed model of this paper is inspired

by these concepts.

2.4 INTERRATER AGREEMENT

Interrater agreement is the measure of closeness between ratings provided by raters for

the same subject. There have been various methods and models proposed to address

this challenge, however most of these methods can only be used on a single target.
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Figure 2.1: The fundamental residual block showing the shortcut connection and

activation layers [7]

A more systematic approach is required to judge general agreement between the

model’s ratings and those provided by human raters. Burke, Finkelstein, and Dusig

[13] proposed the use of average deviation indices as a means to estimate interrater

agreement.

ADM(j) =

NP
n=1

|xjk � x̄j|

N
(2.15)

where ADM(j), Equation 2.15, is the average absolute di↵erence from the mean

for a particular subject calculated for item j. N is the total number of judges, x̄j is

the arithmetic mean for all scores provided by all judges for item j, and xjk is the

score for item j by judge k.
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The index across all items is then calculated by ADM(J) as defined in Equation

2.16:

ADM(J) =

JP
j=1

ADM(j)

J
(2.16)

where ADM(J) is essentially the arithmetic mean of ADM(j) calculated for J items. In

this study, an ADM(J) of zero indicates complete agreement, and two would indicate

complete disagreement.
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Table 2.1: Error rates (%, 10-crop testing) on ImageNet validation. All data was

presented by He et al. [7].

model top-1 err. top-5 err.

VGG-16 [10] 28.07 9.33

GoogLeNet [11] - 9.15

PReLU-net [12] 24.27 7.38

plain-34 28.54 10.02

ResNet-34 A 25.03 7.76

ResNet-34 B 24.52 7.46

ResNet-34 C 24.19 7.40

ResNet-50 22.85 6.71

ResNet-101 21.75 6.05

ResNet-152 21.43 5.71
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CHAPTER 3

LITERATURE REVIEW

Interest in computer vision techniques has been increasing at an astonishing pace.

The literature on the topics of deep learning, CNN, and computer vision is vast. In

this chapter, a literature review of recent publications in regards to photo quality

assessment, aesthetic ranking, and medical diagnosis classification is presented.

3.1 METHODS FOR CLASSIFICATION OF PHOTO QUALITY PA-

RAMETERS

3.1.1 Learning Based Approaches

Darunga and Konik introduced a neural network based approach for the analysis of

blurry regions within photographs in order to extract meta-data context from the

images [14]. This method relies on passing segments of photographs to a multi-layer

neural network or other machine learning based algorithm which can then analyze

the blur present. This approach does not aim to determine whether or not an image

is of high quality, it only analyzes the blur that is present in each region.

Liu, Li, and Jia [15] used a combinational method which used Local Power Spec-

turm Slope, Gradient Histogram Span, and Maximum Saturation to first detect blurry

images, then a Bayes classifier is trained to detect the type of blur by training on

patches of images to make the process more e�cient. Based upon similar ideas, Su,

Lu, and Tan [16] and Gu et al. [17] were able to obtain improved results. While this

approach is able to determine the type of blur, it is not able to determine if an image

is blurry on its own.
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Yang et al. [18] have proposed a method for focus quality measure using a deep

learning approach for images taken from microscopes. They used a dataset of 384 in-

focus Hoechst stain images of U2OS cells and used a synthetic de-focusing algorithm

to produce out of focus images. This approach however does not look at the overall

quality of an image, it focuses on determining if there is Gaussian blur present on

particular segments of images.

Bianco et al. [19] used a CNN to produce an image quality score by average-

pooling the scores predicted on multiple sub-regions of an image. The authors used a

CNN that was originally trained to discriminate 1,182 visual categories fine-tuned for

category-based image quality assessment tasks. The CNN is used to extract features

which were then sent to an SVR to predict the quality score. The authors state

that they were able to achieve a 0.91 Linear Correlation Coe�cient with human

subjective scores. This work does not attempt to make a categorization of images

into poor quality categories.

Previous studies mostly focused on performing a binary classification for one image

quality problem at a time. However, the methodology presented in this study is able

to detect motion blur, Gaussian blur, poor lighting, white-noise, and JPEG-2000

compression errors in an image. To our knowledge at the time of this writing, there

are no existing works which perform general classification of images based on image

quality problem category.

Non-Learning Based Approaches

Non-learning based approaches for detecting blurry images have been used for many

years. While these approaches produce fairly good results in detecting blurriness,

they are not capable of categorizing an image into di↵erent poor image categories,

and are not capable of determining if an image has other quality problems such as

white noise or compression artifacts. We have however included the previous work
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using these non-learning based approaches for completeness.

Many developed blurred image detection methods are based on edge sharpness

information. [20] proposed a non-reference blur metric analyzing the spread of the

edges in an image. [21] proposed a non-parametric image blur image based on edge

analysis obtained by combining standard deviation of the edge gradient magnitude

profile and the value of edge gradient magnitude using a weighted average. [22]

developed a new blur detection scheme based on the edge type and sharpness analysis

using Harr wavelet transform. In addition to detect the blurred images, this method

was able to determine the extent of blurriness.

In 2008, [23] proposed a new measure based on computing the prediction residue

of neighboring pixels in images and computing the variance to measure the blurriness

without reference. [16] proposed an automatic image blurred detection and classifi-

cation technique based on a new blur metric, Singular value feature, to detect the

blurred region of an image. Also, they classified the type of blurred regions into de-

focus blur and motion blur analyzing the alpha channel information. [15] developed

a blur detection methods based on image patches, making region-wise training and

classification in one image e�cient. This method was also able to recognize the blur

types for the detected regions using several blur features modeled by image color,

gradient, and spectrum information.

Recently, [24] developed a method to compute blur detection maps based on a

novel High-frequency multi-scale Fusion and Sort Transform (HiFST) of gradient

magnitudes.

3.2 AESTHETIC RANKING OF PHOTOGRAPHS

Most studies cast the task of photo aesthetic assessment as a classification or regres-

sion problem, where various approaches are presented on how to extract meaningful

aesthetic attributes [25]. Early research focused on handcrafted features which were
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Figure 3.1: JPEG 2000 Compression Artifacts

mostly based on photographic rules and what influences the aesthetic quality of an

image [26, 27, 28, 29, 30]. This approach presents limitations since a universal aes-

thetic model may not be applicable to particular images, and implies images sharing

similar content have a common aesthetic model. Other methods thus propose a so-

lution to this problem by using generic image features such as Fisher Vector (FV)

and Bag-of-Visual-Words (BOV) to learn aesthetic attributes, and predict an image’s

aesthetic score [31, 32, 33].

Recently, deep learning techniques have been used for various computer vision

problems [34, 35, 30, 36, 37]. While previous methods are e↵ective, CNNs applied to

photo aesthetic assessments have shown more significant state-of-the-art performances

than approaches which use handcrafted and generic image features[38, 39, 40, 41, 42].

For instance, Tian et al. [43] proposed that di↵erent types of images are associated

with a particular aesthetic model; based on each image’s content, aesthetic features
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were extracted. Kong et al. [44] presented a similar approach in which their CNN

model learns aesthetic attributes by sampling image pairs with similar content. Other

methods apply multi-column CNNs to learn features, such as the one proposed by

Lu et al. [40] in which a double-column CNN is proposed to take local and global

cues of an image; style and semantic attributes were also incorporated to improve

accuracy. Wang et al. [45] expanded on the proposed model in Lu et al. [40] by

constructing a parallel supervised pathway of di↵erent style CNNs to exploit each

aesthetic attribute. In addition, to prevent issues originated from taking images at a

fixed-size, recent studies suggested methods including scaling, cropping, and padding

to alter images or proposed adding spatial pooling layers into processing of images at

their original size[46, 47, 41]. Multi-task learning, in which a model simultaneously

learns multiple tasks [48, 49] has also been applied to image aesthetic assessments

[42, 39, 50]. Kao et al. proposed a multi-task CNN to utilize semantic recognition

for aiding in learning image aesthetics [39]. However, Multi-task learning may not be

suitable for all datasets because it requires images to be equipped with semantic and

aesthetic labels.

Tian et al. [43] propose to construct a query-dependent aesthetic model for dif-

ferent testing/query images. For each query image, a query-dependent training set

is built and extracts the deep aesthetic features of images within the set. Then, a

query-dependent aesthetic model is learned from the images. In Tian et al.’s query-

dependent aesthetic assessment system, two types of features were learned from DC-

NNs. One of them being the CNN features extracted using the open-source deep

learning framework Ca↵e trained on ImageNet. The other used the DCNN model

trained for aesthetic feature mining to extract deep aesthetic features. The proposed

query-dependent model was found to significantly and consistently outperform state-

of-the-art hand crafted feature-based and universal model-based methods.

