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Secure multiparty computation (secure MPC) is a computational paradigm

that enables a group of parties to evaluate a public function on their private data

without revealing the data (i.e., by preserving the privacy of their data). This com-

putational approach, sometimes also referred to as secure function evaluation (SFE)

and privacy-preserving computation, has attracted significant attention in the last

couple of decades. It has been studied in di↵erent application domains, including in

privacy-preserving data mining and machine learning, secure signal processing, secure

genome analysis, sealed-bid auctions, etc. There are di↵erent approaches for realizing

secure MPC. Some commonly used approaches include secret sharing schemes, Yao’s

garbled circuits, and homomorphic encryption techniques.

The main focus of this dissertation is to further investigate secure multiparty

computation as an appealing area of research and to study its applications in di↵erent

domains. We specifically focus on secure multiparty computation based on secret

sharing and fully homomorphic encryption (FHE) schemes. We review the important

theoretical foundations of these approaches and provide some novel applications for

each of them. For the fully homomorphic encryption (FHE) part, we mainly focus on

v



FHE schemes based on the LWE problem [142] or RLWE problem [109]. Particularly,

we provide a C++ implementation for the ring variant of a third generation FHE

scheme called the approximate eigenvector method (a.k.a., the GSW scheme) [67].

We then propose some novel approaches for homomorphic evaluation of common

functionalities based on the implemented (R)LWE [142] and [109] and RGSW [38,58]

schemes. We specifically present some constructions for homomorphic computation

of pseudorandom functions (PRFs). For secure computation based on secret sharing

[150], we provide some novel protocols for secure trust evaluation (STE). Our proposed

STE techniques [137] enable the parties in trust and reputation systems (TRS) to

securely assess their trust values in each other while they keep their input trust values

private. We would like to remark that trust and reputation are social mechanisms

which can be considered as soft security measures that complement hard security

measures (e.g., cryptographic and secure multiparty computation techniques).

We hope our research can contribute to advancing the interesting area of secure

computation. Besides improving existing secure multiparty computation protocols,

our proposed FHE-based constructions and secure protocols can potentially be used

for providing more secure and robust data and computation infrastructures.
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CHAPTER 1

INTRODUCTION

Secure multiparty computation (secure MPC) is a branch of modern cryptography

that has attracted significant attention in the last couple of decades. This computa-

tional paradigm enables a group of (possibly untrusted) parties to evaluate a public

function on their private data without revealing their input data. Secure MPC has

been vastly studied from both theoretical and application point of views. It has been

investigated in various application domains, e.g., in privacy-preserving data mining

and machine learning, secure signal processing, and secure genome analysis (privacy-

preserving genome analysis), seal-bid auctions etc.

There are di↵erent approaches that can be used for implementing secure multi-

party computation protocols. Some commonly used approaches include secret sharing

schemes [150], [20], Yao’s garbled circuits [169], and homomorphic encryption tech-

niques [146], [131], [60], [66]. Each of these approaches has their own advantageous

and disadvantageous. In fact, none of the mentioned approaches can surpass other

approaches in all aspects (mainly in computation and communication costs). While

some approaches can be computationally e�cient, they can have too high commu-

nication overhead (e.g., secret sharing-based schemes). Those approaches which are

e�cient in terms of communication costs can be computationally intensive (e.g., fully

homomorphic-based schemes). What’s more, some approaches can support multiple

number of participants (i.e., more than three parties) in a multiparty computation

scenario, whereas some approaches might not be applicable for more than a few par-

ties (i.e., they can support two or at most three parties).
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1.1 MOTIVATION AND PROBLEM STATEMENT

Secure computation provides us with promising solutions specifically for data privacy-

related issues. However, this area of research is still in its infancy and more research

and development are needed in order for secure MPC solutions to be deployed in real

world applications. One main bottleneck in the way of secure computation is that

none of the secure computation approaches can provide solutions that can be utilized

in general-purpose applications. That’s because there are quite a few approaches that

allow secure computation and each approach has its own strengths and weaknesses.

Just as an example, secure computation using homomorphic encryption was envi-

sioned in 1978 [146]. However, providing a fully homomorphic encryption scheme was

an open problem until 2009 [66]. Even though Gentry in [66] provided a blueprint

for fully homomorphic encryption techniques, even after significant amount of re-

search and development FHE schemes are not yet practical nor e�cient enough. The

main challenge with FHE schemes is that such schemes are computationally expen-

sive, mainly because of large cryptographic keys and/or costly arithmetic operations

such as the multiplication operation. Another challenge with homomorphic encryp-

tion schemes, which seems to be overlooked, is that not all homomorphic encryption

techniques support multi-key encryption.

On the other hand, secure computation based on secret sharing provides solutions

which are computationally e�cient, but such solutions can su↵er from high commu-

nication cost. Although the multiplication operation in secure MPC based on secret

sharing is also a bottleneck, secure computation based on secret sharing has some

appealing properties. Specifically, it provides information-theoretical security if the

underlying secret sharing scheme is information-theoretically secure. Moreover, in

secure MPC based on secret sharing there is no need for any cryptographic keys and

any finite number of parties can participate in a multiparty computation protocol.

The above discussion, besides the fact that secure computation has attracted

2



significant attention in the last couple of decades, motivated us to focus on secure

computation in this dissertation. After briefly reviewing di↵erent approaches in secure

computation and considering the pros and cons of each approach we decided to devote

the majority of the dissertation to secure multiparty computation based on secret

sharing and fully homomorphic encryption (FHE) schemes. These two approaches

have attracted significant attention in the research community and several secure

computation protocols have been implemented based on these approaches.

1.2 DISSERTATION’S OBJECTIVES

In this dissertation, we focus on secure multiparty computation (secure MPC). We

first study di↵erent approaches that are used in secure MPC and highlight the strengths

and weaknesses of each approach. We then provide the preliminaries and theoretical

bases of secure MPC and detail the main building blocks which are required for se-

cure computation. We devote the majority of this dissertation to secure multiparty

computation based on Shamirs (t, n)-threshold secret sharing [150] and fully homo-

morphic encryption (FHE) schemes. Specifically, we provide a C++ implmentation

of the ring variant of a well-known FHE scheme called the approximate eigenvector

method (a.k.a., the GSW scheme [67]); and utilize our implementation for homomor-

phic computation of pseudorandom functions (PRFs). The ring variant of the GSW

FHE scheme is usually referred to as Ring-GSW or RGSW [58] and [38]. Further-

more, we provide some novel protocols for secure trust evaluation (STE) [137] based

on Shamir’s secret sharing scheme [150].

The fully homomorphic encryption scheme that we implement is based on the

ring variant of a third generation FHE scheme, called the approximate eigenvector

method also known as GSW scheme [67]. The security of the most of the FHE scheme

is based on the learning with errors (LWE) problem [142] or its ring variant called ring

learning with errors (RLWE) [109]. Our implementation of the ring variant of the

3



GSW scheme [67] is in C++ and uses NFLlib C++ library [5]. The NFLlib library [5]

is a fast library for lattice-based cryptography computations. Specifically, it provides

the required data structure and functionalities for polynomial arithmetic, such as the

number theoretic transformation (NTT) [135] representation of a polynomial over a

finite field and fast polynomial multiplication. Our proposed secure trust evaluation

(STE) mechanisms [137] allow the parties in trust and reputation systems (TRS)

to securely evaluate their trust values in each other without revealing such values

(which are considered as private data). We propose three di↵erent STE techniques,

namely STE based on multipath trust propagation [156], STE based on referral chain

approach [156], and STE based on the aggregation of trust evidence [166]. Our se-

cure trust evaluation techniques are based on Shamir’s secret sharing scheme [150]

(although other secret sharing schemes, e.g., Blakley’s scheme [20], can be utilized).

We would like to emphasize that trust and reputation systems have applications in

di↵erent domains including in Internet of Things (IoT), cloud computing, social net-

works, intelligent transportation systems (ITS), peer-2-peer (P2P) networks, vehicle-

2-vehicle (V2V) networks, wireless sensor networks (WSN), ad-hoc networks, and web

services.

Our proposed secure MPC solutions for the above applications enhance the current

solutions by preserving the privacy of the entities’ data in the trust and reputation

systems. In particular, there are various studies stating the security and privacy in an

important issue in TRS systems [76,106,132,144,147]. Thus, our proposed solutions

can be utilized to address such privacy issues.

1.3 DISSERTATION’S OUTLINE AND STRUCTURE

The current chapter (Chapter 1) provides the problem statement, motivation for our

research in this dissertation, dissertation’s objectives, as well as the structure of the

dissertation. In chapter 2, we present the preliminaries and theoretical bases that

4



are used throughout this dissertation. These include Shamir’s secret sharing scheme

[150] and the foundations of fully homomorphic encryption, e.g., the LWE [142] and

RLWE [109] problems, the approximate eigenvector (a.k.a., GSW) scheme [67]. In

chapter 3, we provide an introduction to secure multiparty computation (secure MPC)

and a brief history of this area of research. We further detail di↵erent approaches

that are commonly used for secure computation and the building blocks for secure

computation. In addition, we provide a brief literature review on the previous research

and development related to secure MPC and the developed secure MPC tools, and

libraries.

In chapter 4, we describe the RGSW fully homomorphic encryption scheme (i.e.,

the ring variant of the GSW scheme [67]) and its C++ implementation. Specifically,

we discuss what the plaintext and ciphertetxt spaces of the RGSW scheme [38, 58]

are, how the public and secret keys for this scheme are generated, and how encryption

and decryption algorithms work. We also describe our C++ implemenation of the

RGSW scheme and explain how it works.

In chapter 6, we propose two secure trust evaluation (STE) techniques [137] that

are based on multipath and referral chain trust propagation methods [156]. In addi-

tion, we propose a secure network routing protocol that allows the nodes in a network

to securely find some high-quality routes in a network, e.g., a wireless sensor network

(WSN). In chapter 7, we present our third proposed secure trust evaluation (STE)

technique which is based on the aggregation of trust evidence [166]. Our proposed

STE techniques can be utilized in di↵erent trust and reputation systems (TRS) to ad-

dress or alleviate data security and privacy-related issues. Finally, chapter 8 provides

the concluding remarks and highlights potential paths for future research directions.
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CHAPTER 2

PRELIMINARIES AND THEORETICAL BASES

In this section, we provide the preliminaries and theoretical bases that we need

throughout the dissertation. As we mainly focus on secure computation based on

fully homomorphic encryption (FHE) and secret sharing schemes, we provide the

main theoretical foundations behind these two approaches. Homomorphic encryption

schemes are mostly based on hard problems in lattices and the learning with error

problems (particularly LWE and RLWE) [142] and [109]. Besides these, most FHE

schemes are constructed on the ring of polynomials. A commonly used ring is the ring

of polynomials modulo a cyclotomic polynomial (such as XN+1 where N is a power

of two, e.g., 1024). Secret sharing schemes, also rely on polynomials. However, the

way that data is encoded in each approach is di↵erent. In homomorphic encryption

the data is encrypted using some encryption algorithm and the computations are

performed on encrypted data; whereas in secret sharing the data is shared using a

secret sharing scheme and computations are performed on the shares of the data.

Regardless of the secure computation approach, there are some commonly used

building blocks which are required for secure computation, such as secure compari-

son (a.k.a., the greater-than operation (> or ) or Yao’s millionaire’s problem [169])

and secure dot-product of two vectors. In this chapter of the dissertation, we pro-

vide a brief description of the required theoretical foundations for the schemes and

algorithms used in the dissertation.
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2.1 SHAMIR’S SECRET SHARING SCHEME

One of the common approaches in secure computation is secret sharing. A well-

known secret sharing scheme was proposed by Shamir, which is known as Shamir’s

(t, n)-threshold secret sharing scheme [150]. Briefly speaking, this scheme allows us to

distribute a secret among n parties and the secret is reconstructable only if t parties

collaborate and provide their correct shares (pieces of secret). This scheme works as

follows [150]:

In order to share a secret, the party who want to share its secret first fixes a finite

field such as Zp where p is a prime number. The party then selects a polynomial of

degree t � 1 over Zp[x] where the constant term of the polynomial is his secret and

its other coe�cients are random numbers in Zp. Note that t is called the threshold.

To share the secret into n pieces, the party evaluates the selected polynomial over n

di↵erent points in Zp. To reconstruct a shared secret from its pieces, at least t pieces

of the secret are required. To do so, by having t pieces of a secret the party can

use the Lagrange interpolation to reconstruct the polynomial which was selected for

generating the shares of the secret. Then in order to get the secret, the party needs

to evaluate the polynomial on origin, i.e., to calculate f(0).

It is interesting to see how Shamir’s secret sharing scheme works from the math-

ematical point of view. This scheme in fact encodes a secret into a set of points on

a polynomial (more specifically on a polynomial of degree t� 1 over Zp[x]). A good

property of polynomials is that by having su�cient number of points on a polynomial

one can reconstruct the polynomial. That is, a polynomial of degree t � 1 can be

uniquely determined using at least t points of that polynomial. This propoerty of

polynomials has also been utilized in Reed-Solomon error correcting codes [141]. In

fact, Shamir’s secret sharing scheme [150] is closely related to Reed-Solomon error

correcting codes [141]. This interesting observation was first made by McEliece and

Sarwate [115].

7



2.2 FULLY HOMOMORPHIC ENCRYPTION (FHE)

Homomorphic encryption, particularly fully homomorphic encryption (FHE), is one

the promising solutions for performing computation on encrypted data. The idea of

secure computation using homomorphic encryption was first envisioned in [146] and

was boomed by the introduction of the first plausible fully homomorphic encryption

(FHE) by Craig Gentry [66]. After decades of research in this domain, there are now

several implementations and open-source libraries implementing FHE schemes. Some

examples include INTEL’s HEXL library1, Microsoft SEAL’s library [36], HElib2,

Palisade3, TFHE [38] etc. The theory behind most FHE schemes relies on hard

problems in lattices as well as the learning with errors (LWE) problem [142] or its ring

variant, i.e., the RLWE problem [109]. Simply put, a lattice is a discrete subgroup of

Rn, e.g., Zn (where Z is the set of integer numbers). The learning with errors (LWE)

problem [142] is the problem of finding the solution of a system of linear equation

over a finite field or ring in the presence of noise (error). While solving a system of

linear equation is an easy problem to solve and there are di↵erent e�cient solutions

for that (such as the Gaussian elimination), solving a system of linear equation with

some small noise added to each equation is conjectured to be a hard computational

problem [142]. Most of the state-of-the-art and promising FHE schemes, that have

been implemented in the libraries, are based on the ring variant of the LWE problem

(commonly referred to as RLWE) [109].

1
https://github.com/intel/hexl

2
https://github.com/homenc/HElib

3
https://palisade-crypto.org
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CHAPTER 3

SECURE MULTIPARTY COMPUTATION (SECURE MPC)

3.1 THE HISTORY OF SECURE MULTIPARTY COMPUTATION

Secure multiparty computation (secure MPC) is a branch of modern cryptography

that has attracted significant attention in the last couple of decades. Early works

on secure computation dates back to seminal papers of Andrew Yao [169], Rivest

et al. [146], and Shamir [150]. In [169] Yao introduced the idea of secure compu-

tation as well as the Yao’s millionaires problem. On the other hand, in [146] the

pioneers of cryptography envisioned the idea of secure computation using mathemat-

ical homomorphisms. Shamir and Blakley introduced the notion of secret sharing

independently in [150] and [20].

Although the main theme of [169], [146], [150] is secure computation, they have

taken di↵erent approaches for o↵ering secure computation mechanisms. In [169], Yao

introduced the millionaires problem in which two millionaires want to determine who

is richer, but they are not willing to disclose the amount of wealth they each have. Yao

also proposed some solutions based on public-key cryptography for his millionaires

problem. The proposed solution for his problem was the first example of a secure

computation protocol [169]. Later, Yao introduced the idea of garbled circuits [170]

which is one of the common secure computation approaches.

After the introduction of the core ideas behind secure computation, there have

been extensive amounts of research based on each approach. Particularly, secure

computation based on fully homomorphic encryption became really popular by a

breakthrough work by Gentry in 2009 [66].
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3.2 COMMON APPROACHES FOR SECURE COMPUTATION

There are di↵erent approaches to implement a secure multiparty computation scheme.

These techniques are based on three cryptographic primitives, i.e., secret sharing

[20,150], homomorphic encryption [60,66,131,146] and Yao’s garbled circuits [170].

3.2.1 Secure Computation based on Secret Sharing

Secret sharing is one of the dominant approaches used in secure multiparty compu-

tation. In this approach, the participating parties use a secret sharing scheme, e.g.,

Shamir’s scheme [150], to share their secrets (private data). In order to emulate a

secure MPC protocol, the parties then perform computations on the shares of their

data, rather than directly on their data. Since the shares of the private data are

random values, no information about that data is revealed.

This approach of secure computation typically involves a couple of steps. As

shown Fig. 3.1, the first phase is share generation and distribution. In this step, the

participating parties share their data and distribute them among each other. The

second phase is performing computations on the shares of data. In this phase each

party locally performs the required computations on the shares of its data. The

third and last step is reconstruction of the computations’ result. After performing

computation on the data, the parties send their updated result to a party (or a dealer)

and the party (or dealer) reconstructs the result by using the Lagrange interpolation.

An advantage of secure computation protocols based on secret sharing is that

such protocols can provide information-theoretical security given that the underly-

ing scheme is information-theoretically secure. Another advantage of MPC based

on secret sharing is that there is no need for any encryption/decryption key. How-

ever, secret-sharing-based MPC protocols require significant amount of communica-

tion among the participating parties. In fact, privacy is achieved by distributing the

computations among the parties.
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Figure 3.1: Secure Multiparty Computation

3.2.2 Secure Computation based on (Fully) Homomorphic Encryption

Another commonly-used approach in secure multiparty computation protocols is ho-

momorphic encryption. In this case, the parties utilize a homomorphic encryption

scheme, e.g., the Paillier scheme [131], to encrypt their data. The parties then per-

form computations on the encrypted form of data. Homomorphic encryption has

attracted significant attention in the last decade. In particular, by the introduction

of fully homomorphic encryption (FHE) schemes [66], this research area has shown

to be more promising.

Most of the cryptographic schemes are based on the di�culty of some hard com-

putational problems, e.g., integer factorization, discrete logarithm, the learning with

errors problem (LWE) [142]. While lattice-based cryptography algorithms are con-

sidered to be resistant against quantum computers, not all cryptographic algorithms

based on hard computational problems can resist against attacks by quantum com-

puters. This is due to the fact that if the underlying di�cult problem is solved

(e.g., by utilizing quantum computers), the encryption scheme would not be secure
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anymore. In addition, homomorphic-encryption-based MPC protocols are computa-

tionally intensive and supporting multi-key encryption is a challenging task in such

schemes [4].

3.2.3 Secure Computation based on Yao’s Garbled Circuits

Yao’s garbled circuits [170] is another dominant approach for secure two-party com-

putation. A garbled circuit is an encrypted form of a function, which is supposed to

be evaluated securely between two parties. More precisely, in this approach, one party

encrypts the bits of their input and the intermediate state of the computation. This

party then converts the computation into a circuit of binary gates, each represented

as a garbled truth table. The other party, a.k.a., the evaluator, receives the circuit

and the encrypted input bits. The evaluator then produces the encrypted output by

evaluating each gate at the encrypted bits of the input and combining the results.

Yao’s garbled circuit approach is the most e�cient method for securely evaluating

boolean circuits [99]. This approach does not require any communication between

the parties during the evaluation. However, the intermediate state in the garbled

circuits is far larger than the input data. This makes garbled circuits impractical for

processing large data. Moreover, the garbled circuit approach provides computational

security.

3.3 BUILDING BLOCKS FOR SECURE COMPUTATION

3.3.1 The Secure Comparison Operation (Yao’s Millionaires Problem)

Comparison of numbers is a fundamental task in almost any kind of computation.

Doing such a task in a secure or privacy-preserving fashion is also a well-known

problem. The problem was originally formalized as the Yao’s Millionaire problem

[168]. Informally speaking, the millionaires problem states how two millionaires can

figure out who is richer, while they do not reveal any additional information about
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their wealth. Note that in some literature the Yao’s Millionaires problem is also called

the greater-than (GT) problem and secure comparison problem.

Various solutions have been proposed for the Millionaires problem. The solutions

largely rely on cryptographic tools and techniques. These techniques include secret

sharing, homomorphic encryption, garbled circuits, and geometrical computation ap-

proaches. The proposed solutions are based on di↵erent assumptions. For instance,

the security model can be semi-honest or malicious. The inputs and the output can

be encrypted or shared using a secret sharing scheme. Moreover, the protocols may

accept the inputs as bit strings or integer numbers. In particular, most of the proto-

cols were designed in the semi-honest security model. Fortunately, any such protocol

can be extended to a protocol that will be resistant to malicious adversaries. Such

an extension can be obtained by adding a bit commitment scheme or by applying

the GMW compiler [68] to the protocol which is resitant against semi-honest adver-

saries [107].

In what follows, we provide a comprehensive list of solutions and protocols for

the Millionaires problem. This list is provided in Table 3.1, which contains di↵erent

columns. The first column shows the name of each secure comparison protocol or

the names of its authors. This column also includes the reference to the paper in

which the protocol was proposed. The second column indicates whether each proto-

col needs a third party (TP) or the type of the third party that has been used in the

protocol. The third column shows the operations (>,�, <, or =) that each proto-

col supports. The type of inputs (integer or rational/real numbers) is shown in the

forth column. Finally the round/communication and computation complexities are

presented in fifth and sixth columns respectively. The symbols that are used in the

round and computation complexities are explained in Table 3.2. Due to space con-

straint, we used some abbreviations in Table 3.1. These abbreviations are explained

in Table 3.3.
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Protocols and Solutions for the Secure Comparison Problem

Protocol or Reference TP Op Type Round Computation

[168] No >, Integer 2 exponential

[62] Yes >,=, < Integer O(1)* O(1)*

[32] Yes >,=, < Integer 3 -

[46] No >, Integer - 8k

[45] No >, Integer 6n2 + 4n2log(N) 4n2log(N)

[26] No = Integer - O(k)

[63] Yes** >, Integer 2 �dlog(N) + 6d�+ 3d

[85] No �, < Integer d -

[18] No >,< Integer 1 (4n+ 1)logN + 6n

[148] No >, Integer O(m) 12m

[104] No >, Integer 2 5dlog(p) + 4d� 6

[47] No >,=, < Integer 19 l ⇥ log(l)

[95] No >, Integer O(1) O(log2(n))

[48] No >, Integer 2 l(t+ log(l))

Pro 1 [65] No >,=, < Integer log(m) 150m

Pro 2 [65] No >,=, < Integer  9 124m

[123,124] No >,=, < Integer  133 O(llog(l))

[154] No > Integer 8 29l + 36log(l)

[51] DTP >, Integer 2 O(l(t+ log(l)))

[98] No = Integer 1 -

[152] No <,� Rational 1 2n

[19] No >, Integer 1 7nlog(N)

[97] No >, Integer - negligible

[143] No > Integer 8 58.5l + 33

[33] No < FiPN log(k) + 2 3k � 4

[33] No = FiPN 4 k + 4log(k)

Pro 2 [127] TI >,< Integer O(✓) O(✓ n
2 log2n)

Pro 3 [127] TI >,< Integer O(✓) O(n2 log2✓ log2n)

Pro 1 [157] No >, Integer O(log(l)) O((+ loglog(l))log(l))

Pro 2 [157] No >, Integer O(c) O(
p
l(+ log(l))

with Pre-Comp [160] No �, < Integer l 4(l � 1)

without Pre-Comp [160] No �, < Integer l 7(l � 1) + 1.5

[173] DTP �, < Integer O(1) O(l)****

[158] No �, < Integer - -***

[7] No =, > FlPN 6 4l + 5k + 4log(k) + 13

[72] No >, Integer 2 5dlog(p) + 4d� 6

2nd Pro [129] TI >, Integer 1 2
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[111] No >, Integer 2 2dlog(p)

[54] TI >, Integer O(l) O(l)

Pro 2, 3 [108] No >,=, < Integer 2 6L+ 4

Pro 4 [108] No >,=, < Rational 1 negligible

Pro 1 [107] No >,=, < Integer 1 2(s+ 2)log(N)

Pro 2 [107] No >,=, < Integer 2n(n� 1) Negligible

Pro 2 [103] No >,� Rational 1 10

Pro 3 [103] No >,=, < Rational 1 8

[44] No >,= Integer O(l) O(l)

[87] DTP >,=, < Integer - O(n)

[3] DTP >,=, < Integer O(1) O(l)****

*: Note that the protocol of [62] is a very simple protocol that can be utilized for comparing

{1, 2, 3} in Z7.

**: The third party used in [63], is an oblivious third party, meaning that it remains oblivious

about the outcome of the protocol.

***: [158] provides two improvements for the DGK protocol.

****: Note that the computational complexity of the protocols of [3] and [173] in the online

phase is O(
p

l/log(l)).

Table 3.1: Secure Comparison Protocols (significantly extended based on [108])

Most E�cient and/or Competitive Secure Comparison Protocols

In what follows, we discuss some of the (most) e�cient or competitive solutions and

protocols that have been proposed for the secure comparison problem (greater-than

(GT) problem). There are a few important points that should be highlighted. First

of all, since the proposed solutions work in di↵erent settings and based on di↵erent

assumptions and approaches, a thorough comparison of the solutions is out of the

scope of this dissertation. However, we intend to determine a list of the protocols

that have been reported amongst the e�cient or most e�cient solutions as well as

those that might provide competitive results. Another important point that has to

be kept in mind is that there are di↵erent criteria for measuring the performance of a

comparison protocol. Usually di↵erent complexities such as computation, communi-
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Table of Notations (used in Table 3.1)

Ref. Notation Meaning

[46] k the bit length of the input

[26] k a security parameter used in the protocol

[18]
n

N

n: the input’s length in bits

N : size of the Paillier scheme’s plaintext domain

[47] l the number of bits of integer inputs

[65], [148] m the number of bits of integer inputs

[123] l the length of the prime number p in bits

[45], [19]
n

N

n: the count of bits of the inputs

N : encryption scheme’s modulus

[154], [143] l the length of the prime number p in bits, i.e. l = log(p)

[152] n the number of elements of the set used in their protocol

[51]

l

k

t

l: the length of integer input in bits

k: the length of RSA modulus in bits

t: the security parameter

[33] k a parameter used in fixed point representation of numbers

[127]
✓

n

✓: is the auction’s price range

n: the count of bidders in the auction

[157]
l



l: the bit-length of each private input

: a correctness parameter

[7]
l

k

l: the length of inputs in bits

k: a parameter used in the representation of real numbers

[54] l the bit length of the input integers

[107]

s

n

N

s: the encoding vector’s dimension

n: the count of parties in the protocol

N : the Paillier scheme’s modulus

[44] l the bit length of the inputs

[63], [85]

d

�

N

d: the input’s length in bits

�: a parameter for handling error

N : the modulus

[104], [72], [111]
d

p

d: the length of inputs

p: modulus of Elgamal encryption scheme

[108] L the length of 0� 1 encoding vector

[3], [173] l the input’s length in bits

Table 3.2: Meaning of the Notations used in Table 3.1

16



Table of Abbreviations (used in Table 3.1)

Abbr. Meaning

TP Whether the protocol uses third party or not

DTP Distributed Third Party

TI Trusted Initializer

Op Comparison operations (>,=, <,� or )

Type Integer, rational numbers, fixed point or floating point numbers

Pro Protocol

FiPN Fixed point notation (representation)

FlPN Floating point notation (representation)

Table 3.3: Meaning of Abbreviations used in Table 3.1

cation and round complexity are used. As such, a certain secure comparison protocol

might be e�cient when some measurement criteria is considered, while the same pro-

tocol might not be e�cient when another criteria is considered. We would like to

highly emphasize that the provided list is not meant to be a comprehensive list of the

ultimate e�cient solutions. Nevertheless, we hope it can be useful for future research

particularly for selecting secure comparison protocols that might be appropriate for

di↵erent applications and/or settings.