Lu et al. [51] propose a deep neural network approach which unifies feature learning
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with classifier training to estimate an image’s aesthetics. The proposed novel double-

column convolutional neural network (DCNN) is able to judge image aesthetics while

having one column take a global view of an image and the other take a local view

of the image. Lu et al. also update the DCNN in order to provide a solution to

the generic image aesthetic problem by proposing a network adaptation approach

for content-based image aesthetics. A regularized double-column network (RDCNN)

architecture is proposed to train deep networks for image aesthetics assessment using

additional attributes such as styles and semantics. When tested on the AVA test

set, Lu et al.’s approaches were shown to achieve state-of-the-art results, and the

presented IAD dataset improved the aesthetic assessment accuracy on the AVA test

set.

Kao, Wang, and Huang [52] directly train a regression model using a neural net-

work to interpret aesthetic quality of images. The first stage of their framework is

image preprocessing which involves resizing the smallest dimension of each RGB im-

age and cropping the image. The second stage focuses on aesthetic features learning

with convolutional networks. The third and final stage of the framework is training

the regression model. The regression model is trained on the basis of the learned fea-

tures and the labels of the images, which are the average score of user ratings for each

image. Through this, the model is able to automatically predict the aesthetic score

for testing images. The network is trained on the AVA dataset and the experimental

results display that the aesthetic features learned by the convolutional network per-

form better than existing features. The results also showed that the regression model

can automatically assess an image’s aesthetic quality and that Kao et al. ’s method

outperforms the state-of-the-art methods.

Jin et al. [53] present the inception module into image classification. They build a

novel Deep convolutional neural network, codenamed ILGNet (I: Inception, L: Local,

G: Global) using multiple inception modules for image aesthetics assessment. The
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Inception network is 13 layers deep when counting only layers with parameters and in-

cludes a connection between the layers of local features to the layer of global features.

The output layer gives the classification result of either low or high aesthetic quality

of an image. The ILGNet was first trained on the ImageNet and the, Jin et al. fixed

the inception layers and fine tuned the connected layer that contains global and local

features on the AVA dataset. The proposed ILGNet was tested among other state-

of-the-art methods on the AVA dataset and was found to outperform these methods

and go deeper than current DCNN used for image aesthetic quality assessments.

Dong and Tian [38] improve upon photo quality assessment by designing new

aesthetic features from two di↵erent views: content-based features and rule-based

features. Some of the rule-based aesthetic features include color, sharpness, and

depth of field. The content-based features are based on a DCNN model that is

carefully trained on the ILSVRC-2012 dataset to predict photo quality using the

DCNN descriptor. Dong and Tian then combine these features using the Multi-

Kernel Learning (MKL) method to predict multi-level photo quality. This is done by

choosing di↵erent kernels for di↵erent aesthetic features to create a group of kernel

matrices which will ultimately create a classification model. The proposed rule-based

features and content-based feature was compared with state-of-the-art methods for

binary photo quality prediction on the datasets, CUHKPQ and AVA. The results

showed that the DCNN descriptor outperformed all other features on both datasets,

and that the rule-based features also had high e�ciency. The MKL method, as

well, displayed promising performance and demonstrated the importance of combining

aesthetic features from di↵erent views.

Dong et al. [47] implement and adopt a deep convolutional neural network that has

the same architecture as a previous study (Krizhevsky et al., 2012) which was used

for image classification. Dong et al., however, use the neural network to understand

images in order to perform a photo aesthetic quality assessment. This is done by
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training the neural network on the ILSVRC-2012 training set which extracts images

from the ImageNet database. For each image, the last hidden layer of the convolu-

tional neural network produces dimension activations to be DCNN Aesth features.

A classifier is also trained to predict the aesthetic quality of new images. To avoid

the loss of information when scaling an image to a fixed size, Dong et al. adopted

the idea of spatial pyramid on the images, producing DCNN Aesth SP features. The

e↵ectiveness of deep convolutional neural networks for photo quality assessment was

tested on the datasets CUHKPQ and AVA, along with other state-of-the-art meth-

ods. On both datasets, DCNN Aesth SP features got the best performance, followed

by DCNN Aesth features, each having high accuracy compared to state-of-the-art

methods which were mostly based on hand-crafted features.

Kong et al. [44] propose to train a model through a Siamese network that takes

a pair of images as input and directly predicts the relative aesthetic ranking, and

the overall aesthetic scores. The CNN model unifies aesthetic attributes and photo

content by sampling image pairs with similar content to learn the specific relations

of attributes and aesthetics for di↵erent sub-categories. Kong et al. also present

a new dataset called the “Aesthetics with Attributes Database” (AADB) in which

each image is associated with a detailed score distributions, attributes annotation,

and anonymized rater identities. The proposed model was tested for rating image

aesthetics by comparing against many baselines, analyzing the dependence of model

performance on the model parameters and structure, and comparing the model’s

performance with human aesthetic rankings. The results indicated that the model is

e�cient on existing classification benchmarks, achieves state-of-the-art classification

performance on the AVA benchmark, performs as well as the average human rater,

but lags behind more consistent people who label large batches of images.

Mai, Jin, and Liu [41] propose a deep Multi-Net Adaptive Spatial Pooling Convo-

lutional Neural Network (MNA-CNN) architecture which can directly learn aesthetic
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features from the input images at its original size and aspect ratio. The method

serves as a solution to the problem of preserving the quality of images when perform-

ing photo aesthetics assessment. The deep network architecture is composed of several

sub-networks, each having an adaptive spatial pooling layer with a di↵erent pooling

size. A scene-aware aggregation layer is also built to enhance the MNA-CNN to com-

bine the predictions from the several sub-networks. Mai et al. use the VGG network

(VGG-Net) pre-trained on the Imagenet dataset as the base network architecture for

supervised feature transfer and the Places205-GoogLeNet for the scene-categorization

ConvNet component. The method was tested on the AVA benchmark by assigning

binary aesthetics labels to each image and the results showed that padding an image

performs better than cropping, but worse than scaling an image. The overall perfor-

mance of the MNA-CNN demonstrates that the method can significantly improve the

state-of-the art results in photo aesthetics assessment.

Deng, Loy, and Tang [25] present and review various attempts of image aesthetic

assessment that di↵erentiate between high-quality and low-quality photos. One of the

reviewed conventional methods for image quality assessment is based on handcrafted

features which include simple-image, general-purpose, and task-specific features. The

other approach reviewed is based on deep learning which includes generic deep features

and learned aesthetic deep features with CNNs. The results of the methods discussed

throughout the paper indicate that those that involve deep learning based approaches

are more e↵ective in understanding an image’s aesthetic quality, when tested on

images from the AVA dataset. The results also showed that a better performance

was achieved with a 2-column CNN baseline than compared to a 1-column CNN.

Deng et al. also explore the approach of automatic image cropping by adapting the

learned aesthetic-classification CNN to complete aesthetic-based image cropping.
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3.3 MEDICAL DIAGNOSIS CLASSIFICATION

Numerous studies have been conducted surrounding the topic of assessing focus qual-

ity in images. In [54], Lopez et al. proposed an algorithm that identifies blurred

regions in images due to poor focusing. During training, the algorithm extracted

Haralick features from 48,000 tiles with the size of 200x200 pixels. Each test tile

was classified as in-focus or blurred by utilizing the extracted features and a Decision

Tree. However, their method poses limitations because it can only be applied to im-

ages with a high level of blurriness. Jiminez et al. presented a similar approach that

used Otsu thresholding to extract the tissue map [55]. Once the tissue was divided

into pixel tiles, the Tenegrad statistics, Cumulative Probability of Blur Detection

contrast, and entropy were calculated for all tiles. These calculations were used to

determine whether a tile was considered out-of-focus.

In recent years, deep learning has enabled there to be vast improvements in various

research fields, particularly computer vision [36, 30, 35, 56]. Neural networks are able

to produce state-of-the-art performances when classifying images despite having no

human intervention. Due to their large success, neural networks are increasingly being

applied to the task of identifying blurry and out-of-focus regions in medical imaging

[57, 58, 59, 60, 18, 61].For instance, Yang et al. [18] developed a deep neural network

that automatically identified the absolute focus quality of a single image in isolation.

The network was trained on microscopic images of U2OS cancer cells and was used

to identify the extent of the image blur and if this image blur was well-defined. When

tested, the model showed it was more accurate in classifying out-of-focus microscope

images than previous methods, and that the network could be generalized to di↵erent

images and cell types. Within the rise of deep learning in focus quality assessments,

CNN have become more prevalent as well [57, 58, 59, 62, 60, 18]. In [62], a CNN-

based system called DeepFocus is proposed to automatically detect blurry regions

in histopathological images. The researchers trained the network on H&E and IHC-
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stained slides and tested it on digital images that contain patients’ various diseases.