According to [54], the protocol proposed in [51] is among the most e�cient solu-

tions for the GT problem. This protocol is due to Damgard, Geisler and Kroigard

and has been referenced in other papers, e.g., [44, 158]. It is sometimes referred to

as the DGK protocol. Some other e�cient protocols are specified in [44], which is

a very recent paper at the time of writing this survey paper. According to [44], the

protocols of [98], which were proposed for secure equality and comparison tests, are

among the most e�cient protocols (with regard to communication complexity). The

proposed protocols in [98] were later improved in [97] and [174]. It is important to

know that the solutions in [98] rely on Yao’s garbled circuits. We should emphasize

that the main focus of [98] and [174] is improving garbled circuits with the goal of

using them in secure function evaluation. In [98], secure integer equality testing as
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well as integer addition were mentioned as examples of secure function evaluation.

The most e�cient protocols in the category of homomorphic encryption are: [48],

[49] which is a correction to [48], and [158] which is an improvement to [48]. In Two-

Party computation (2PC), the protocol proposed in [65] is the most e↵ective solution

with regard to communication and computation overhead. For secure equality testing,

an e�cient protocol with constant number of modular exponentiations was proposed

in [26], which is an improvement of the protocol proposed in [86]. The computational

overhead of the solution in [86] is ⇥(k) modular exponentiations, wherein k denotes

a security parameter used in the protocol.

Authors in [24] claimed that there are at least two e�cient methods for doing

secure comparison. One approach is utilizing homomorphic encryption schemes spe-

cialized for this purpose [48,49,61,160]. The second way is using garbled circuits [16].

Techniques based on the first approach are more e�cient for comparison of encrypted

values. Whereas those based on the second approach are more e�cient for comparing

unencrypted values [24]. For comparing unencrypted values in [24], the authors used

a scheme of [16], a short circuit developed in [96], and a known oblivious transfer

(OT) scheme introduced in [122]. For comparison of encrypted inputs, they used a

modified version of Veugen’s protocol [160].

Another e�cient protocol for secure comparison of integers was proposed in [160].

According to [160], most e�cient solutions for secure comparison rely on homomorphic

encryption (HE) or garbled circuits (GC). For instance, a very e�cient solution based

on garbled circuits was presented in [97]. Another well-known HE-based protocol was

proposed in [18] and later was improved by Damgard et. al. in [49, 51]. For the

improvement, they used a dedicated encryption scheme designed for small plain text

values. The solution presented in [95] has also been reported as an e�cient solution

for the Millionaire problem.

The protocols proposed in [127] and [129] can be among the most e�cient or
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Most E�cient and/or Competitive Secure Comparison Protocols

Protocol or Reference TP Op Type Round Computation

[95] No >, Integer O(1) O(log2(n))

[48] No >, Integer 2 l(t+ log(l))

Pro 1 [65] No >,=, < Integer log(m) 150m

Pro 2 [65] No >,=, < Integer  9 124m

[51] DTP >, Integer 2 O(l(t+ log(l)))

[98] No = Integer 1 -

[97] No >, Integer - negligible

Pro 3 [127] TI >,< Integer O(✓) O(n2 log2✓ log2n)

with Pre-Comp [160] No �, < Integer l 4(l � 1)

without Pre-Comp [160] No �, < Integer l 7(l � 1) + 1.5

[158] No �, < Integer - -

Pro 2 [129] TI >, Integer 1 2

Table 3.4: Most Competitive Secure Comparison Protocols

competitive solutions for the settings and applications that have been considered

in the corresponding references [127] and [129]. In particular, the second protocol

of [129], which is based on verifiable secret sharing [42], has very small and constant

complexities (please see the round, communication and computation complexities

provided in Table 2 in [129]). Moreover, the third protocol of [127], which is verifiable

and provides unconditional security, can be very e�cient depending on the values of

✓ and n (where ✓ represents the range for the auction’s price and n is the number of

bidders). Overall, Table 3.4 illustrates a list of e�cient secure comparison protocols

that can provide competitive results for di↵erent settings that each protocol has

considered.

To recap, numerous solutions (protocols) have been proposed for the secure com-

parison problem. The proposed solutions are based on di↵erent assumptions and ap-

proaches. As authors have mentioned in [159], no comparison protocol can perform

the best with regard to all the three e�ciency measurement criteria. Recall that the

measures used for performance analysis of comparison protocols include round com-
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plexity, communication complexity and computation complexity. It is worth pointing

out that the methods in the table might be under di↵erent security levels or model

assumptions. This is because di↵erent protocols have used di↵erent parameters, e.g.,

the modulus of the underlying homomorphic encryption, the security and error pa-

rameters. They may also work in di↵erent settings or use di↵erent building blocks.

Here we just provide a reference of protocols with competitive running times. The

provided list is not meant to be a comprehensive list of the ultimate e�cient solutions

for the secure comparison problem. However, it can pave the way for future research,

particularly for helping the researchers to consider some potentially e�cient solutions.

3.3.2 Other Building Blocks for Secure Computation

For performing secure computation, the four main arithmetic operations need to be

implemented in a secure fashion. These operations can be implemented securely

using secret sharing schemes, homomorphic encryption techniques and Yao’s garbled

circuits. For instance, the Paillier homomorphic encryption scheme [131] allows us

to calculate the addition of two encrypted values by multiplying their corresponding

ciphertexts and without decrypting them. In the case of secret sharing schemes, two

or more parties can calculate the addition of their secret values by adding the shares

of the secret values locally and then conducting a Lagrange interpolation on their

updated shares.

Depending on the application domain, the secure implementation of other op-

erations may also be needed. For instance, in privacy-preserving data mining and

machine learning, the secure version of three operations is needed. These opera-

tions include secure comparison, secure inner product of two vectors, and secure

argmax [25]. In some cases, the secure version of natural logarithm, i.e. the ln()

function, the sign function, the sigmoid function is also required [35].
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3.4 A LITERATURE REVIEW ON SECURE MPC TOOLS AND LI-

BRARIES

In this section, we compare the state-of-the-art secure multiparty computation tools

(including libraries, implementations and frameworks). These tools can be used for

secure computation in the IoT and big data domains [10, 153]. We would like to

emphasize that this part of the dissertation is based on the student’s research during

his PhD program which was already published in [64]. More importantly, there might

be numerous other relevant tools and libraries for secure computation. Due to lack

of space and page limitations and a short time interval that was given to this part

of the research, we studied and included only some of the previous works. For more

and some recent MPC-related frameworks and libraries, interested readers may refer

to [30], [79] and [93], among other references.

Fairplay [112] is a secure function evaluation (SFE) tool that allows two parties

to perform a joint computation without any trusted third party. This tool is based on

Yao’s garbled circuits and provides a high-level function description language called

SFDL. The Fiarplay compiler compiles SFDL programs into a boolean circuit and

evaluates the circuit using its runtime environment.

FairplayMP [17] is an extension of Fairplay [112] for multiple parties. This tool

is based on Yao’s garbled circuits and secret sharing schemes. FairplayMP uses an

emulated trusted third party. The emulated trusted third party receives the inputs

from the parties, does the desired computations and privately informs the parties of

their outputs.

Sharemind [23] is a secure multiparty computation framework consisting of three

parties. It is one of the most developed and e�cient MPC tools and supports 32-bit

integer arithmetic. However, it uses a non-standard secret sharing technique and does

not extend to more than three parties [178].

VIFF [50] is a compiler for secure multiparty computation based on standard
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secret sharing schemes. It uses parallelization and multi-threading to provide faster

computations. This framework supports computations consisting of basic primitives,

e.g. addition and multiplication, on secret-shared values.

SEPIA [31] is a Java library based on linear secret sharing schemes. It separates

the parties into computational parties and the parties who provide inputs and obtain

outputs. SEPIA is used for secure distributed computation on network data, e.g., for

privacy-preserving network intrusion detection.

TASTY [82] is a tool (with a compiler) for two-party secure computation (2PC)

based on Yao’s garbled circuits and homomorphic encryption. This tool can be used

for describing, generating, executing, benchmarking and comparing secure 2PC pro-

tocols. It allows a user to provide a description of the computations to be performed

and transforms the description into a 2PC protocol.

SPDZ [53] is a secure multiparty computation protocol based on secret sharing

and homomorphic encryption. SPDZ consists of an o✏ine (preprocessing) phase and

an online phase. In the o✏ine phase, the required shared random data is generated

and in the online phase, the actual secure computation is carried out.

SCAPI [59] is an open-source library for developing MPC frameworks and secure

computation implementations. It comes with two instantiations of the Yao’s garbled

circuits. One instantiation is secure against active adversaries and the other is se-

cure against passive adversaries. SCAPI is implemented in Java and uses the JNI

framework for calling native codes, to make the library e�cient.

Wysteria [139] is a high-level programming language for writing MPC programs.

It supports mixed-mode programs consisting of private computations with multiparty

computations. Wysteria compiles the MPC programs to circuits and then executes

the circuits by its underlying MPC engine.

Obliv-C [175] is a language for secure computation programming based on the

garbled circuits. It is an extension of the C programming language that provides
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data-oblivious programming constructs. The Obliv-C compiler, implemented as a

modified version of CIL, transforms Obliv-C codes to plain C codes.

Enigma [180] is a decentralized computation framework which combines MPC

and Blockchain technology to provide guaranteed privacy. It allows di↵erent parties

to jointly store and perform computations on their data without exposing the privacy

of the data. Enigma also removes the need for trusted third parties.

Frigate [120] is a validated compiler and fast circuit interpreter for secure com-

putation. It introduces a C-style language for secure function evaluation based on

garbled circuits. Frigate has been developed with an emphasis on the principles of

compiler design. It addresses the limitations of many previous MPC frameworks and

produces correct and functioning circuits [120].

Chameleon [145] is a hybrid framework for privacy-preserving machine learning.

This framework is based on the ABY framwork [55], which implements a combination

of secret sharing, garbled circuits and the GMW protocol [69]. Chameleon has an

o✏ine and an online phase and most of the computation is performed in the o✏ine

phase. It uses a semi-honest third party (STP) in the o✏ine phase, for generating

the required correlated random values.

WYS
? [140] is a domain-specific language (DSL) for writing mixed-mode secure

MPC programs. It is based on the the idea of Wysteria [139] and embedded/hosted

in F? programming language. For running a MPC program in WYS
?, the program is

first compiled using the F? compiler. Then each party runs the compiled codes using

the WYS
? interpreter. The result, which is a boolean circuit, is evaluated using the

GMW protocol [69] on the parties’ secret shares.

Conclave [162] is a query compiler that makes secure computation on big data

e�cient. Conclave generates codes for cleartext processing in Python and Spark

and codes for secure computation using Sharemind [23] and Obliv-C [175]. The idea

behind Conclave is to minimize the computations under MPC as much as possible.
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Conclave can support only two or three parties and withstands a passive semi-honest

adversary.

We summarized the reviewed secure MPC tools in Table 3.5. The table illustrates

the main details and characteristics of the tools. Note that, due to the space con-

straints, we used some abbreviations in Table 3.5. The meaning of the abbreviations

is provided in Table 3.6.

The first column of Table 3.5 shows the name of the MPC tools, the year in which

each tool was developed, and the reference related to each tool. The second column

determines the number of parties that each tool supports. The third column specifies

the cryptographic primitives that have been used in the development of each tool.

The fourth column defines the type of security, i.e. computational or information-

theoretical, that each tool provides. The fifth column shows whether each tool uses

some trusted third party (TTP) or such a party is simulated in the tool. The idea

of doing secure multiparty computation without relying on any trusted third party

is an interesting one. However, realizing such a computational model seems to be a

challenging task; as the fifth column of Table 3.5 shows, the majority of the listed

tools either need trusted third parties or simulate them. The last column of the table

shows the programming languages that were used for the development of each tool.

We also provided a table that illustrates the adversarial model for each MPC tool;

see Table 3.7. The table specifies the number of corrupted parties that each tool can

tolerate. Note that in secure multiparty computation, the participating parties might

be corrupted by some adversaries. The parties may also collude with each other.

Therefore, it is important to consider such scenarios in the implementation. Finally,

Table 3.8 shows some applications for each MPC tool.
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Secure MPC Tools and Libraries

Tool/Library Parties Based on Security TTP Prog. Lang.

Fairplay 2004 [112] 2 GC Computational Yes SFDL (Java)

FairplayMP 2008 [17] � 3 GC and SS Computational Em. TTP SFDL (Java)

Sharemind 2008 [23] 3 Additive SS Info. Theoretic Yes SecreC (C++)

VIFF 2009 [50] � 3 SS Info. Theoretic No Python

VIFF 2009 [50] 2 Paillier HE scheme Computational No Python

SEPIA 2009 [31] � 3 Shamir’s SS Computational Sim. TTP Java

TASTY 2010 [82] 2 HE and GC Computational No Python

SPDZ 2012 [53] � 2 SS and HE Computational Yes C++/Python

SCAPI 2012 [59] � 2 GC Computational No Java

Wysteria 2014 [139] � 2 GMW protocol Info. Theortic Sim. TTP OCaml

Obliv-C 2015 [175] 2 GC Computational No C

Enigma 2015 [180] � 2 VSS and Blockchain Info. Theortic No WebAssembly

Frigate 2016 [120] 2 GC Computational No C++

Chameleon 2018 [145] 2 SS, GMW, GC Computational STP C++

WYS? 2019 [140] � 2 [139] Info. Theortic Sim. TTP F?

Conclave 2019 [162] 2 or 3 [23] and [175] Computational Yes Python/Spark

Table 3.5: Secure MPC Tools and Libraries (based on [153] and [64])

Table of Abbreviations (used in Table 3.5)

Notation Meaning

HE Homomorphic Encryption

GC Yao’s Garbled Circuits

GMW the Goldreich, Micali, and Wigderson (GMW) protocol [69]

SFDL Secure Function Definition Language

SS Secret Sharing

VSS Verifiable Secret Sharing

STP Semi-honest Third Party

TTP Trusted Third Party

Em. TTP Emulated Trusted Third Party

Sim. TTP Simulated Trusted Third Party

Table 3.6: Abbreviations used in Table 3.5 (based on [64])
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Table of Adversarial Model for MPC Tools and Libraries

Tool/Library Secure against

Fairplay 2004 [112] not mentioned

FairplayMP 2008 [17]
a collection of

⌅n
2

⇧
corrupt computation players, as long as

they operate in a semi-honest way

Sharemind 2008 [23] a passive adversary able to corrupt at most one party

VIFF 2009 [50] not mentioned

SEPIA 2009 [31]
t <

m
2 colluding privacy peers. Note that the systems has

n input peers and m privacy peers

TASTY 2010 [82] not mentioned

SPDZ 2012 [53] an active adversary capable of corrupting up to (n� 1) parties

SCAPI 2012 [59] both active and passive adversaries

Wysteria 2014 [139] a semi-honest adversary capable of corrupting up to (n� 1) parties

Obliv-C 2015 [175] semi-honest adversaries

Enigma 2015 [180] not mentioned

Frigate 2016 [120] semi-honest model

Chameleon 2018 [145] semi-honest (honest-but-curious) model

WYS? 2019 [140] semi-honest (honest-but-curious) model

Conclave 2019 [162] a passive semi-honest adversary

Table 3.7: Table of Adversarial Model (based on [64])

Table of Applications for MPC Tools and Libraries

Tool/Library Applications

Fairplay 2004 [112] secure two-party computation

FairplayMP 2008 [17] secure multiparty computation

Sharemind 2008 [23] tax fraud detection system

VIFF 2009 [50]
sugar beet auction, decision tree learning, privacy-

preserving verifiable computation

SEPIA 2009 [31] private information aggregation, network security and monitoring

TASTY 2010 [82] set intersection, face recognition

SPDZ 2012 [53] oblivious RAM schemes and oblivious data structures for MPC

SCAPI 2012 [59]
privacy-preserving impersenation detection systems and fair ex-

change protocols

Wysteria 2014 [139]
DStress (a framework for privacy-preserving and dis-

tributed graph analytics)

Obliv-C 2015 [175] secure computation and data-oblivious computation

Enigma 2015 [180]
decentralized computation, IoT, crypto bank, blind e-

voting, n-factor authentication

Chameleon 2018 [145] privacy-preserving machine learning, e.g. SVM and deep learning

WYS? 2019 [140] joint median, card dealing, private set intersection (PSI)

Conclave 2019 [162]
secure MPC on big data, e.g. credit card regulation and market con-

centration

Table 3.8: Table of Applications (based on [64])
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CHAPTER 4

THE RGSW FHE SCHEME AND ITS C++ IMPLEMENTATION

In this section we describe the approximate eigenvector (a.k.a., GSW) fully homo-

morphic encryption (FHE) scheme [67] and its ring variant referred to as Ring-GSW

or RGSW ( [58] and [38]). Furthermore, we provide an e�cient C++ implementation

of the RGSW scheme ( [58] and [38]).

4.1 INTRODUCTION

The GSW scheme [67] is a third generation fully homomorphic encryption scheme

takes advantage of a nice property of matrices that there is a full homomorphism on

the ring of matrices (i.e., M(n⇥n)[Zq]). The security of the GSW scheme relies on the

well-known learning with errors problem (LWE) [142], which has been conjectured to

be a hard computational problem. The RGSW scheme ( [58] and [38]), on the other

hand, is constructed based on the ring of polynomials (i.e., ZQ[x]/(XN +1), where N

is a power of two such as 1024) and its security is based on the RLWE problem [109].

Our C++ implementation of the RGSW FHE scheme ( [58] and [38]) works on

the cyclotomic ring of polynomials and utilizes several algorithmic optimizations for

faster computations of homomorphic operations. Particularly, we use the number

theoretic transformation (NTT) [135] to speed up the multiplications of polynomials.

Our implementation also allows to use di↵erent bases for reducing the dimensions

of the RGSW ciphertexts. This is achieved by decomposing the coe�cients of the

polynomials in di↵erent bases (e.g., base 2 for bit decompisition and base 256 for

byte decompisition) and constructing the gadget matrix (G) [117] accordingly. For
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polynomial arithmetic, we use the NFLlib [5], which is a fast C++ library specifically

developed for lattice based cryptography and fast polynomial arithmetic.

4.1.1 Our Contribution

The contribution of this chapter of the dissertation is twofold. For one, we pro-

vide an e�cient C++ implementation for the ring variant of the GSW scheme [67],

commonly referred to as RGSW [58] and [38]. The RGSW scheme (see also [58]

and [38]) is a fully homomorphic encryption scheme that supports both addition and

multiplication of ciphertexts. Our implementation supports these functionalities and

has the flexibility to work with di↵erent configurations. As the second contribution,

we use our implementation of the RGSW scheme for homomorphic computation of

pseudorandom functions (PRFs). Pseudorandom functions are of great interests in

cryptography and secure computation. Particularly, we propose two constructions for

homomorphic computation of PRFs based the learning with rounding (LWR) [15] and

the ring variant of learning parity with noise (LPN) [21,22] problems. Our construc-

tions can be used for improving the existing secure multiparty computation protocols,

e.g., the SPDZ secure MPC protocol and compiler [53].

We would like to emphasize that our implementation is based on the NFLlib

C++ library [5], which is a very e�cient library for lattice-based cryptography. We

use this library only for polynomial arithmetic, particularly for fast polynomial mul-

tiplication using the number theoretic transformation (NTT) [135]. Furthermore, for

our proposed constructions for homomorphic computation of pseudorandom functions

(PRFs) we utilize a ciphertext embedding technique which is in spirit of the Nuss-

baumer transformation [130]. The embedding technique benefits from the properties

of the ring of cyclotomic polynomials and incorporates the NTT representation [135]

of the polynomials in a clever way. This enables us to pack polynomials of a smaller

ring and lift them to a larger ring for faster multiplication in larger rings.
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4.2 THE APPROXIMATE EIGENVECTOR (GSW) METHOD

The approximate eigenvector (a.k.a., GSW) scheme is a fully homomorphic encryption

scheme which was introduced in [67]. This scheme is based on an observation that

there exists some full homomorphism on the ring of matrices. However, since such

a homomorphism cannot solely be useful for cryptographic purposes (because it is

not secure), using this property of matrices along with some computational hard

problem can potentially provide us a secure cryptographic scheme. Similar to most

FHE schemes, the security of the GSW scheme relies on the learning with errors

(LWE) problem [142]. The RGSW scheme [58] and [38] is the ring-variant of the

GSW scheme [67]. More precisely, the GSW scheme [67] works on the ring Zq where

q is a positive integer (or on a finite field in case q is a prime number). On the other

hand, the RGSW scheme ( [58] and [38]) works on the ring of polynomials with integer

coe�cients in Zq (i.e., ZQ[x]/(XN + 1), where N is a power of two such as 1024).

4.2.1 How the GSW Scheme Works

In the GSW FHE scheme [67], unlike other well-known FHE schemes, a message is

encrypted by mapping it to a matrix over the ring of integers modulo q, i.e., Zq. The

GSW scheme has been studied in a few previous works, including in [9, 80, 119]. In

what follows we briefly explain how this scheme works. Our explanation is based

on [9, 67, 80, 119].

In the GSW scheme (as explained in [9]), the message space is the ring of integer

numbers (i.e., Z). The ciphertext space in this scheme is the set of square binary

matrix of dimension n ⇥ l by n ⇥ l (i.e., C 2 {0, 1}nl⇥nl), where n is a parameter

specifying the dimension of the scheme and l = dlog2qe is the bit-length of the modulus

q. The secret key generation, encryption and decryption algorithms of this scheme

are explained in [9, 80, 119].

By having a secret key (which is a vector of dimension 1⇥n sampled from Zq with

29



the last element being 1), a message (which can be 0 or 1 or any integer number) is

encrypted to a matrix of dimension n⇥ l by n⇥ l (as described in [9, 80, 119]).

The encryption process, in the GSW scheme [67], mostly involves straightforward

linear algebra operations [9,80,119] and uses a block-diagonal matrix called the gad-

get matrix, introduced in [117] (see also [9, 80, 119]). Now by having the ciphertexts

of di↵erent messages, the other important thing to understand is how the homomor-

phic oprations over ciphertexts (i.e., the addition of ciphertexts and multiplication

of ciphretext) are defined. The definition of the addition operation in the GSW

scheme [67] is straightforward, the ciphertexts are simply added (which in fact is

the component-wise addition of the matrices). The multiplication operation of this

scheme is a little more involved. As illustrated in [9, 80, 119], given two ciphertexts

C1 and C2, their multiplication in the GSW scheme [67] is defined as:

C⇥ := C1.G
�1(C2) (4.1)

where, according to [119], G�1 is an operation (algorithm) that returns the binary

decomposition of its input. Note that G�1 can operate on vector or matrix inputs

over Zq [9]. When the input is a matrix, G�1 is applied to every column of the

matrix independently [119]. The references [9, 80, 119] have provided the details of

the multiplication operation of the GSW scheme [67].

The decryption process of the GSW scheme [67] again requires straightforward

linear algebra operations. While the decryption process explained in [119] involves

operations on matrices, the approach provided for a simplified version of the GSW

scheme [67], described in [9], needs the dot-product of two vectors.

4.3 THE RING-GSW (RGSW) FHE SCHEME

The Ring-GSW (or RGSW for short) is a variation of the approximate eigenvector

fully homomorphic encrytpion scheme [67] that work on the ring of cyclomotic poly-
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nomials [58] and [38]. More accurately, the RGSW FHE scheme is a mapping from

the ring of cyclotomic polynomials to the ring of matrices over the ring of cyclotomic

polynomials. In this section we describe how the RGSW scheme works [58] and [38].

Furthremore, we provide the details of our C++ implementation for this scheme. We

also discuss the applications of our implementation for homomorphic evaluation of

functions, e.g., homomorphic evaluation of pseudorandom functions (PRFs).

4.3.1 The Plaintext and Ciphertext spaces for the RGSW Scheme

Similar to other RLWE-based FHE schemes, the plaintext space for the RGSW

scheme ( [58] and [38]) is the ring of cyclotomic polynomials, i.e., Rq = Zq[x]/(XN+1),

where N is usually a power of two such as 1024. Simply put, in the RGSW scheme

the plaintext can be a polynomial with integer coe�cients in Zq and of degree degree

at most N �1. A ciphertext is a matrix of polynomials with dimensions m⇥ l, where

l = 2⇥K and K := dlog2(q)/log2(B)e. Moreover, B is base, which can be 2 or other

powers of two, e.g., 27, 29 etc.

4.3.2 The Public and Private Keys for the RGSW Scheme

The secret key for the RGSW scheme is a vector of polynomials defined as follows:

sk = (s(x), 1) 2 R2
q

(4.2)

where s(x) is a polynomial in Rq with random coe�cients and the second com-

ponent of the secret key is 1. Given a secret key as sk = (s(x), 1), the public key is

generated as follows:

A :=

0

@ A0

e� s(x)⇥ A0

1

A 2 R2⇥2K
q

(4.3)

where e is the error (noise) vector which contains 2K polynomials each with
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small coe�cients in Zq, i.e., e = (e1(x), e2(x), . . . , e2K(x)) 2 R2K
q

. Similarly, A0 is

a vector of random polynomials in R2K
q

with arbitrary coe�cients in Zq, i.e., A0 =

(a1(x), a2(x), ..., a2K(x)) 2 R2K
q

. Recall that Rq is the ring of cyclotomic polynomials

Rq = Z[x]/(xN + 1).

4.3.3 The Encryption and Decryption Algorithms for the RGSW Scheme

The encryption and decryption algorithms for the RGSW scheme [58] and [38] are

similar to the encryption and decryption algorithms of the GSW scheme [67], but

instead of working on the numbers in Zq, the encryption and decryption algorithms

of the RGSW scheme [58] and [38] work on polynomials in Rq. Given a message

m 2 Rq, the message is encrypted as follows:

RGSW.Enc : Rq �!M2⇥2K(Rq)

m 7����! A⇥R +m⇥G
(4.4)

where A 2 R2⇥2K
q

is the public key, R 2 R2⇥2K
q

is a matrix of random polynomials

with small coe�cients and G is the gadget matrix, which was introduced in [117].

The gadget matrix is defined as follows:

G :=

2

41 B B2 . . . BK�1 0 0 0 . . . 0

0 0 0 . . . 0 1 B B2 . . . BK�1

3

5 2 Z2⇥2K
q

(4.5)

where B is the base and can be two or a power of two such as 27, 29, or 210.

The decryption algorithm for the RGSW [58] and [38] works as follows. Given a

ciphertext CT 2 R2⇥2K
q

, we need to find the closest vector to sk ⇥ CT . The result

of sk ⇥ CT 2 R2K
q

is a vector of polynomials, where its two last components can be

used for decrypting the ciphertext. This is because how the message is encoded using

the gadget matrix, which is used as part of the encryption process.
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4.3.4 The Homomorphic Operartions for the RGSW scheme

The RGSW scheme [58] and [38] supports homomorphic operations on ciphertexts,

i.e., addition and multiplication of ciphertexts. Given two ciphertexts C1 and C2

(which are assumed to be encryptions of m1 and m2 respectively), the addition of

ciphertexts is defined as follows:

� : M2⇥2K(Rq)⇥M2⇥2K(Rq) �!M2⇥2K(Rq)

(C1, C2) 7�! C1 + C2

(4.6)

The multiplication of two ciphertexts is a little more involved. Given two cipher-

texts C1 and C2, the multiplication of the two ciphertexts is defined as follows:

⌦ : M2⇥2K(Rq)⇥M2⇥2K(Rq) �!M2⇥2K(Rq)

(C1, C2) 7�! C1 ⇥G�1(C2)
(4.7)

where G�1 is the inverse operation of the gadget matrix, introduced in [117] (for

more details regarding the gadget matrix and its inverse operation, see also [9,80,119]).