They found that their method had a higher accuracy than that of [54]. Campanella et

al. implemented a deep ResNet model and applied sharpness metrics for blur detection

in images of di↵erent tissues and image sizes [63]. The prediction accuracy of this

model was compared to that of a random forest framework, with the ResNet slightly

outperforming the random forest. Tiba et al. constructed an ensemble-based outlier

detection method, which involves the application of convolutional neural networks

and a SVM classifier [60]. In their proposed method, the hybrid CNN-SVM model,

the CNNs were trained on retinal and skin lesion images, some of which were of low

quality. The CNN-SVM was shown to outperform classic CNNs in filtering images

with anomalies.

Other works have also applied neural networks to deblur medical imaging and

to improve its low quality [57, 58]. Jiang et al. implemented a blind convolution

framework to deblur a single microscopic image on defocus or motion blur [58]. Their

method, termed deep blind microscopic image deblurring (DBMID), first utilized a

classification model to determine what the inputted image’s blur type is, and then

applied an appropriate deblurring model based on the image’s blue type. When

tested, the classification accuracy of blur type was found to be 99.77% and other

experimental results showed that DBMID can remove the defocus blur and extend

the depth of field of the imaging system. In [57], Ali et al. proposed a multi-scale and

single-stage convolutional neural network detector to identify artifacts that impede

the visual interpretation of endoscopy videos. They also introduced artifact type-

specific restoration by using Generative Adversarial Networks (GANs). While these

methods have been e↵ective, it does take a long time in order for the images to be

deblurred.
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CHAPTER 4

PHOTO QUALITY CLASSIFICATION USING DEEP LEARNING

The detection of poor quality images for reasons such as focus, lighting, compression,

and encoding is of great importance in the field of computer vision. The ability to

quickly and automatically classify an image as poor quality creates opportunities for

a multitude of applications such as digital cameras, phones, self-driving cars, and web

search technologies. In this chapter an end-to-end approach using CNNs is presented

to classify images into six categories of bad lighting, Gaussian blur, motion blur,

JPEG 2000, white-noise, and high quality reference images. Finally, the application

of the developed model was evaluated using images from the German Tra�c Sign

Recognition Benchmark. The results show that the trained CNN can detect and

correctly classify images into the aforementioned categories with high accuracy and

the model can be easily re-calibrated for other applications with only a small sample

of training images.

4.1 INTRODUCTION

The classification of unwanted images are of great importance in the field of computer

vision. The ability to automatically detect undesirable images would enable many

useful applications. Search engines would be able to automatically discard those

images that are of poor quality; digital cameras and phone camera software would

be able to alert the user of a poor quality shot so that they may correct the mistake;

autonomous driving technology would be able to ignore poorly shot frames to reduce

the chances of a mistake. The types of problems that may exist within an image are
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from a wide range of issues related to improper photography techniques, such as bad

lighting, or out of focus images, to encoding issues which causes unwanted artifacts

such as what occurs in a JPEG-2000 image. There have been numerous studies and

methods proposed for the detection of poor quality images. However, the use of deep

learning for the purposes of image quality detection is limited within the literature.

Deep learning has shown great promise in solving complex tasks by using a black-

box approach to the problem. With the advent of advanced deep learning models such

as Convolutional Neural Networks (CNN), researchers have been able to produce

remarkable results when it comes to the field of image recognition. Handwriting

detection and simple object recognition have become almost common place within

the computer vision field. These are tasks that only a short time ago were thought

of as “cutting edge” yet today, these tasks can be performed with ease through the

use of deep learning toolkits such as Google’s TensorFlow and Microsoft’s CNTK and

other frameworks built on top of these packages such as Keras.

In this paper, a study is performed to assess the viability of using deep learning

and CNNs in particular to classify images into six categories of bad lighting, Gaussian

blur, motion blur, JPEG 2000, white-noise, and high quality reference images which

are subjectively considered to be of good quality. To accomplish this task, a new

dataset of images has been constructed from newly taken images, and datasets from

two previous studies. The first of these datasets was used to asses the aesthetic quality

of photos using machine learning techniques [4]. The second dataset was used by [5]

to classify images based on di↵erent qualitative criteria. Not all images from these

two datasets are used in this study since some of the images did not lend themselves

to this particular task. In addition to these two datasets, additional images which

were captured using a Sony Alpha 6000 camera which had been manually defocused

to produce a Gaussian blur e↵ect were included. Furthermore, the reference images

were modified using software to produce a motion blur e↵ect. Unlike previous works,
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we produce a general approach capable of determining the overall quality of images.

The rest of this chapter is laid out as follows. In section 4.2 preliminary materials

will be presented to introduce the types of image quality issues and their causes, and

a short literature review to introduce previous works in this field, as well as a brief

introduction to Convolutional Neural Networks, TensorFlow and Keras. Section 4.3

will introduce the methodology of the proposed model. Section 4.4 will analyze the

results of the experiments. Section 4.5 analyzes the application of the proposed model

to self-driving cars. Finally, section 4.6 provides concluding remarks and future steps.

The code for the experiments is provided as a Jupyter notebook which is available

for download.

4.2 PRELIMINARY MATERIALS

4.2.1 Image Quality Issues

There are many reasons for which a photograph can be considered as having poor

quality. In this study, we have focused on five of these categories, Bad Lighting,

Gaussian Blur, JPEG-2K, White Noise, and Motion Blur.

Bad Lighting refers to images which have been shot without adequate light for the

timing and aperture of the camera. This can cause images to look dull or dark.

Gaussian Blur is caused by an out of focus camera. This type of blur could be

caused by faulty auto focus mechanism on a camera, a lens which is poorly con-

structed, or an image focused on the wrong subject [64]. [65] describe the types of

image quality and blur problems that may exist within an image. Figure 4.1 shows a

sampling of images with Gaussian Blur.

JPEG-2K The JPEG-2K image format was introduced in the year 2000. While

there are many advantages to this image compression format, one disadvantage is
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that the JPEG-2K format is much less content adaptive than the older JPEG format

meaning that the image quality can be vastly di↵erent given the same bit-rate for

di↵erent content. This makes it likely to end up with compression artifacts within

the image.

White Noise is the exhibition of random white grains throughout an image. This

noise is often caused by film grain, various sensors and circuits such as CCDs in digital

cameras and detectors in a scanner, or it could be caused by the communications

channel or signal quantization [66].

Motion Blur is caused by taking an image were the subject is not stationary in

relation to the camera. This can be cause by either a shaking or moving camera, or

it could be cause by a subject which is moving.

Figure 4.1: Sample Gaussian Blur Images
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4.3 METHODOLOGY

4.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep artificial neural networks (ANNs)

applied primarily to classify images, cluster images by similarity, and perform object

recognition within scenes. CNN consists of convolutional and sub-sampling layers

followed by one or more fully connected layers. The architecture of CNN is designed to

take advantage of the 2D structures of an input images. In addition, compared to fully

connected networks, CNNs are easier to train and have fewer parameters. To train and

test CNN model, each input image will pass through a series of convolution layers

and pooling for feature learning. Finally, an activation function such as Softmax,

Sigmoid, or ReLU is applied to classify an object. Along with other advanced machine

learning algorithms, CNNs have become fundamental to the field of computer vision.

In our approach, we build and train a CNN with 3 convolutional layers to classify

images into the six predefined categories. We show that our approach is capable

of achieving relatively high accuracy with just a limited dataset used for training,

and furthermore, we analyze and show that for all six classes, we can achieve high

specificity and relatively high sensitivity.

Filtering

Filters are nothing more than a mask that is applied to a part of an image to determine

if a segment of an image contains a particular feature such as a diagonal line, or a

horizontal line. The filter is then moved throughout parts of the image by moving it

from its current location to the next location by an o↵set known as a stride (rate of

movement). The resulting matrix is known as a feature map and is always smaller

than the starting image.
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Output Size Let W be the width of image, H the height of image, Fw the width

of the filter, F h the height of the filter, Sw the horizontal stride and Sh the vertical

stride. Then we can calculate the output width and output height as a function of

those variables.

Pooling

A common practice in the design of CNNs is to periodically, or often after every

convolutional layer, insert a pooling layer. The function of the pooling layer is to

reduce the size of the feature maps that are being worked with in order to lower

the number of parameters which must be learned and hence increase the training

performance of the network. There are di↵erent types of pooling algorithms, however

they all work on the basic idea of having some size N ⇥M which is used to combine

values. For example, given a 4 ⇥ 4 starting image and a pooling layer of 2 ⇥ 2, the

values of [0,0], [0,1], [1,0], and [1,1] will be combined to become the new [0,0] cell.