Simply put, the gadget matrix G is defined as G = g| ⌦ In 2 Rn⇥nl

q
[119]. Here, g

which is called the gadget vector is defined as g = (1, B,B2, ..., Bl�1). Recall that B

is the base which can be two or other powers of two, e.g., 27, 29 etc.

4.4 AN IMPLEMENTATION OF THE RGSW SCHEME IN C++

We provide a C++ implementation of the RGSW scheme that we described in the

previous sections ( [58] and [38]). Our C++ implementation uses the C++ standard

template library (STL) and some other well-known C++ libraries which have been de-

veloped specifically for mathematical and number theoretic computations (including

the GMP library1 and the NFLlib library [5]). For testing purposes and verification

of computations, we sometimes used the NTL C++ library2. To speed up our imple-

1
https://gmplib.org

2
https://libntl.org
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mentation we applied two main optimizations. The first one deals with the dimension

of the RGSW ciphertexts. A ciphertext in the RGSW scheme [58] and [38] is a ma-

trix of polynomials. In general, RGSW ciphertexts are constructed as matrices of

dimension m ⇥ n where m is a positive integer; n = 2l and l denotes the bit-length

of the polynomial’s coe�cients. For each ciphertext, we considered two rows, i.e.,

m = 2, and for the number of columns in the matrix, i.e., n, our implementation can

work with di↵erent values. The second optimization deals with the polynomials mul-

tiplication. Polynomial multiplication is a common arithmetic operation particularly

in fully homomorphic encryption schemes based on the RLWE problem [109]. There

are several well-known techniques for fast polynomial multiplication. For polynomial

multiplications in general the fast Fourier transform (FFT) enables us to perform

polynomial multiplication in O(N log(N)), where N represents the polynomial’s de-

gree. Whereas the complexity of the naive approach for polynomial multiplication is

O(N2). Polynomials that are usually utilized in homomorphic encryption schemes,

however, are on finite fields or on rings (i.e., on Zq, where q is a very large prime num-

ber). For polynomial multiplication in these domains the number theoretic transform

(NTT) [135] can be used, which in fact is considered as the equivalent of FFT over

finite fields.

4.4.1 The Best Working Parameter Sets for the RGSW Scheme

Cryptographic schemes usually impose some requirements on the domain and pa-

rameters that they work on. The considered requirements are usually considered

for the scheme to be secure or the requirements are considered for e�ciency rea-

sons. For example, for many cryptographic algorithms and schemes that work on the

ring of integers mod q, i.e., Zq, the modulus q needs to be a prime number. Like-

wise, for cryptographic schemes that work on the ring of cyclotomic polynomials, i.e.,

Rq = Zq[x]/(xN +1), usually some conditions are considered. Particularly, the degree
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of the polynomial, i.e., N is usually considered a power of two, e.g., 210. In order

to be able to use the fast polynomial multiplication based on the number theoretic

transformation (NTT), the degree N and the modulus q must satisfy q ⌘ 1 (mod

2N) [5].

Our C++ implementation of the RGSW scheme works on the ring of cyclotomic

polynomials, i.e., Rq = Zq[x]/(xN + 1), and supports di↵erent configurations and

sets of parameters. The NFLlib C++ library [5] that our implementation is built

on supports di↵erent module q and degrees for the cyclotomic polynomial, i.e., N .

Particularly, it supports powers of two including 256, 512 and 1024. It supports

integers of di↵erent bit-length, including 16 bits, 32 bits, and 64 bits. Similarly, our

RGSW implementation supports di↵erent degrees, including N = 256, N = 512 and

N = 1024 and di↵erent bit lengths. Moreover, it supports di↵erent dimensions for

the ciphertext based on di↵erent bases, i.e., B, that can be set in the implementation.

The recommended parameters for which our implementation can work very e�ciently

are as follows:

• 32-bit integers: q = 1073479681, base B = 27 or B = 29.

• 64-bit integers: q = 4611686018326724609, base B = 220 or B = 230.

The degree of the cyclotomic polynomial, i.e., N , can be any power of two, par-

ticularly, N = 256, N = 512 and N = 1024. We would like to emphasize that

the NFLlib library [5] supports di↵erent sets of parameters, including polynomials of

degree up to 220 = 1048576 as well as 16-bit integers.
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CHAPTER 5

HOMOMORPHIC COMPUTATION OF PSEUDORANDOM

FUNCTIONS

5.1 INTRODUCTION

Secure multiparty computation (MPC), and particularly fully homomorphic encryp-

tion, have attracted extreme amount of attention during the last couple of decades.

There have been several significant achievements in this area of research. Envi-

sioned by the pioneers of cryptography in [146] as an open problem and boomed

by the introduction of the first plausible blueprint [66], fully homomorphic encryp-

tion (FHE) is now almost standardized [6] and has been realized in several attempts

[161]. Among many other important works, the learning parity with noise LPN prob-

lem1 [21, 102, 134], the learning with errors problem LWE [142] and its ring variants,

i.e., ring-LWE (RLWE) [109], seem to have played a significant role in this develop-

ing branch of modern cryptography. Specifically, the security of the majority of the

promising FHE schemes are based on the LWE and RLWE problems.

The theory and applications of fully homomorphic encryption schemes in various

domians, e.g., privacy-preserving machine learning [136, 164], have been significantly

investigated in the last decade. More recently, researchrs have focused on the applica-

tion of FHE schemes for homomorphic evaluation of pseudorandom functions (PRFs)

and pseudorandom correlation generators (PCGs), see e.g., [2, 27,29]. Pseudorandom

functions, e.g., pseudorandom number generators and pseudorandom correlation gen-

erators, are very important building blocks in cryptography and cryptographic ap-

1
https://en.wikipedia.org/wiki/Parity learning
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plications, particularly in secure multiparty computation (MPC). For instance, the

SPDZ secure multiparty computation protocol and compiler [52,53] heavily relies on

correlated random triples [2, 27, 29]. An interesting direction in secure multiparty

computation is how to design pseudorandom number generators or psudorandom

correlation generators that benefit from the underlying hard problems in lattice cryp-

tography. Motivated by this important application of homomorphic encryption and

its connection to secure multiparty computation, in this chapter of the dissertation

we focus on homomorphic computation of pseudorandom functions (PRFs).

The rest of the article is organized as follows. In section 5.2 we provide a brief

review of the theoretical preliminaries, i.e., fully homomorphic encryption (FHE) and

pseudorandom functions (PRFs). We also go over other necessary cryptographic

building blocks such as BlindRotate and SampleExtract operations as well as LWE-

to-RLWE and RLWE-to-LWE conversions. In section 5.3, we provide an interesting

ciphertext embedding technique for performing homomorphic computations more ef-

ficiently. Our proposed constructions for homomorphic computation of pseudorandom

functions are presented in 5.4. In sections 5.5 and 5.6 we analyze the security of our

constructions and provide our experimental results. Lastly, concluding remarks are

presented in section 5.7.

5.1.1 Related Works

There are some recent works that have focused on di↵erent class of pseudorandom

functions (PRFs) and pseudorandom correlation generators PCGs. Recently the re-

searchers in [2] have proposed a PCG construction that can generate correlated random

triples for the SPDZ protocol [52, 53]. The proposed PCG construction [2] is based

on the ring variant of the LPN problem; and can be used for multiparty setting [2].

In [29] the authors have proposed some e�cient PCG constructions based on the

ring-LPN [83] problem. Prior to that, a fast approach for generating pseudorandom
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instances of vector oblivious linear function evaluation, with application to oblivious

function evaluation, was proposed in [27]. Yet, in [28] the researchers have studied

PCGs more concretely and provided several constructions with applications in secure

multiparty computation.

5.1.2 Our Contributions

In this article we focus on another class of functions for generating pseudorandom val-

ues, i.e., weak pseudorandom functions (weak PRFs); and provide constructions for

homomorphic computation of such functions. Particularly, we consider weak pseudo-

random functions based on the learning with rounding problem (LWR) [15] and the

ring variant of the learning parity with noise problem (ring-LPN) [83].

We then utilize three well-known instantiations of fully homomorphic encryption

schemes, i.e., LWE, RLWE and RGSW schemes, along with a nice ciphertext embed-

ding technique to implement our homomorphic computations of PRFs. The ciphertext

embedding technique that we use benefits from the well-known polynomial transfor-

mations, i.e., the number theoretic transformation (NTT) [135] and the Nussbaumer

transformation [130]; and allows us to pack and lift the ciphertexts from a small

domain to ciphertexts in a larger domain. This enables perfomring more e�cient

homomprhic computations on the ciphertexts. Our experimental results show that

pseudorandom functions can be evaluated e�ciently using FHE schemes (in hundreds

of milliseconds and with reasonable security, i.e., 128 or 256 bits based on the homo-

morphic encryption standard [6]).

5.2 PRELIMINARIES

In this section we provide the preliminaries that we need throughout this article.

These include the definition of fully homomorphic encryption (FHE) schemes and

pseudorandom functions (PRFs). We follow the notations of the definitions in [101].
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In this article, we use the following notations. For a positive integer q, Zq denotes

the set of integers modulo q. The ring of cyclotomic polynomials with coe�cients in

Zq and of degree less than N is represented by Rq = Zq[x]/(xN + 1). Furthermore,

we use a bigger ring of cyclotomic polynomials which we define and represent as

R0
q
= Zq[x]/(xN

2
+ 1).

5.2.1 Fully Homomorphic Encryption

We first provide the definition of a fully homomorphic encryption and then describe

the FHE instantiations that we need for our constructions.

Fully Homomorphic Encryption [101] Given a security parameter , a (fully)

homomorphic encryption technique FHE= (FHE.KeyGen, FHE.Enc, FHE.Dec, FHE.Eval)

is a tuple of polynomial-time algorithms such that:

• FHE.KeyGen(1) generates a secret key (sk), a public key (pk), and an evaluation

key (evk).

• FHE.Enc(m, sk) generates a ciphertext ct which is an encryption of the message

m with the secret key sk.

• FHE.Dec(ct, sk) decrypts the given ciphertext ct using the decryption key sk.

• FHE.Eval({cti}, f, evk) given a set of ciphertexts cti and a function f as inputs,

FHE.Eval evaluates the function on the ciphertexts using the evaluation key

(evk) and outputs the computed ciphertext corresponding to f , i.e., ctf .

Throughout this paper we deal with three instantiations of homomorphic encryp-

tion schemes, namely LWE [142], RLWE [109], and RGSW [38, 58] schemes.

An LWE homomorphic encryption scheme [142] is a mapping from Zn

q
to Zq. More-

over, an LWE instance is represented by a vector in Zn+1
q

, i.e., ( #»aaa , b), where #»aaa 2 Zn

q

and b = h #»aaa . #»sss i+m q

p
+e 2 Zq. Here, e 2 Zq is the noise which is supposed to be a small
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value; and p is the modulus for plaintext space, where typically we need to have p⌧ q.

Moreover, #»sss 2 Zn

q
is the secret key. Similarly, an RLWE homomorphic encryption

scheme [109] is a map from Rq to itself. An RLWE instance is a pair of polynomials

in Rq, i.e., (a(x), b(x)) 2 R2
q
such that b(x) = a(x).s(x) + q

p
.m(x) + e(x). In this case,

a(x) 2 Rq is a random polynomials, s(x) 2 R2 is the secret key, m(x) 2 Rp is the

message, and e(x) 2 Rq is a polynomial with small coe�cients for noise. Moreover,

Rq := Zq[x]/(xN + 1) is the cyclotomic ring of polynomials, where N is a positive

power of two such as 1024.

The last category of FHE instantiation that we need is RGSW instances [38, 58].

An RGSW instance is represented by a matrix over the ring of polynomials. More

specifically, an RGSW instance can be denoted by A.R + m.G 2 Mm⇥n(Rq), where

A 2 Mk⇥n(Rq) is the public key, R 2 Mk⇥n(Rq) is a matrix of polynomials with

random small coe�cients, and G is the gadget matrix, which was introduced in [117].

Furthermore, an RGSW fully homomorphic encryption scheme [38,58] is a map from

Rq to Mk⇥n(Rq), where Mk⇥n(Rq) is the ring of m by n matrices over the ring of

cyclotomic polynomials, i.e., Rq := Zq[x]/(xN + 1).

5.2.2 Pseudorandom Functions (PRFs)

Pseudorandom function [101] Given two finite sets A and B and a set of functions

from A to B, i.e., F = {Fi : A �! B}, F is said to be a family of (t, Q, ✏)-

pseudorandom functions (PRF) if a sampled function from F , i.e., F  � F , is (t, ✏)-

indistinguishable from a uniformly selected random function R : A �! B from F

(given that up to Q adaptive queries are allowed).

In this paper we propose techniques for homomorphic computation of two di↵erent

instantiations of weak pseudorandom functions (PRFs), namely PRFs based on the

learning with rounding LWR problem [15] and PRFs based on the ring variant of

the learning parity with noise LPN problem [83]. It should be noted that the LWR-
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based PRF is a weak pseudorandom function and the LPN-based PRF is considered a

bounded-query-weak pseudorandom function.

Weak PRFs based on the LWR Problem:

Our first construction for pseudorandom functions (PRFs) is based on the learning

with rounding (LWR) assumption [15]. Given two vector of integers #»sss 2 Zn

2 and

#»aaa 2 Zn

q
, an LWR-based PRF is instantiated as follows:

F ( #»aaa , #»sss ) = bh #»aaa . #»sss icq�!p (5.1)

where p and q are positive integers and usually p must be much smaller than q,

i.e., p⌧ q.