[2,0], [2,1], [3,0], and [3,1] will be combined to become the new [1,0] cell. [0,2], [0,3],

[1,2], and [1,3] will be combined to become the new [0,1] cell. [2,2], [2,3], [3,2], and

[3,3] will be combined to become the new [1,1] cell. The resulting image will be a

2⇥ 2 image.

The pooling of values is often performed using a max function, where the maximum

value of the cells being combined is taken as the new value. Other functions such as

min, or average can also be used to perform the pooling function.

Image Resizing

In order to make training easier and to allow for consistent network designs, the input

images to CNNs are often resized to something which is lower than the actual image

size. Images are often reshaped to a square size so that square filters can be applied

to them with ease.
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4.3.2 TensorFlow

Tensor flow is an open source package created using Python which is intended for

use with deep learning. The package is able to be used not only for regular fully

connected neural networks but also has extensions which allow it to be used for

building complex networks such as CNNs and Recurrent Neural Networks. In order

to increase the training performance of large networks, TensorFlow also has a variant

which is able to use the massive multi-core capability of modern GPUs to accelerate

the training process. We used an NVIDIA Quadro K2200 GPU for faster training.

Figure 4.2: Dark/Bad Lighting

4.3.3 Our Convolutional Neural Network

The network consists of three convolutional layers with a Softmax activation function

followed by a fully connected layer with a sigmoid activation function and finally there

is a 6 node output layer with a sigmoid activation function which outputs the 6 desired
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Figure 4.3: Convolutional Neural Network Architecture

classes. The first convolutional layer accepts an array of 256⇥256 images and applies

32, 5⇥ 5 filters to produce 32, 252⇥ 252 feature maps. We start with the larger filter

size since it has been shown by Ahmed et al. [67] that a larger filter size in the upper

layers produces the best results for image classification tasks. The feature maps are

then normalized, a Softmax activation function is applied and a 2⇥ 2 Max Pooling is

performed to obtain 32, 126⇥ 126 images. The second convolutional layer applies 64,

3⇥3 filters to produce 64, 124⇥124 feature maps As done with the first convolutional

layer, the feature maps are then normalized, a Softmax activation function is applied

and a 2⇥2 Max Pooling is performed to obtain 64, 62⇥62 images. This is run through

a 3rd and final 3 ⇥ 3 convolutional layer with batch normalization and max pooling

which produces 128 feature maps. The 128 feature maps are then flattened into an

array of 73,856 parameters. A 20% dropout is performed before these parameters

are passed into a fully connected layer (Dense in TensorFlow) with 64 nodes and a

Relu activation function. Another dropout is performed with a drop percentage of

20%. This aggressive dropout is intended to keep the network from over-training on

the training set and allowing for it to generalize better when applying to other types

of images. Finally there is an output layer with 6 nodes with a sigmoid activation

function to which all 64 nodes from the previous layer are connected.

There are a total of 7,469,145 parameters in the network with 7,468,559 trainable

parameters. Table 4.1 shows the layers and the parameters for each layer and Figure

4.3 shows the architecture of our CNN.
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4.3.4 Our Implementation

Our program can be split into four steps. First the images are loaded and processed.

Next, we split the data into three segments for training, validation, and testing. This

is followed by training the network in a two step approach by using a fast learning rate

for the first 50 epochs and then reducing the learning rate and using an early stopping

approach to minimize the validation loss. Finally, The network is tested against the

test dataset to determine the accuracy of the network. The rest of this section is

dedicated to describing the implementation methodology of the aforementioned steps.

All source code and images are available for download from the GitHub provided in

the references of this publication [68].

Loading Data

The images for our dataset are labeled by being placed in separate folders. In order

to read the data we use Python to load the images from each directory into a distinct

array. We then process the images to produce an image that is 256 ⇥ 256 and that

image is stored as a 3 channel image within a data frame. A labels array is created

for the images from each directory with 0 indicated for the clear images and 1 for the

out of focus images. All images and labels are concatenated together and returned as

two arrays. Prior to training, the images are split into di↵erent sets and randomized

to provide accurate results.

Data Splits and Training

To train the network the dataset is split into a training and a test-validation set.

The test-validation set is further split into two equal parts to obtain a test set and

a validation set. There are two experiments which are performed in this study with

di↵erent training, test, and validation ratios.

The first experiment was performed using a ratio of 80/10/10, meaning 80% for
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Table 4.1: Layers and Parameters in Proposed CNN

Layer Type Output Shape No. of Parameters

1 conv2d 1 (Conv2D) (None, 252, 252, 32) 2,432

2 batch normalization 1 (None, 252, 252, 32) 128

3 activation 1 (Activation) (None, 252, 252, 32) 0

4 max pooling2d 1 (2⇥ 2) (None, 126, 126, 32) 0

5 conv2d 2 (Conv2D) (None, 124, 124, 64) 18,496

6 batch normalization 2 (None, 124, 124, 64) 256

7 activation 2 (Activation) (None, 124, 124, 64) 0

8 max pooling2d 2 (2⇥ 2) (None, 62, 62, 64) 0

9 conv2d 3 (Conv2D) (None, 60, 60, 128) 73,856

10 batch normalization 3 (None, 60, 60, 128) 512

11 activation 3 (Activation) (None, 60, 60, 128) 0

12 max pooling2d 3 (2⇥ 2) (None, 30, 30, 128) 0

13 flatten 1 (Flatten) (None, 115,200) 0

14 dropout 1 (Dropout) (None, 115,200) 0

15 dense 1 (Dense) (None, 64) 7,372,864

16 batch normalization 4 (None, 64) 256

17 activation 4 (Activation) (None, 64) 0

18 dropout 2 (Dropout) (None, 64) 0

19 dense 2 (Dense) (None, 6) 390

20 batch normalization 4 (None, 6) 24

21 activation 5 (Activation) (None, 6) 0
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First 50 Epochs Early stopping refinement

Figure 4.4: 60/20/20 Training Accuracy History

training, 10% for validation and 10% for testing. The second experiment used a

60/20/20 ratio. The network is trained for 50 epochs for the 80/10/10 set and 50

epochs for the 60/20/20 split. Figures 4.4 and 4.5 show the training accuracy history

of the network after these 50 epochs. Note that during these 50 epochs, we also per-

form data augmentation using Keras’ ImageDataGenerator which we have configured

to rotate, shift, shear, zoom and flip the images. The model is then further trained

using early stopping with the “patience” set to 20 which allows for further training to

continue until the validation loss is not improved for 20 epochs. If that condition is

reached, then training will be stopped and the previously best network will be saved.

During the second training phase, the learning rate is also reduced to 0.0001 which

helps in finding the most optimal solution. Figures 4.4 and 4.5 show the accuracy

trend of the training and validation accuracy for the first 50 epochs and the early

stopping refinement epochs.

Testing

All models were tested against the test set which was not used for the training or

validation of the model. The results are analyzed by evaluating Type-I and Type-II

errors and the accuracy of the predictions. To test the model, the test set was run

38



First 50 Epochs Early stopping refinement

Figure 4.5: 80/10/10 Training Accuracy History

through the trained model and the predictions were converted to an array of rounded

integers.

Figure 4.6: 80/10/10 Split Figure 4.7: 60/20/20 Split

4.4 RESULTS

The results show a ratio split of 80/10/10 produced better accuracy than the 60/20/20

split. This suggests that with additional data a higher accuracy can be achieved. The
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highest accuracy was obtained using the 80/10/10 split which reached an accuracy

of 81.6%. Because many of the images in the dataset were actually in the JPEG

format, there is a higher than normal rate of images which are incorrectly classified

as having JPEG 2000 compression errors. This may however be correctly classified

since these images may have compression artifacts which we were not able to detect.

The 60/20/20 split produced an accuracy of 77%.

Figure 4.6 shows the confusion matrix for the 80/10/10 split. We can observe that

the most common mistake for the algorithm is to classify images as having JPEG 2000

compression errors. As mentioned earlier this is to be expected since we are using the

JPEG format for many of the images in the data set. Figure 4.7 shows the confusion

matrix for the 60/20/20 experiment and like the first 80/10/10 split the results show

the most common mistake is a misclassification of items as JPEG 2000.

a) b)

Figure 4.8: Confusion Matrix - Tra�c Images
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4.4.1 Additional Analysis

Sensitivity, also known as the true positive rate, measures the proportion of the

positive samples which are classified as that sample. For example, of the 20 images

which had been labeled with Gaussian Blur, 16 were identified as having Gaussian

Blur by the network. This produces a Sensitivity of 0.8, which is saying that 80% of

images with Gaussian Blur were identified as having Gaussian Blur. In other words,

we can identify images with Gaussian Blur 80% of the time.