Bounded-Query-Weak PRFs based on the Ring-LPN problem:

The second type of PRF instatioation that we use is based on the ring variant of

learning parity with noise problem LPN [21], i.e., ring-LPN [83]. This instantiation

work as follows: given a sparse polynomial a(x) 2 R0
q
and s(x) 2 R0

2, we define:

F (a, s) = a(x).s(x) 2 R0
q

(5.2)

where R0 = Z[x]/(xN
2
+ 1) is the ring of cyclotomic polynomials. Moreover, by

a sparse polynomial we mean a polynomial that the majority of its coe�cients are

zero.

5.2.3 FHEW/TFHE Abstraction

There have been significant progresses in developing e�cient fully homomorphic en-

cryption schemes. Particularly, the third generation of FHE schemes, which began

with the introduction of the GSW scheme [67], was followed by a couple of other sig-

nificant works, i.e., the FHEW [58] and TFHE [38] FHE schemes. Among several other
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important building blocks, the works [58] and [38] introduced several useful techniques

including blind rotation and sample extraction techniques. As our constructions rely

on these techniques, here we review these techniques very briefly [38,39].

Blind Rotation [38,39]:

Blind rotation is a technique that allows to homomorphically rotate the coe�cient of

a polynomial which was encrypted by an RLWE scheme. Given an RLWE ciphertext

ct, an LWE ciphertext that encrypts µ, and the encryption of the bits of the secret

key as RGSW ciphertexts, this algorithm basically computes another ciphertext ct
0

for which we have ct
0 = x�µ

0
.ct; where µ0 is the noisy version of the plaintext µ

stored in the given LWE ciphertext. Assuming ct is an RLWE encryption of a message

m(x) =
P

n�1
i=0 mixi, intuitively, the obtained ciphertext ct0 is an RLWE encryption of

a message m0(x) whose constant term is mµ0 . In other words, the polynomial m(x)

has been rotated µ0 times [38, 39] to the left. Other coe�cients of the message m(x)

are also rotated correspondingly.

Sample Extraction [38,39]:

The goal of the sample extraction technique is to extract an LWE instance from a given

RLWE instance. This technique simply chooses some coe�cients of the polynomials

of the RLWE instance and arranges them in a certain order to create the output LWE

instance. This technique is a straightforward one and any coe�cient of the polynomial

which was encrypted in the RLWE ciphertext can be extracted e�ciently [38, 39].

We would like to emphasize that in our proposed constructions for homomorphic

computation of PRFs, we use these building blocks as black boxes and denote them

as BlindRot and Extract. More detailed description of these operations can be found

in [38, 39] and other relevant references.
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5.2.4 RLWE/LWE Conversion

As mentioned earlier, we utilize three di↵erent instatiations of FHE schemes, namely,

LWE, RLWE, and RGSW. For performing homomorphic computations, it is sometimes

necessary to convert the samples of one itstantiation to another. Particularly, two

conversions have been well-studied, i.e. LWE-to-RLWE and RLWE-to-LWE conversions.

Converting an RLWE instance to an LWE instance, which is equivalent to extract-

ing an LWE instance from an RLWE instance, is fairly straightforward and computa-

tionally e�cient. For converting a given RLWE ciphertext to an LWE ciphertext it

su�ces to apply the sample extraction technique, i.e., Extract, on the given RLWE

ciphertext [37].

The reverse operation, i.e., converting an LWE instance to an RLWE instance [37]

and [34], is more involved and computationally intensive. In order to perform this

conversion, one approach is to use an evaluation key, which has the encrytions of the

secret key, and the extrenal product of RGSW and RLWE ciphertexts. Assuming we

want the RLWE ciphertext to be in Rq = Zq[x]/(xN + 1), this approach requires N

external products. When N is a large number, e.g., N = 1024, this naive approach

is not e�cient.

Recently, researchers in [34] have proposed an elegant approach that takes ad-

vantage of the properties of ring of polynomails and field extensions. The proposed

approach [34] homomorphically evaluates the automorphisms of the Galois group over

the tower of finite fields. As a result, it improves the conversion logarithmically and

reduces the computational cost from O(N) to O(log(N)). We would like to remark

that for LWE to RLWE conversion we have implemented an approach similar to [34]

and used it in our constructions for homomorphic computation of PRFs.
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5.3 POLYNOMIAL TRANSFORMATIONS AND CIPHERTEXT EM-

BEDDING

The advantage of RLWE-based homomorphic encryption schemes is that they are

based on the ring of polynomials, which have really useful properties. There are sev-

eral transformations that have shown to be very useful when working with the ring

of polynomials. A well-known transformation is the number theoretic transformation

(NTT) [135], which has been used in FHE implementations for fast polynomial mul-

tiplication. Another transformation that has been utilized in FHE-related research is

the Nussbaumer transformation [130].

In this paper, we use an elegant ciphertext embedding technique which is in spirit

of the Nussbaumer transformation [130]. The embedding technique uses a polynomial

packing technique that allows us to embed a vector of N polynomials from Rq to a

polynomial in R0
q
. Recall that for a given N , we deal with two ring of cyclotomic

polynomials, namely Rq := Zq[x]/(xN +1) and R0
q
:= Zq[x]/(xN

2
+1). The ciphertext

embedding technique works as follows and we use Enc-to-Enc0 to refer this technique.

For a vector of RLWE ciphertexts ct = (ct0, ct1, . . . , ctN�1) 2 (R2
q
)N , we define:

ct
0 = (ct00, ct

0
1) 2 R0

q
⇥R0

q
(5.3)

where ct
0
j
=

P
N�1
i=0 ⌧(ctij)x

i for j = 0 and 1. Moreover, the ⌧ function (which is

in spirit of the Nussbaumer transformation [130]) is defined as follow:

⌧ :Rq �! R0
q

x 7��! xN

(5.4)

Intuitively, this embedding technique packs the polynomials of a vector of ci-

phertexts in a smaller ring and maps them to a ciphertext in a bigger ring, so that

computations can be performed more e�ciently. We use the notation Enc-to-Enc0 to

refer to this ciphertext embedding technique.

44



5.4 HOMOMORPHIC METHODS AND CONSTRUCTIONS

In this section we provide our proposed constructions for homomorphic computation

of pseudorandom functions PRFs. Our constructions use two di↵erent instantiations

of pseudorandom functions, namely LWR-based PRF and LPN-based PRF (as defined

in section 5.2.2).

5.4.1 Homomorphic Computation of LWR-based Weak PRFs

Our first construction is a technique for homomorphic computation of weak PRFs

based on the learning with rounding LWR problem [15], as defined in equation 5.1.

The following procedure simulates the homomorphic evaluation of an LWR-based PRF:

Construction I (LWR-based weak PRF):

Input: {RGSW.Enc(si)}n�1
i=0 , where si 2 Z2, and

#»aaa 2 Zn

q
.

Output: LWE.Enc(F ( #»aaa , #»sss ))

• RLWE.ct = FHE.BlindRot(x
Pn�1

i=0 ai.si)

• Return LWE.ct := FHE.Extract(RLWE.ct)

We would like to highlight that the security of our proposed first construction is

inherited from the underlying computationally hard problem, i.e., the learning with

rounding problem LWR [15]. We analyze the security level of this construction in

section 5.5.

5.4.2 Homomorphic Computation of LPN-based Bounded-Query-Weak PRFs

Our second construction is for homomorphic computation of bounded-query-weak

pseudorandom functions (PRFs) that were instantiated based on the ring-LPN prob-

lem [83], as shown in equation 5.2. The procedure for homomorphic evaluation of
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LPN-based bounded-query-weak PRFs is as follows:

Construction II (LPN-based bounded-query-weak PRF):

Input: {RGSW.Enc(s↵i)}t�1
i=0, {RLWE.Enc(x↵i)}t�1

i=0 and a 2 R0.

Output: LWE.Enc0(s.a)

• use the Enc-to-Enc0 mapping to convert {RGSW.Enc(s↵i)}t�1
i=0

and {RLWE.Enc(x↵i)}t�1
i=0 to Enc

0(s).

• Return RLWE.Enc0(s).a

The security of construction II relies on the hardness of the ring-LPN problem [83],

which is a computationally hard problem. More accurate analysis regarding the

security level of this construction is provided in the following section (section 5.5).

5.5 SECURITY ANALYSIS

In this section we discuss the security level of our constructions. We also analyze

the boundaries on the amount of noise that can be used in the underlying FHE

instantiations utilized in our constructions. Furthermore, we highlight the secret key

distributions of the FHE instantiations and provide the recommended parameters set

that our constructions work with.

First of all, for two FHE instantiations that we use, i.e., for LWE and RLWE, the

amount of noise must be less than q

2⇥p
, where q is the modulus for the ciphertext

domain and p is the modulus (or cardinality) of the plaintext space. For the decryp-

tion process of the RGSW instantiation to work properly, the amount of noise must

be less that q

2⇥BK�1 , where B is the base in the gadget matrix and K is the number

of non-zero elements in a row of the gadget matrix. The boundary on the amount

of the noise for the RGSW is di↵erent (from that of the other two FHE instatiations)

because of the structure of the gadget matrix G. It should be mentioned that the
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same boundary on noise is applicable for the LWE and RLWE instantiations if instead

of q

p
the value BK�1 is used as their rounding threshold.

Generally speaking, the distribution of secret key for the FHE instatioantions

should be Gaussian, with a standard devitation of at least � =
p
n, where n is

the dimension of the lattice [118]. In our constructions we used random secret keys

uniformly sampled from a binary domain, i.e., {0, 1}. It should be noted that a

ternary domain, e.g., {�1, 0, 1}, can also be used with little modifications in the

constructions.

The security level that our constructions provide are as follows. Our proposed

constructions for homomorphic computation of PRFs are based on FHE instatioations

that support di↵erent configurations. The dimension of the lattice, i.e., n, can be a

power of two, e.g., 512, 1024 or 2048. In our implementation and for experimental

results we set n = 1024. The degree of the cyclotomic polynomials, i.e., N , was also

set to 1024 for the first construction and 10242 = 1048576 for the second construction.

The modulus Q can be a 30 bit prime number for 32-bit integer arithmetic; and a

62 bit prime number for 64-bit integer arithmetic. In our implementation and for

evaluation results, we used the modulus Q which was chosen by the NFLlib C++

library [5] (such a mudulous allows fast polynomial multiplication thanks to the NTT

transformation [135]). The base B in the gadget matrix, G [117], can be a positive

power of two; and we used the values provided in Table 5.1 (also included in Table

5.2 and Table 5.3 in section 5.6). Our constructions work with the parameters set

provided in Table 5.1.

n N or N 0 log2Q B

1024 1024 or 1048576 30 24 or 27

1024 1024 or 1048576 62 27, 214, 220 or 230

Table 5.1: Parameters Set for Constructions I and II
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5.6 EVALUATION AND EXPERIMENTAL RESULTS

We have implemented our constructions for homomorphic evaluation of pseudoran-

dom functions (PRFs) in C++. Our implementation supports di↵erent configurations,

including 32-bit and 64-bit integers and di↵erent polynomial degrees as long as the

degree is a power of two. Particularly, our RGSW implementation supports di↵erent

bases (B) in the gadget matrix G [117], that gives us the flexibility to choose di↵er-

ent dimensions for RGSW ciphertexts. For polynomial arithmetic we used the NFLlib

library [5], which is a fast C++ library for lattice-based cryptography and supports

NTT-based polynomial multiplication [135].

Table 5.2 shows the runtime of our first construction along with di↵erent param-

eters that we used. There are a couple of points that should be highlighted. First,

in Table 5.2 the measured runtimes are in milliseconds (ms) and averaged over mul-

tiple executions. Moreover, the numbers are rounded to the closet integer. Second,

some configurations (e.g., 32-bit integers and base B = 210) are not supported in

our implementation. In such cases we have put an ‘NA’ in the table. The reason

that some configurations are not supported is because we use the number theoretic

transformation (NTT) [135] for e�cient polynomial multiplication and this imposes

some limitations on the parameters that can be used (for instance, the degree N and

modulus q must satisfy the requirement q ⌘ 1 mod 2N). Moreover, the underlying

NFLlib C++ library that we use for polynomial arithmetic, uses only 30 and 62 bits

of 32-bit and 64-bit integers respectively (and sacrifices two or sometimes more bits

for optimization).

l B = 24 B = 27 B = 214 B = 220 B = 230

32-bit 360 ms 240 ms NA NA NA

64-bit 2200 ms 550 ms 440 ms 280 ms 230 ms

Table 5.2: Runtime Results for Construction I (N = 1024)
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The experimental results for our second construction are provided in Table 5.3.

The runtime results in Table 5.3 are in seconds, where they have been averaged over

multiple executions. Moreover, they were rounded to the closest decimal or integer

numbers. Similar to construction 1, we have used the NFLlib C++ library [5] for fast

polynomial multiplication. As it is seen in the table, with using larger bases (B) the

runtime decreases. This is because if we uses larger bases, the dimension of RGSW

ciphertexts reduces and thus less computations are needed. More interestingly, as it

can be seen using the LPN-based PRFs along with the ciphertext embedding technique

improves the runtime significantly. For instance, for 64-bit integer and with base

B = 220 the runtime of the LPN-based PRF is 6.2 seconds. However, this approach

encodes N = 1024 polynomials and this runtime corresponds to multiplication of

and encrypted polynomial with a public polynomials both in R0
q
= Z[x]/(xN

2
+

1). Therefore, the amortized runtime comparing to the LWR-based PRF is around 6

milliseconds.

l B = 24 B = 27 B = 214 B = 220 B = 230

32-bit 7.8 s 5.5 s NA NA NA

64-bit NA 11.0 s 8.0 s 6.2 s 5.6 s

Table 5.3: Runtime Results for Construction II (N 0
= 1024

2
)

5.7 CONCLUDING REMARKS

In this article we proposed two constructions for homomorphic computation of weak-

pseudorandom functions (PRFs). The proposed constructions are based on the LWR

and the ring variant of the LPN problems; and utilize three instatiations of fully

hmomprphic encryption FHE schemes, i.e., LWE, RLWE, RGSW instatiations. We

also used an interesting ciphertext embedding technique which is in spirit of the

Nussbaumer transformation [130] and based on the number theoretic transformation
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(NTT [135]).