Specificity, also known as the true negative rate, measures the proportion of the

samples which do not have a certain attribute as not having that attribute. For

example, of the 78 samples labeled as something other than Gaussian Blur, 77 were

identified as something other than Gaussian Blur and 1 was incorrectly classified as

having Gaussian Blur. This produces a specificity of 0.99. This signifies that we can,

with a very high accuracy, identify samples that do not have Gaussian Blur.

To get a better understanding of the performance of the classifier for each of the

classes, we show the Sensitivity and Specificity for each of the six classes in Table

4.2. Sensitivity and Specificity are defined by equations 1 and 2, respectively. The

results show the 80/10/10 split produces reasonably high sensitivity for all classes and

very high specificity. In fact the Specificity of the classifier for the reference images

category is 1.0. This suggests that the classifier can be trusted to a high degree when

it classifies an image as a reference image.

Sensitivity =
TruePositives

TruePositives+ FalseNegatives
(4.1)

Specificity =
TrueNegatives

TrueNegatives+ FalsePositives
(4.2)

41



Table 4.2: Classifier Performance by Class

Class
Sensitivity Specificity

60/20/20 80/10/10 60/20/20 80/10/10

Bad lighting 0.75 1.0 0.99 0.99

Gaussian blur 0.79 0.8 0.98 0.99

JPEG-2K 0.82 0.91 0.88 0.83

Reference image 0.65 0.77 0.98 1.0

White noise 0.77 0.61 0.99 0.99

Motion blur 1.0 1.0 0.97 1.0
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4.5 APPLICATION TO TRAFFIC IMAGES

Misclassification of road images is mainly caused by quality issues such as blurriness

or degradation [69]. An incorrectly classified object can lead to a misinterpretation

of the scenes by the autonomous vehicle. This could cause undesirable driving be-

havior and could place the passengers and other drivers in danger. A self-driving

system equipped with a low quality image detection mechanism, could reduce the

likelihood of misclassifying an object captured within the video stream by removing

poor quality images. To fulfill this requirement, the model proposed in this study can

be utilized to detect poor quality images used for autonomous driving systems. In

order to determine how well our network performs when applied to self-driving cars,

we have selected images from the German Tra�c Sign Recognition Benchmark (GT-

SRB) [70]. The selected images with the worst lighting and worst Gaussian blur have

been manually labeled and the OpenCV library on Python was used to introduce a

random level of motion blur to the reference images to produce a dataset containing

labeled images in four categories.

4.5.1 Initial Results

Applying the trained network, without modification, resulted in an accuracy of 50%.

The majority of incorrect classifications are those reference images which were either

classified as motion blur or Gaussian blur. Figure 4.8a shows the confusion matrix

for the full tra�c dataset. We visually observed the reference images which were

incorrectly classified to determine the cause of the misclassification. Figure 4.9 shows

the reference images which were classified as bad lighting, Gaussian blur, and motion

blur. Upon inspection, it is noticeable that the images which were classified into

one of these 3 categories are actually of poor quality and it could be argued that

the majority of these images were classified correctly. This suggests that while the

model may correctly have detected some degree of the attributes associated with poor
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image quality, the sensitivity of our classifier to these attributes is too high; hence,

to make our model useful for the purposes of reducing error rates in the tra�c sign

classification, we must re-calibrate our model to account for this variability. This can

be accomplished utilizing a technique known as transfer learning.

Motion Blur Gaussian Blur

Bad Lighting

Figure 4.9: Incorrectly Classified Reference Images

4.5.2 Transfer Learning

The transfer learning process begins with loading the developed CNN model which

was previously trained to classify images into the six categories of bad lighting, Gaus-
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sian blur, motion blur, JPEG 2000, white-noise, and high quality reference images.

According to previous studies, misclassification of road images is caused by poor qual-

ity images that are either blurry or have very poor lighting [69]. Therefor, for this

task only the categories of bad lighting, Gaussian blur, motion blur and reference

images are considered. First, all layers are set as not trainable. Then the last 3 layers

were removed and a dense layer with 4 neurons was added. This allows for the model

to be trained more quickly since only 260 parameters need to be learned. The dataset

is then split into three segments of 80% for training, 10% for validation, and 10% for

test. The network was trained for 50 epochs and additional training was then per-

formed utilizing early stopping which stopped at 289 epochs. Each epoch completed

within one second, and the total training task completed in 5 minutes. This retraining

process accomplishes two objectives, 1) changing the number of classes from 6 to 4,

and 2) allowing for the network to tune it’s sensitivity for the given task. The result-

ing network was able to achieve a 96% accuracy on the test dataset. This shows that

while the exact calibration of the model is dependent on the given task, the feature

space learned through the original training process can be applied to di↵erent sets of

images without loosing accuracy. The confusion matrix for the retrained network is

shown in Figure 4.8b.

4.6 CONCLUSIONS AND FUTURE DIRECTIONS

With the rapid advancement of machine learning and the increasing growth of au-

tonomous technologies, it has become even more important that machine learning

algorithms be capable of detecting when the results of some action are not desirable.

In this paper, results show that our proposed CNN is capable of detecting poor qual-

ity images with high accuracy. A new dataset was created to train the developed

CNN model to detect images which were manually labeled into the six categories of

bad lighting, Gaussian blur, motion blur, JPEG 2000, white-noise, and high quality
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reference images. Finally the application of the developed model was tested to detect

images which may be unsuitable to the sign classification task required by autonomous

vehicles. We showed that by simply calibrating the model for a given task through

transfer learning we can achieve very high accuracy for the given classification task.

This study was focused on developing a method to detect poor quality images.

There are several avenues for future studies to continue upon this work. In a future

study we will perform sensitivity analysis to determine how di↵erences in camera

hardware a↵ect the accuracy of the model.
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CHAPTER 5

THE EFFECTS OF IMAGE QUALITY ON DEEP LEARNING

CLASSIFICATION PERFORMANCE

Medical image diagnosis is a key area of focus for the computer vision community of

researchers. These techniques have advanced at a rapid rate, and are now capable

of making reliable predictions of health conditions based on imaging data such as

photos, X-Rays, CAT-Scans and MRI’s. In this chapter, a case study on the e↵ects

of photo quality on the performance of CNN classifiers is presented. The results

show that photo quality has a profound e↵ect on classifier performance, specifically

by negatively impacting sensitivity.

5.1 INTRODUCTION

One of the most common challenges faced by the global healthcare system today is

providing accessible and accurate diagnoses. In fact, about 5.08% of US adults are

estimated to be misdiagnosed every year [71]. Incorrect diagnoses are also prevalent

among patients who have serious chronic conditions, with about 20% of these patients

receiving errors in their diagnosis at the primary care level, and one in three of these

misdiagnoses being harmful to patients [71]. More recently, however, machine learning

and AI have shown great promise in providing accurate and e�cient diagnoses [72,

73]. These emerging methods are being utilized in the medical field as diagnostic

tools to aid physicians. The advancements show to transform healthcare systems by

exploiting patient data to yield precise diagnoses [74, 75, 76, 77].

Despite the vast improvements made with machine learning and AI e↵orts, the
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accuracy of patients’ diagnoses remains to be compromised. This is largely due to

the issue that medical images are often times out-of-focus, unevenly illuminated,

noisy, blurry, or include dust artifacts [18]. Motion blur and defocus are the two

most common types of imaging artifacts that can significantly degrade images [58].

Motion blur in images occurs as a result of an object’s changed position during which

an image is captured [78]. Images may contain defocus blur due to autofocusing

systems’ inadequate focusing accuracy [79]. Individual images that contain these

artifacts significantly increase the risk of misdiagnosing patients and providing wrong

treatment to them [80, 59]. Moreover, manually identifying out-of-focus regions is a

time-consuming, subjective, and error-prone process [55].

Latest advancements in deep learning have enabled neural networks to make signif-

icant improvements in the computer vision field [81]. Due to their ability to produce

near-human performances in image classification tasks, neural networks are being

more commonly applied in addressing the issue of identifying blurry and out-of-focus

regions in medical imaging [58, 59]. The implementation of this deep learning ap-

proach has been of great interest in recent years due to neural networks requiring

no human intervention to detect discernible features. CNNs, in particular, display

a great ability to learn and generalize attributes for image classification tasks [82].

Consequently, CNNs are being widely used for the classification of medical imaging

in order to identify blurry images and have found state-of-the-art performance [58,

59, 60, 18].

In this work, we attempt to identify regions of blurriness and low focus quality

in various medical images. We propose using a CNN to automatically identify these

regions so that poor quality images are distinguished prior to being used for making

medical diagnoses by AI. We anticipate that this method o↵ers a more e↵ective and

accurate approach for making medical diagnoses, and it lowers the risk of patients

receiving misdiagnoses.
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5.2 METHODOLOGY

5.2.1 Data

The data for this study was download from the ISIC archives using the ISIC CLI

tool. We created two datasets for this study. First, a total of 6,816 images were

downloaded and processed. To prepare the images for training, each image was first

resized to 244 ⇥ 244 or as close as possible with one of the dimensions remaining

larger than 244. The image was then cropped on the center of the image, producing

6,816 images with consistent size. Once resized images were stored in two separate

directories which signified the class of the positive or negative class of the image. The

image resizing process is depicted on Figure 5.1.

Figure 5.1: Image resizing process

Second, we created a smaller dataset focused only on di↵erentiating between basal

cell carcinoma and benign regions. The smaller dataset consisted of 1000 images in

each class. We performed the same prepossessing on these images to end up with

2000 244⇥ 244 images.

49



5.2.2 Our Model

To test the hypothesis that image quality negatively impacts classification accuracy

in medical imaging, we have chosen to use a model inspired by the design in chapter

6. The primary di↵erence between the two models is the input size, output size, and

minor tweaks to the filter sizes on the final convolutional layers. In all other aspects,

the two networks are identical. Please refer to figure 6.3 for the network design.

5.2.3 Training

Training was performed on FAU’s HPC cluster using an A100 GPU with 40 GB of

video memory. To improve the generalization performance of the trained network,

the Stochastic Gradient Descent (SGD) optimizer was applied in this study as it has

been shown to generalize better as compared to ADAM, although ADAM has shown

better training performance [83]. This is caused by the convergence behavior of SGD

enabling smaller escaping time than ADAM when compared in the same basin, which

in turn leads to convergence at flatter minima for SGD [84]. The initial learning rate

was set to 0.1 and the momentum was set to 0.9. The batch size used for training

was set to 40.

To prevent over training, early stopping was employed with a patience of ten,

meaning that after 10 epochs without improvement, the training process would end

and the weights from the epoch with the lowest validation loss would be reloaded. To

allow for maximum training, once a validation loss plateau was reached, the learning

rate would be reduce by a factor of 10 and training would continue. The minimum

learning rate was 1⇥ 10�5.

We trained the network using two cuts of data.
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Figure 5.2: Confusion matrix depicting the performance of the classifier.

Dataset 1

The first dataset consists of 6,816 images, with 3,408 images having been diagnosed as

basal cell carcinoma and the other 3,408 images belonging to one of nine groups includ-

ing actinic keratosis, dermatofibroma, melanoma, nevus, pigmented benign keratosis,

seborrheic keratosis, seborrheic keratosis, solar lentigo, squamous cell carcinoma, and

vascular lesion.

Training was run for 21 epochs with a learning rate of 0.1, 27 epochs with a learning

rate of 0.01, 16 epochs with a learning rate of 0.001, 11 epochs with a learning rate of

0.0001, and finally, 11 epochs with a learning rate of 0.00001. Weights were reloaded

from the validation epoch with the lowest loss as calculated by the Mean Square

Error (mse) loss function. The final training loss for the network was 0.1162 and the

validation loss was 0.1801. While it is likely possible to get better validation and

training results using di↵erent network architectures, the goal of this study was to

determine the e↵ect image quality issues would have on the diagnosis made by the

classifier.
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Dataset 2

The second dataset consisted of two thousand images, one thousand of which belonged

to the benign class. The remaining one thousand images belonged to the basal cell

carcinoma class.

Training was run for 23 epochs with a learning rate of 0.1, 11 epochs with a learning

rate of 0.01, 11 epochs with a learning rate of 0.001, 11 epochs with a learning rate of

0.0001, and finally, 11 epochs with a learning rate of 0.00001. Weights were reloaded

from the validation epoch with the lowest loss as calculated by the Mean Square

Error (mse) loss function. The final training loss for the network was 0.0065 and the

validation loss was 0.0235. This network showed extremely high validation accuracy

of 97.25%.

5.3 ERROR INSERTION CASE STUDY

We explored the increase in error rate when images have quality problems by artifi-

cially inserting noise onto the test image dataset. Four types of noise were considered

for this study; 1) Gaussian noise, this type of noise is similar to an out of focus image;

2) salt and pepper, which is a form of white noise; 3) poisson noise, another form

of white noise, which is often observed on medical imaging such as MRIs and CAT

scans. 4) speckle noise, caused by a scattering of the signal, is often observed on

ultrasound scans.

During the testing phase, we randomly selected one of the four noise types in-

troduced above, and injected it onto the image. It is our hypothesis that this noise

would negatively impact the classifier’s performance. We performed this study on

both trained networks.
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5.4 RESULTS

To determine the usefulness of the classifier, we will examine the specificity and

sensitivity of the classifier for basal cell carcinoma.

Figure 5.3: Confusion matrix depicting the performance of the classifier after the test

images have been injected with noise.

5.4.1 Dataset 1

Sensitivity

Also known as the true positive rate, measures the proportion of the positive samples

which are classified as that sample. Running the trained classifier against the test

dataset, we obtained a Sensitivity of 0.769, meaning that 76.9% of those images which

were for a confirmed basal cell carcinoma were correctly identified as such. After

randomly inserting quality problems into the image, we observed that the sensitivity

of the classifier had dropped to 0.570. This is a significant drop in performance

and would mean that roughly, an additional 20% of those patients with basal cell

carcinoma would receive a negative diagnosis which could be catastrophic since early

detection is often a key indicator of long term outcome.
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Figure 5.4: Confusion matrix depicting the performance of the classifier.

Specificity

Also known as the true negative rate, measures the proportion of the samples which

do not have a certain attribute as not having that attribute. The classifier achieved

a specificity of 0.656. This means that 65.6% of those who were negative, received

a negative diagnosis from the classifier. After inserting errors into the images, the

specificity increased to 0.749. This increase is likely attributable to the larger number

of images being classified as other. While on the surface this seems like an improve-

ment, we have to look at this in the context of the task at hand. In this case, this

improvement in specificity is at the cost of sensitivity which is a more important

metric in terms of detecting an illness. It is better to detect a positive case when

there is nothing to worry about than to detect a negative case when the patient is in

fact in need of medical attention.
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Figure 5.5: Confusion matrix depicting the performance of the classifier after the test

images have been injected with noise.

5.4.2 Dataset 2

Sensitivity

Running the trained classifier against the test dataset, we obtained a Sensitivity of

0.995, meaning that 99.5% of those images which were for a confirmed basal cell car-

cinoma were correctly identified as such. After randomly inserting quality problems

into the image, we observed that the sensitivity of the classifier had dropped to 0.974.

As observed with Dataset 1, there is a drop in the sensitivity of the classifier. If we

look at this from the perspective of false negative rate, the number of false negatives

would be increased by a factor of five.

Specificity

The classifier achieved a specificity of 0.961. This means that 96.1% of those who

were negative, received a negative diagnosis from the classifier. After inserting errors

into the images, the specificity increased to 0.990. This follows the trend we have

observed with Dataset 1. It should be emphasized that while having a high specificity
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is desirable, it is not desirable at the expense of sensitivity which has increased by a

factor of 5.

5.4.3 Conclusions

In this study, we have shown the negative e↵ect poor quality images can have on

medical image diagnosis. The negative e↵ects are especially troubling considering

that the most substantial degradation in performance was in Sensitivity which can

increase the risk of missing a positive diagnosis. We showed that Sensitivity can be

a↵ected by as much as 20%.

A surprising finding is that adding noise to images can actually improve accuracy.

For instance, in dataset 2, we observed that the accuracy improved from 97.5% to

98.25%. While this a↵ected sensitivity in a negative way, in non-medical applications,

this could be a viable technique for improving classification accuracy, although more

research is needed to fully understand the mechanism by which this functions.
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CHAPTER 6

AESTHETIC IMAGE QUALITY RANKING USING DEEP

LEARNING

Aesthetic ranking of photographs is an area which has many applicable uses including

social media, personal photography, and e-commerce. However, research in this area

has been limited, with the vast majority of computer vision research being focused

on object and scene classification. In this chapter, a unique Convolutional Neural

Network design capable of learning the aesthetic qualities of images is introduced.

The results show the trained model is able to outperform the baseline interrater

agreement for human raters, and closely predict the human rating in more than 91%

of images in the dataset.