We implemented our constructions in C++ and using the NFLlib C++ library

that provides fast polynomial arithmetic operations thanks to the NTT transforma-

tion [135]. Our experimental results and security analysis shows that homomorphic

computation of weak PRFs can be done in hundreds of milliseconds and can provide

a security of 128 or 256 bits based on the homomorphic encryption standard [6]. We

hope our constructions for homomorphic computation of PRFs will be utilized for

secure evaluation of pseudrandom functions which are a common building blocks in

secure multiparty computation protocols, e.g., the SPDZ secure multiparty compu-

tation protocol and compiler [52, 53].
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CHAPTER 6

SECURE TRUST EVALUATION (STE) USING MULTIPATH AND

REFERRAL CHAIN METHODS

In this chapter we provide several protocols for secure evaluation of trust values in

a network. The proposed secure trust evaluation techniques are based on an inter-

esting framework for modeling and measuring trust values. The framework is called

information theoretic framework for modeling trust [156]. Moreover, our proposed se-

cure protocols rely on secure computation based on the Shamir’s secret sharing [150]

approach. It should be mentioned that this part of the dissertation is based on the

student’s research during his PhD program; and the research was published in [137].

6.1 INTRODUCTION

Trust and reputation are common social concepts/mechanisms that have been used

in di↵erent contexts, including in human interactions, economics, multiagent systems

and computer networks. These social mechanisms are now well-studied and have been

integrated into electronic applications/services, e.g., Amazon and eBay websites, in

search engines, e.g. Google’s PageRank algorithm, and in social networks. These

social mechanisms can also be used in peer-to-peer (P2P) networks [1, 92, 163], col-

laborative environments, multiagent systems, autonomous vehicles, vehicle-to-vehicle

(V2V) networks [176], and multiparty computation scenarios to provide better quality

and more trustworthy services.

Trust and reputation are sometimes considered as soft security measures that

compliment hard security measures, e.g. cryptography and secure multiparty compu-
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tation protocols. It should be mentioned that using soft security measures alongside

hard security measures can provide more secure and trustworthy systems and net-

works [138, 171]. In other words, integrating these social concepts into data and

computation infrastructures can provide more reliable, secure and trustworthy sys-

tems and services [90]. In fact, trusted computing is a term that re↵ers to this idea

and has been used in the IT security jargon [90] and [179]. However, there has been

challenges with modeling and utilizing these social concepts, i.e. trust and reputation.

First, these concepts are highly subjective [81], in the sense that di↵erent peo-

ple have di↵erent impressions about them. It should also be mentioned that these

concepts are very contextual-based and time-dependent [81]. Fortunately, there has

been significant attempts for modeling and measuring trust and reputation. In the

computer science literature, Marsh [114] is among the first who tried to provide a

computational model for trust. Thereafter, other models, methods and metrics have

been defined for measuring trust and reputation quantitatively. In a nutshell, there

are di↵erent theories/approaches for modeling and evaluating trust and reputation

concepts. Some of the well-known approaches for measuring trust include subjec-

tive logic [88, 89], fuzzy logic [113], entropy-based models [156], Demster-Shafer the-

ory [166]. Reputation is usually evaluated based on the trust values. Some of the

well known reputation systems use simple summation, average and weighted average

of the trust values [90]. Other reputation systems utilize the Beta probability density

function and Bayesian networks [90].

Second, there are studies [144] discussing that users are usually unwilling to pro-

vide honest feedbacks (ratings) in trust and reputation systems, mainly due to the

fear of retaliation for negative ratings. For a trust and reputation system (TRS) to

be welcome by users, it is important that such a system keeps the users’ data private

while allowing them to perform the desired computations on their private data (here

specifically the trust value (rating score) of users in one another). There are di↵erent
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approaches for providing such a system. One approach is to use decentralized rep-

utation systems. Such reputation systems do not rely on any centralized reputation

management authority, and thus are safer [73]. Another approach is to use secure

computation approaches, e.g., secure MPC, in trust and reputation models.

6.1.1 Our Contribution

This paper aims at addressing data security and privacy issues in trust and reputation

systems. We use secure multiparty computation (secure MPC), a.k.a., secure function

evaluation (SFE), to provide secure trust evaluation (STE) methods. Our proposed

methods [137] are based on the information theoretic framework for modeling trust

and two approaches that trust propagate in a network [156]. These two approaches

are: the idea of referral chains in social networks and multipath trust propagation in

a network. We provide two protocols that enable the nodes in a network to securely

evaluate their trust value in one another. As an application, we use our proposed

STE method to provide a secure network routing protocol. Our protocols can be

based on any secret sharing scheme, e.g., the Shaimr’s (t, n)-threshold secret sharing

scheme [150]. We would like to emphasize that our protocols do not rely on any

trusted third parties. In other words, the nodes in a network can perform the required

computations for measuring their trust securely and by themselves. Using secure trust

evaluation methods will result in more secure and trustworthy network-based systems

and services.

In section 7.2, we review the existing works related to secure trust and reputation

models. In section 6.3, we provide the necessary preliminaries for our secure trust

evaluation method. These include secure MPC based on secret sharing, and an en-

coding approach that allows performing secure computations on real-valued numbers.

We use floating-point representation of real numbers to perform secure computations

on such numbers. Note that in our model, trust values are real numbers in [�1, 1]
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interval. In section 6.4, we provide our main contribution. We propose two secure

protocols that are in fact the building blocks of our STE method. We also provide

a secure network routing protocol as an appealing application of the proposed STE

method. Our discussion is presented in section 6.5. The paper is rounded o↵ by the

conclusion in section 6.7.

6.2 RELATED WORKS

Data security and privacy are important issues in trust and reputation systems (TRS).

Di↵erent approaches have been used to address such issues in the TRS systems.

Among others, we can point out approaches based on secure MPC techniques and

those based on decentralized computation frameworks. In what follows, we review

the previous works related to secure trust and reputation models. For comprehensive

surveys related to trust and reputation systems in general, interested readers may

refer to [90] and [81].

In [166], two schemes for preserving the privacy of trust evidence providers were

proposed. The proposed schemes use two non-colluding service parties, called Autho-

rized Proxy (AP) and Evaluation Party (EP), to manage the aggregated evidences

and process the collected data in encrypted format. The proposed schemes are based

on public key cryptography, e.g. RSA and digital signature, and additive homomor-

phic encryption, e.g. Paillier scheme [131]. Centralized trust and reputation systems

(TRS) can take advantage of their users’ data. To address such an issue, the authors

in [12] proposed a privacy-preserving distributed reputation mechanism based on the

notion of mailboxes. Malicious-k-shares protocol, a decentralized privacy-preserving

reputation system, was proposed in [78]. The protocol is based on the Paillier cryp-

tosystem [131] and uses source managers (e.g., the Chord distributed hash table [155])

to share the data among k agents and perform privacy-preserving distributed com-

putations.
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The privacy-preserving version of the P2PRep [13] reputation-management mech-

anism, called 3PRep (privacy preserving P2PRep), was proposed in [125]. 3PRep en-

hances the P2PRep mechanism by adding two new protocols to preserve votes’ privacy

using semantically secure homomprphic encryption scheme, e.g. Paillier scheme [131].

Three di↵erent schemes for privacy-preserving computation of reputation values were

presented in [73]. Two of the proposed schemes use a trusted third party to calculate

the reputation. The third scheme does not rely on any trusted third party. Pavlov

et al. argued that supporting perfect privacy in a decentralized reputation system

is impossible [132]. That being said, they proposed three probabilistic schemes that

are able to support partial privacy in decentralized additive reputation systems. The

proposed schemes use secret splitting and secret sharing schemes, e.g., the Pederson

secret sharing [133].

There are other works related to privacy-preserving reputation systems. In [77],

the authors provided the k-shares protocol, which was inspired by the protocol of

[132]. The advantage of k-shares protocol is that it has a lower message complexity

compared to the protocol proposed in [132], i.e. O(n) versus O(n2). The authors in

[43] introduced dynamic preivacy-preserving reputation systems (Dyn-PDRS). Dyn-

PDRS is able to deal with the dynamic structure of some decentralized reputation

systems wherein nodes (users) in the network leave and join the network constantly.

The authors in [179] discussed how a trust mechanism can be used in the blockchain

technology for developing a decentralized personal data management system.

6.3 PRELIMINARIES

6.3.1 Secure Multiparty Computation (secure MPC)

Secure multiparty computation (secure MPC) is a computational model in which a

group of parties can evaluate a public function on their private data without revealing

their data. This idea was first introduced by Andrew Yao [169]. Secure MPC, a.k.a.,
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secure function evaluation (SFE) [116], can be realized using cryptographic primi-

tives such as secret sharing schemes, homomorphic encryption techniques and Yao’s

Garbled circuits. In secret sharing-based MPC, a secret sharing scheme, e.g. the

Shamir’s (t, n)-threshold secret sharing [150], is used to generate and distribute the

shares of secrets (private data) among the participating parties. The computations

are then carried out on the shares of those secrets. At the end of the computations, an

appropriate technique, e.g., the Lagrange interpolation, is used to obtain the result.

Secure MPC based on Secret Sharing

Secure MPC based on the Shamir’s secret sharing scheme works as follows. First of all,

it should be noted that in secure multiparty computation usually there are n parties

and each has a private value (which can be considered as a secret). Moreover, the

computations are performed in a finite field such as Zp, where p is a prime number. In

order to perform a computation (evaluate a function) using secure MPC, each party

first selects a polynomial f(x) 2 Zp[x] whose coe�cient are random values in Zp and

its constant term is the party’s secret (private value). Mathematically speaking, each

party Pi selects a polynomial as follows:

fi(x) = ↵i + ai,1x+ ai,2x
2 + ...+ ai,t�1x

t�1. (6.1)

where ↵i is the secret of party Pi, for i = 1, 2, ..., n and ai,1, ai,2 ..., ai,t�1 are random

numbers in Zp. Moreover, t is the threshold of the secret sharing scheme. Each party

then evaluates its polynomial on n points, such as 1, 2, ..., n to generate the shares of

its secret. The parties then distribute the shares of their secrets among each other.

To evaluate a function securely, the parties perform the required computations on the

shares of their data. They finally carry out a Lagrange interpolation on their updated

shares to obtain/reconstruct the result of their computation (i.e., the function value).
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6.3.2 Floating-Point Representation of Real (Rational) Numbers

Secure computation techniques mostly work on integer numbers, i.e. on finite field el-

ements. In our secure trust evaluation method, the trust values are rational numbers

in [�1,+1] interval. Therefore, we need to use secure MPC techniques on real num-

bers. There are di↵erent encoding approaches, e.g., floating-point representation [8],

that allow secure computation techniques to be used on real numbers. In this paper,

we use floating-point representation [8] of real numbers in our proposed protocols,

although other approaches can be used.

Floating-point representation is a way of representing real numbers using a fixed-

precision significand v and an exponent p. The exponent p specifies how the real

number should be scaled in a given base. For instance, when the base is 2, the

representation would be of the form v . 2p. In order to have a workable representation,

the authors in [8] used a 4-tuple (v, p, z, s) with base 2 to represent each real value u.

In this representation, v is an l-bit significand and p is a k-bit exponent. Moreover, z

is a binary value which is 1 if and only if u = 0. Furthermore, s is the sign bit. The

sign bit s is set when the value u is negative. For a real value u represented as above,

we have u = (1�2s)(1�z)v . 2p. In other words, the equation u = (1�2s)(1�z)v . 2p

is used to convert a floating-point representation to a real number and vice versa.

6.3.3 Information Theoretic Framework for Modeling Trust [156]

The concept of trust (in human interactions or social networks) is very related to the

concept of uncertainty in information theory. This subtle connection was formalized in

[156], wherein an information theoretic framework for modeling trust was introduced.

Due to the similarity between trust and uncertainty, trust can be measured by entropy,

which is a well-accepted concept in information theory. Having said that, two trust

models were proposed in [156], an entropy-based trust model and a probability-based

trust model. For the probability-based trust model, two approaches were studied, a
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Binomial distribution and a Bayesian approach. The authors [156] discussed that the

Bayesian approach captures the concept of uncertainty more appropriately.

The information theoretic framework for modeling trust works based on the ob-

servations of nodes of each other. In what follows we briefly explain how trust is

evaluated in this framework. Assume a network is given and node A in the network

wants to evaluate its trust (for performing an action, e.g., packet forwarding) in an-

other node, say node X. To do so, the past behaviors of node X regarding that

specific action is considered. In the trust model based on the Bayesian approach, first

the probability of node X performing that action is calculated. If node X has been

asked to perform an action N times and among them node X has performed that

action k times, the probability of performing that action in the next request, i.e., the

N + 1-th request, is defined as follows [156]:

Pr(V (N + 1)) =
k + 1

N + 2
(6.2)

wherein k is the number of times that nodeX has performed a specific action upon

N total requests. In fact, Pr(V (N + 1)) is the probability that node X will perform

that specific action in the (N +1)th request. Note that V (i) is the random variable of

performing an action at the i-th request [156]. In the information theoretic framework

for modeling trust, trust can also be calculated as entropy (which in fact measures the

uncertainty). Having the probablity-based trust value, the entropy-based trust value

of node A in node X for performing an action is defined/calculated as follows [156]:

T (A : X, action) =

8
>><

>>:

1�H(p), for 0.5  p  1

H(p)� 1, for 0  p < 0.5

(6.3)

where H(p) = �p log2(p)�(1�p) log2(1�p) and p is the probability as defined in

equation 6.2. The information theoretic framework [156] is an elegant way of modeling

the concept of trust. There are a few points that should be emphasized. The trust
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values in the information theoretic framework can be represented as probability-based

values or entropy-based values. Equation 6.3 shows the relation between these two

types of trust values and how they can be converted to each other. It is also important

to note that probability-based trust values are in [0, 1] interval, whereas entropy-based

trust values vary within the [�1, 1] interval. In our STE method, the trust values are

in [�1, 1] interval.