6.1 INTRODUCTION

Ever since George Eastman made photography accessible to the average person in

1888 through his ”Kodak” camera, the world has become obsessed with the art of

collecting snapshots. This obsession became even more prominent with the invention

of the camera phone, which put a camera in almost every person’s pocket, increasing

accessibility to photography, and vastly augmenting the collection of amateur photos

in existence. Recently, there has been increasing interest in personal photography

due to social media platforms such as Instagram, Facebook, and Flickr providing

the everyday photography enthusiast with a very e↵ective way to share photos with

millions of viewers. One common feature across all of these platforms is the ability

for viewers to indicate their like or dislike of a photograph, essentially a mechanism
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for the crowd to react to your creation with applause, silence, or displeasure. What

if it was possible for a machine to predict the crowd’s reaction to a photograph?

Such a system could be used to quickly judge if a picture that has just been taken

is aesthetically pleasing and would a↵ord the photographer the opportunity to make

adjustments and retake the shot. It could also be used to determine which of the

thousands of snapshots taken during a weekend are worthy of being shared with the

world.

In e-commerce, computer vision and machine learning techniques have been used

to find merchandise similar to previously purchased items from a buyer’s profile.

However, these algorithms are limited to finding similarity between various products

in a catalog, or finding purchasing patterns amongst a group of buyers. This lacks

the ability to account for the aesthetic characteristics that a particular buyer finds

appealing. A system that is capable of building an aesthetic profile for a buyer, could

be used to quickly find artwork, clothing, furniture, and other merchandise which is

in agreement with the buyer’s aesthetic sense, even when the buyer has not previously

shown interest in items within the same category.

While the research community has taken an interest in this topic, automatic image

aesthetics assessment remains a challenge ([29, 26, 25, 28, 34, 30, 35, 27]). This can

be attributed to the subjective nature of aesthetic assessment; as the saying goes,

“beauty is in the eye of the beholder”. Research regarding the topic has come up

with various approaches of how to address this problem. In most studies, image

aesthetics assessment is considered as either a classification problem, in which an

image is labeled as aesthetically good or bad, or as a regression problem, where an

image is rated with a numerical aesthetic score ([52, 53]).

Many approaches have been presented in past years to explore how to extract

aesthetic attributes from images[29, 26, 25, 28, 34, 30]. Initial research proposed

designing aesthetic attributes focused on handcrafted features. These features are
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based on photographic rules and what most likely a↵ects people’s perception of aes-

thetic quality of an image[38, 85]. Some handcrafted features include sharpness, rule

of thirds, and colorfulness[28, 30, 26, 28]. However, the handcrafted approach poses

limitations as a result of the inability of a universal aesthetic model in capturing all

relevant aesthetic attributes of an image, as well as, its inability to demonstrate the

impact of the set of features on overall aesthetic ranking. Due to this, other meth-

ods have proposed alternate solutions by assessing aesthetic quality through generic

image features such as Fisher Vector (FV) and Bag-of-Visual-Words (BOV), which

outperform methods using handcrafted features [33, 31, 32, 31, 86].

With the many usages of deep learning techniques in computer vision problems,

recent research proposes using CNNs to learn e↵ective aesthetic attributes resulting

in state-of-the-art performance [34, 35, 30, 36, 37, 38, 39, 40, 41].

Although several advancements have been made in the computer vision field using

CNNs, the categorization of objects and scenes has received more attention in recent

studies [87, 88, 89, 90]. Hence, there have only been a limited number of attempts

that apply deep learning techniques to rank or rate images based on their aesthetic

qualities[38, 39, 40, 41]. While these studies display promising results, more studies

are necessary to better understand how well a CNN can predict humans’ aesthetic

rankings of images.

In this paper, we propose a CNN to approach the problem of automatic image

aesthetics assessment. We also present three di↵erent datasets consisting of images

taken of forests, meadows, and bodies of water, as well as a web page where partici-

pants can manually rate the images found in the datasets. The network is trained on

the three datasets to learn e↵ective aesthetic attributes found in the images. Then,

the deep network can assign an overall aesthetic rating for the set of photos based

on the learned aesthetic features. The experimental results show that the proposed

CNN yields an aesthetic score that displays near-human performance.
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6.2 METHODOLOGY

To accomplish the task of rating images based on their aesthetic qualities, we have

created a dataset of images from various photo sharing platforms such as flickr, pix-

abay, and unsplash. We then manually rated these images with a score from 1 to 10,

with 1 being least aesthetically pleasing and 10 being the most aesthetically pleasing.

These scores were then transformed to a 0 to 4 scale to reduce the number of classes

and complexity of the network. To train the model, we split the dataset into three

parts, 60% for training, 20% for validation, and 20% for testing. We use this dataset

to train a CNN designed specifically for aesthetic ranking. Training was performed on

Florida Atlantic University’s High Performance Computing cluster using an NVIDIA

A100 GPU with 40GBs of GPU Memory.

6.2.1 Image Dataset

The image dataset used to rate an image’s aesthetic qualities was created by collecting

photos from the websites flickr.com, unsplash.com, and pixabay.com. These platforms

enable users to upload images to the site and provide the option to allow others to

download their images. Images containing forests, bodies of water, and meadows were

downloaded for this study. 2,000 images matching that criteria were downloaded at

their original size.

6.2.2 Rating Images

All images in the dataset were rated based on their aesthetic features. The images

were given an overall aesthetic score on a scale from 1 to 10 (where 1 is the lowest and

10 is the highest). Each image was initially rated by a number by one member of our

research team and was later ranked by various participants. To collect image ratings

from all participants, PhotoRanker has been developed in this study. PhotoRanker

allows users to easily view images from the dataset and provide a rating. Each
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Figure 6.1: Number of times each rating from 0-4 was selected

individual ranking is collected and stored on an SQL database. For privacy reasons

Personally Identifiable Information such as email addresses, IP Addresses, Location,

etc. have not been collected.

Ranking Statistics

Image rankings were collected from human raters on a scale of 1-10. The rankings

were modified to a scale of 0-4 to reduce the number of classes and complexity of the

network. A histogram showing the number of times each rating was selected is shown

in figure 6.1. After transformation, the 5755 rankings collected during the study had

an average score of 2.38. To test the closeness of rankings, ADM(J), as defined by

equation 2.16, was calculated for all images with two or more ratings. Figure 6.2

shows the number of images with ADM(j) obtained from human rankings, rounded to

the nearest 0.1. For all images with two or more ratings, ADM(J) is 0.66. This was

considered as the baseline for comparing the performance of our model.

As shown in figure 6.2, there is high variability in the average deviation of scores

from image to image, and the distribution does not appear to be normal. For this

reason, we have decided to focus on the macro results by comparing only the ADM(J)
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of the model to those received from di↵erent human raters.

6.2.3 Our Model

CNNs are well known in the world of image classification. In order to rate images

based on their aesthetic parameters in a meaningful way, we have designed a network

for this study to accept an image of size 1024⇥ 680 as input. The choice of input size

was based on balancing the ability to train the network with minimal loss in details

which may lead to decrease the aesthetic quality of images. In addition, all images

were kept in the aspect ratio of 3:2 because this is how most images are experienced by

viewers. The biggest hurdle to training a large network is available memory, and more

specifically, memory available to the GPU. Figure 6.3 shows the architecture of the

proposed network in this study. Note the lack of pooling layers which are commonly

used to reduce the filter size between convolutional layers. A larger stride was applied

to reduce the output volume of each convolutional layer. The use of striding instead of

pooling has the advantage of a simpler architecture with less layers. [91] showed that

using larger striding instead of max-pooling can reduce network complexity without

any appreciable loss in accuracy. He et al. [7] which introduced ResNet uses this

technique for all layers following the initial convolutional layer.

The proposed network, as shown in figure 6.3, has two main segments. The first

segment in a standard ResNet design. The output space of each of the residual

blocks have been reduced through the reducer phase, and the blocks were added

together. Finally, the combined convolutional layers are flattened and connected to a

single dense output layer with five neurons leading to a network with +32M trainable

parameters.
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6.2.4 Training

Training was performed on FAU’s HPC cluster using an A100 GPU with 40 GB of

video memory. To improve the generalization performance of the trained network,

the SGD optimizer was applied in this study as it has been shown to generalize better

as compared to ADAM, although ADAM has shown better training performance [83].

This is caused by the convergence behavior of SGD enabling smaller escaping time

than ADAM when compared in the same basin, which in turn leads to convergence

at flatter minima for SGD [84]. The initial learning rate was set to 0.01 and the

momentum was set to 0.01. The batch size used for training was set to 5, which was

selected to reduce the memory requirements.

The learning rate is calculated for each step in the training process using the

exponential learning schedule with a decay rate of 0.99. It is important to note that

a step is not an epoch, instead it is the update step which can be determined from

the number of steps per epoch calculated using the batch size. The learning rate can

be calculated by Equation 6.1.

Ld = Li ⇤D
s
ds (6.1)

where Ld is the decayed learning rate, Li is the initial learning rate, D is the decay

rate, s is the current step, and ds is the decay steps.

Training was run for 25 epochs. Weights were reloaded from the validation epoch

with the lowest loss as calculated by the Mean Square Error (mse) loss function. The

final training loss for the network was 0.01 and the validation loss was 0.14. Note

that the performance of the model was assessed based on ADM(J) and the training

accuracy of the network was not considered.
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6.3 RESULTS

Trained network shows ADM(J) = 0.385 for the test set, 42% lower than the ADM(J)

of 0.66 obtained from the human ratings. This result shows that not only is the model

capable of replicating human perception of aesthetic quality, it is remarkably close to

replicating the personal taste of the human rater whose ratings were used for training

the network. Table 6.1 shows the number of images in the test set by their human

rating to model rating deviation. This shows that of the 100 images in the test set,

91 had a deviation within 1 point of the human rating. Figure 6.4 shows examples of

rankings provided by the model as compared to human rankings.

Table 6.1: Number of images by deviation of model rating from human rating

|Ratinghuman �Ratingmodel| Number of predictions

0 32

1 59

2 9

3 0

4 0

6.4 DISCUSSION AND CONCLUSIONS

With machines becoming ever more intelligent, it is inevitable that AI should find

its way into activities previously thought to be reserved for human consumption. We

have always thought of ourselves as special because of our ability to create science,

literature, and art. In recent years, we have seen a revolution in the field of AI,
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with machine learning algorithms now capable of writing articles, creating music,

and even producing art [92, 93, 94]. In this research we have shown that AI can

also sense aesthetics. We have introduced a unique CNN design which is capable of

learning aesthetic quality of images, and predict ratings which are in high agreement

(ADM(J) = 0.385) with human provided scores, outperforming the agreement between

human raters (ADM(J) = 0.66). While we focused our e↵ort on images of natural

scenes, it would be interesting to see if these results can be replicated for image

datasets that consist of portraits, artwork, architecture, and other categories.

The use cases for such a technology are numerous. For example, within personal

and professional photography, an AI can inform the photographer of the aesthetics

quality of the image instantaneously. This would enable the photographer to gauge if

a shot is acceptable, or if it needs to be retaken from a di↵erent angle, with di↵erent

lighting, or cropping. Another area where this can be useful is within social network-

ing applications such as Instagram or online shopping marketplaces, where a user

can be directed to images that are more agreeable with their own sense of aesthetics.

Perhaps, a user can select a handful of images they find aesthetically pleasing, and

as a result other artwork which agrees with their sense of style can be shown. We

should however be cautious in the use of such technology as it could potentially cause

a dwindling of art and culture by creating a feedback loop which reduces creativity

by reinforcing a certain style, producing a bubble from which breaking out of can be

di�cult.
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Figure 6.4: (A) Human ranking = 0, Model Ranking = 1; (B) Human ranking =

3, Model Ranking = 2; (c) Human ranking = 2, Model Ranking = 3; (D) Human

ranking = 3, Model Ranking = 3
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CHAPTER 7

CLOSING REMARKS AND FUTURE WORKS

In this dissertation, we have shown that we can use deep learning, and in particular

CNNs to detect a variety of image quality problems. We have further shown how

these problems can negatively impact classification tasks by performing a case study

on medical image diagnosis. The results showed that sensitivity is a↵ected more

negatively than specificity in the presence of quality issues such as Gaussian noise,

salt and pepper, Poisson noise, and speckle noise. In some instances, sensitivity was

a↵ected by a factor 5, meaning that 5 times as many positive cases were incorrectly

identified as negative.

The subject of image quality was further expanded upon by the introduction of

a novel CNN which is capable of learning the aesthetic qualities of photographs and

assign an aesthetic ranking to the image. The results show that using the proposed

approach, ratings provided by the model were within one point of the human provided

ranking in 91% of cases. This work has immense implications in a multitude of

applications including social media, digital photography, and e-commerce. In social

media, an aesthetic ranking model can be used to determine which image to upload.

As a photographer is taking photos, he or she can be shown helpful hints regarding

the aesthetic ranking of a particular frame. Using this information the photographer

can choose to take a photo from a di↵erent angle or with di↵erent lighting. Lastly,

in e-commerce, such a system could be used to identify a buyer’s sense of style. This

enables sellers to show items that are in a completely di↵erent category, and look

completely unique, but they match the taste of the target user.

As a followup study, it would be interesting to investigate the relationship between
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prediction accuracy and noise injected into the image. We observed that Gaussian

noise, when added to images of skin lesions, the classification accuracy either was not

a↵ected, or went up slightly. This is counter intuitive and it would be interesting to

examine the mechanism by which this performance improvement is judged.
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[14] Jérôme Da Rugna and Hubert Konik. “Automatic blur detection for meta-

data extraction in content-based retrieval context”. In: Internet Imaging V.

Vol. 5304. International Society for Optics and Photonics. 2003, pp. 285–295.

[15] Renting Liu, Zhaorong Li, and Jiaya Jia. “Image partial blur detection and clas-

sification”. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on. IEEE. 2008, pp. 1–8.

72



[16] Bolan Su, Shijian Lu, and Chew Lim Tan. “Blurred image region detection

and classification”. In: Proceedings of the 19th ACM international conference

on Multimedia. ACM. 2011, pp. 1397–1400.

[17] Ke Gu, Guangtao Zhai, Weisi Lin, Xiaokang Yang, and Wenjun Zhang. “No-

reference image sharpness assessment in autoregressive parameter space”. In:

IEEE Transactions on Image Processing 24.10 (2015), pp. 3218–3231.

[18] Samuel J Yang, Marc Berndl, D Michael Ando, Mariya Barch, Arunachalam

Narayanaswamy, Eric Christiansen, Stephan Hoyer, Chris Roat, Jane Hung,

Curtis T Rueden, et al. “Assessing microscope image focus quality with deep

learning”. In: BMC bioinformatics 19.1 (2018), pp. 1–9.

[19] Simone Bianco, Luigi Celona, Paolo Napoletano, and Raimondo Schettini. “On

the use of deep learning for blind image quality assessment”. In: Signal, Image

and Video Processing 12.2 (2018), pp. 355–362.

[20] Pina Marziliano, Frederic Dufaux, Stefan Winkler, and Touradj Ebrahimi. “A

no-reference perceptual blur metric”. In: Image processing. 2002. Proceedings.

2002 international conference on. Vol. 3. IEEE. 2002, pp. III–III.

[21] Yun-Chung Chung, Jung-Ming Wang, Robert R Bailey, Sei-Wang Chen, and

Shyang-Lih Chang. “A non-parametric blur measure based on edge analysis for

image processing applications”. In: Cybernetics and Intelligent Systems, 2004

IEEE Conference on. Vol. 1. IEEE. 2004, pp. 356–360.

[22] Hanghang Tong, Mingjing Li, Hongjiang Zhang, and Changshui Zhang. “Blur

detection for digital images using wavelet transform”. In: Multimedia and Expo,

2004. ICME’04. 2004 IEEE International Conference on. Vol. 1. IEEE. 2004,

pp. 17–20.

73



[23] Elena Tsomko, Hyoung Joong Kim, Joonki Paik, and In-Kwon Yeo. “E�cient

method of detecting blurry images”. In: Journal of Ubiquitous Convergence

Technology 2.1 (2008), pp–27.

[24] S Alireza Golestaneh and Lina J Karam. “Spatially-Varying Blur Detection

Based on Multiscale Fused and Sorted Transform Coe�cients of Gradient Mag-

nitudes.” In: CVPR. 2017, pp. 596–605.

[25] Yubin Deng, Chen Change Loy, and Xiaoou Tang. “Image aesthetic assessment:

An experimental survey”. In: IEEE Signal Processing Magazine 34.4 (2017),

pp. 80–106.

[26] Ritendra Datta, Dhiraj Joshi, Jia Li, and James ZWang. “Studying aesthetics in

photographic images using a computational approach”. In: European conference

on computer vision. Springer. 2006, pp. 288–301.

[27] Shao-Fu Xue, Henry Tang, Dan Tretter, Qian Lin, and Jan Allebach. “Feature

design for aesthetic inference on photos with faces”. In: 2013 IEEE International

Conference on Image Processing. IEEE. 2013, pp. 2689–2693.

[28] Yan Ke, Xiaoou Tang, and Feng Jing. “The design of high-level features for

photo quality assessment”. In: 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06). Vol. 1. IEEE. 2006,

pp. 419–426.
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