6.4 THE PROPOSED SECURE TRUST EVALUATION (STE) TECH-

NIQUES

In this section we describe our proposed secure trust evaluation techniques. We

would like to emphasize that our proposed protocols rely on the information theoretic

framework [156] for modeling and measuring trust values. Moreover, for evaluating

the trust values in a secure or privacy-preserving way our protocols rely on secure

computation based on Shamir’s secret sharing [150].

6.4.1 Secure Trust Evaluation using Multipath Trust Propagation

Trust in a network can propagate in di↵erent ways. In this section, we briefly discuss

how a node can evaluate its trust in another node using the multipath trust propa-

gation approach. In the multipath trust propagation, a node (say node A1) wants to

evaluate its trust in another node (say node B). For this purpose, node A1 asks (or

sends trust recommendation requests to), other nodes say nodes A2, A3, ..., An, in the

network to give their opinions about node B. Figure 6.1 shows a sample multipath

trust propagation in a network.

After receiving the trust values (from other nodes, i.e., A2, A3, ..., An), node A1

calculates its trust in node B as follows [156]:

TA1B = Trust(A1 : B) =
nX

i=1

wiTi (6.4)
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Figure 6.1: Multipath trust propagation [137] (see also [156])

where T1 is the trust value of node A1 in node B (i.e., based on direct observation)

and w1 is the weight that node A1 considers for its direct trust value in node B.

Moreover, Ti, for i = 2, ..., n, is the trust value (opinion) of node Ai in node B, which

is returned from node Ai to node A1. wi is the weight that node A1 considers for its

trust in node Ai for i = 2, ..., n (see figure 6.1). Note that the weights wi’s are selected

by node A1, such that 0  wi  1 and
P

n

i=1 wi = 1. Note that since 0  wi  1

and �1  Ti  1 we have �1  TA1B  1. The maximum value that TA1B can get

is when Ti = 1. In that case, TA1B =
P

n

i=1 wiTi 
P

n

i=1 wi = 1. The minimum value

that TA1B can get is when Ti = �1, where we have TA1B =
P

n

i=1 wiTi �
P

n

i=1 wi(�1)

= �1⇥
P

n

i=1 wi = �1. Recall that it is assumed
P

n

i=1 wi = 1.

We now propose a protocol that allows a node in a network, e.g., node A1, to

evaluate its trust in another node, e.g., node B, using the multipath trust propagation

approach (see also Fig. 6.1). The idea is that the nodes on the multipath perform

their computation using secure multiparty computation. To do so, the nodes use the

Shamir’s secret sharing scheme to share their secrets (in this case their trust values

in each other) and perform the computations in a secure fashion. Note that the

nodes on the multipath illustrated in figure 6.1 need to securely evaluate the function

represented in equation 6.4. In equation 6.4, wi’s are private values of node A1, while

Ti is the private value of node Ai for i = 2, ..., n. Protocol 1 shows the secure trust

evaluation procedure using the multipath trust propagation approach.
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Protocol 1: Secure Trust Evaluation using the Multipath Approach [137]

Require: Trust values {T1, T2, ..., Tn} and weights {w1, w2, ..., wn}.

Ensure: Calculates TA1B =
P

n

i=1 wiTi using secure MPC.

1: Each party (node) Ai, for i = 1, 2, ..., n, uses floating-point representation

to encode its input into a single finite field element.

2: Each party Ai uses the Shamir’s secret sharing scheme to generate the

shares of its input Ti. Party Ai selects a polynomial as follows:

fi(x) = Ti + ai,1x+ ai,2x
2 + ...+ ai,t�1x

t�1.

where Ti is the trust value of node Ai in node B.

3: Party A1 uses the Shamir’s secret sharing scheme to generate the shares

of its weights, i.e., wi’s. A1 selects a polynomial as follows:

gi(x) = wi + bi,1x+ bi,2x
2 + ...+ bi,t�1x

t�1.

where wi is the weight that party A1 considers for node Ai.

4: Each party distributes the shares of its input among all the parties. The

share-exchange matrix (wherein party Ai generates the i-th row and

receives the i-th column) is as follows:

Ef =

2

66664

f1(1) f1(2) . . . f1(n)
...

...
. . .

...

fn(1) fn(2) . . . fn(n)

3

77775
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5: Party A1 distributes the shares of its weights wi’s, for i = 1, ..., n. The

share-exchange matrix is as follows:

Eg =

2

66664

g1(1) g1(2) . . . g1(n)
...

...
. . .

...

gn(1) gn(2) . . . gn(n)

3

77775

6: Party Ai, for i = 1, 2, ..., n, performs the following computation:

T i

A1B
=

nX

k=1

gk(i)⇥ fk(i).

where gk(i) is the share of wi that party Ai has received from party A1 and

fk(i) is the share of Tk that party Ai has received from party Ak. Moreover,

T i

A1B
means the share of party Ai of the trust value TA1B. Note that after

each multiplication, gk(i)⇥ fk(i), the participating parties must perform a

degree reduction procedure [128].

7: Each party Ai for i = 2, 3, ..., n sends its result of the computation in the

previous step to party A1.

8: Party A1 uses Lagrange interpolation to obtain the result (i.e., TA1B):

TA1B =
nX

i=1

(
nY

k=1
k 6=i

k

k � i
⇥ T i

A1B
)
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6.4.2 Secure Trust Evaluation using Referral Chains

The idea of using referral chains (referral graphs) in trust and reputation systems was

introduced in [171] and further studied in [126, 172]. Yu and Singh [171] defined a

referral chain as follows. Given the graph representation of a network (e.g., a social

network), a referral chain from node A0 to node An is basically a path between the

two nodes. Such a referral chain is represented as � = hA0, A1, ..., Ani, where Ai is a

neighbor of Ai+1.

The concept of referral chain in a network can capture the notion of trust prop-

agation in a good way. In [171], the authors used this concept for estimating the

quality of nodes in a trust net. In a trust net [171], the trust value of a node (say

node A) in another node (say node B) is measured based on three factors [126, 171]:

A’s direct observation of B, the B’s neighbors opinion about B and the A’s opinion

about the neighbors of B. Having the trust values of the nodes on a referral chain, the

trust over the referral chain propagates according to the trust propagation operator

(see definitions 5 and 6 of [171]). In our secure trust evaluation method, we consider

a general case of a referral chain consisting of n nodes as illustrated in Fig. 6.2:

 A1 

A2 An 

B 

⁞ 

A3  An-1 
 T1 

 

T2 
 

T3 
 

Tn-1 
 

Tn 
 

A4  An-2 
 

Tn-2 
 

Figure 6.2: A referral chain in a network [137] (see also [156])

The trust value of node A1 in the last node on the referrl chain, i.e., node B, is

calculated as follows [171]:

TA1B = TA1A2 ⌦ TA2A3 ⌦ ...⌦ TAnB (6.5)

where TAiAi+1 , for i = 1, 2, ..., n � 1, is the trust value of node Ai in node Ai+1

and it is represented as Ti in Fig. 6.2. Moreover, ⌦ represents the trust propagation
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operator, which is defined as follows [171]:

Definition 1 ( [171]). x⌦ y := if (x � 0 ^ y � 0) then x⇥ y; else �|x⇥ y|.

The trust propagation on a referral chain is defined as follows [171]:

Definition 2 ( [171]). For any k, where k 2 {1, 2, ..., n}, the trust of A1 in Ak is

defined as: TA1Ak
= TA1A2 ⌦ TAk�1Ak

.

In the following, we propose a protocol that enables a node in a network to evaluate

its trust in another node through a referral chain. The main idea is that the nodes

on the referral chain use secure MPC based on secret sharing to carry out the trust

evaluation computations (i.e., the function in equation 6.5) in a secure fashion. The

procedure of secure trust evaluation on a referral chain is described in Protocol 2.

Note that in Protocol 2 the trust value of node Ai in node Ai+1 is represented as Ti,

where i = 1, ..., n. That is, Ti = TAiAi+1 .

Note that in the trust propagation operator, i.e., ⌦ in definition 1 and equation 6.5,

before the multiplication of each pair of trust values, the trust values are compared

with zero (i.e. if x � 0 ^ y � 0). Thus, in order to carry out the trust propagation

operator in Protocol 2, each pair of trust values need to be securely compared with

zero. This can be done in di↵erent ways. One solution is to use a secure comparison

protocol, e.g. a protocol from Table 3.1 in section 3.3.1 of chapter 3. Another

approach is to use secure MPC for determining the sign of the final trust value, i.e.,

TA1B, as follows. Each party (node) Ai encodes and shares the sign of its trust value

Ti: If Ai’s trust value is positive (i.e. 0  Ti < 1), then Ai shares 0 among all the

parties. If Ai’s trust value is negative (i.e. �1  Ti < 0), then Ai shares 1 among

all the parties. All the parties exchange and add their shares and send their result

to party A1. By obtaining the final result (using the Lagrange interpolation), party

A1 can determine the sign of the final trust value as follows: If the final result is 0,

the sign of the final trust value (i.e. TA1B) is positive. If the final result is a non-zero

value, the sign of the final trust value (i.e. TA1B) is negative.
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Protocol 2: Secure Trust Evaluation using Referral Chain Approach [137]

Require: Trust values {T1, T2, ..., Tn}, where Ti = TAiAi+1 , for i = 1, .., n.

Ensure: Calculates TA1B = T1 ⌦ ...⌦ Tn using secure MPC.

1: Each party Ai (i.e., each node on the referral chain) uses floating-point

representation to encode its input Ti into a single finite field element.

2: Each party Ai uses the Shamir’s secret sharing scheme to generate

the shares of its trust value Ti. Party Ai selects a polynomial as follows:

fi(x) = Ti + ai,1x+ ai,2x
2 + ...+ ai,t�1x

t�1.

where Ti is the trust value of node Ai in node Ai+1 on the chain.

3: Each party Ai distributes the shares of its trust value among all the parties.

The share-exchange matrix (wherein party Ai generates the i-th row and

receives the i-th column) is as follows:

Ef =

2

66664

f1(1) f1(2) . . . f1(n)
...

...
. . .

...

fn(1) fn(2) . . . fn(n)

3

77775

4: Each party Ai multiplies its received shares:

T i

A1B
=

Y

k=1,...,n

fk(i)

where fk(i) is the share that party Ai has received from party Ak where

k = 1, 2, ..., n. Moreover, T i

A1B
means the share of party Ai of the trust

value TA1B. Note that after each multiplication the participating parties

must perform a degree reduction procedure [128].
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5: Each party Ai for i = 2, 3, ..., n sends its result of the multiplication, in the

previous step, to party A1.

6: Party A1 uses Lagrange interpolation to obtain the result (i.e., TA1B):

TA1B =
nX

i=1

(
nY

k=1
k 6=i

k

k � i
⇥ T i

A1B
)

We would like to note that a disadvantage of the referall chain approach [171] is

that on long chains the trust propagation operator fades the trust value of node A1

in node B [126]. An alternative solution [126] for the referral chain approach is to

use a weighted average of the trust values on the chain, where the weights decrease

monotonically, i.e., 1 � w1 > w2 > ... > wn � 0. Note that wi’s are selected such

that
P

n

i=1 wi = 1. In such a monotonically-decreasing weighted referral chain, the

trust value TA1B can be securely evaluated using Protocol 1.

6.4.3 Secure Network Routing

The concept of trust, as a soft security mechanism, can be used for improving the

quality of network services in di↵erent ways. For instance, trust models can improve

network routing protocols and provide malicious node detection capability [156]. An

important thing in most networks is the security and privacy of the nodes’ data. It

is important for the nodes in a network to not reveal their private data, e.g., their

trust values in each other [144] and [156]. This is because if trust values are revealed,

nodes with high trust values may be compromised by adversaries. This can reduce

the trustworthiness of the whole network.

In this section, we use our proposed protocols (Protocol 1 and Protocol 2) to

provide a secure network routing protocol. By using the secure network routing

protocol, a node in a network can find a high quality route in a network while the
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nodes’ private data is not revealed. Secure network routing protocols can provide

more secure and trustworthy protocols in the sense that adversaries are not able to

figure out how an action, e.g., packet forwarding in a network, is carried out. We first

need to define the quality of a route in a network.

The Quality of a Route in a Network. Assume a network is given and node

A and node Ndest are two nodes in that network. Moreover, suppose node A wants

to perform an action in the network, e.g., to forward a packet to node Ndest. There

are usually di↵erent routes in the network for performing such an action. In order

to perform the packet forwarding action with a higher chance of success, node A can

determine the quality of each route prior to forwarding its package to the destination.

One approach to define the quality of a route in a network is based on the trust

value of the nodes on that route [156]. Suppose R is a route in a network and {Ni}

represents the set of all nodes on route R. We define and calculate the quality of

route R as follows [156]:

Quality(R) =

8
>><

>>:

Q
i
Ti if Ti > 0 8 nodes Ni on R

min{Ti} otherwise

(6.6)

where Ti is the trust value of node A in node Ni on route R. Equation 6.6 is

basically the multiplication of the trust values of the nodes on route R. In cases that

there are nodes with negative trust values on the route, we define the quality of route

as the minimum trust value (i.e., as the smallest negative trust value).

We now propose a protocol that enables a node in a network to evaluate the

quality of a route in a secure manner. Our proposed secure network routing protocol

works as follows. Assume node A wants to evaluate the quality of route R. Node A

evaluates the trust value of each node on the route using the secure trust evaluation

protocols (Protocol 1 and Protocol 2). Then, node A calculates the quality of the

route using equation 6.6. To find a high quality route, node A must calculates the
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quality of di↵erent possible routes (to its desired destination) and finds the route with

the highest quality. The secure network routing protocol is provided in Protocol 3.

Note that in the protocol we assumed that each node, including node A, has a trust

record on which the trust values are stored.

Protocol 3: Secure Network Routing Protocol [137]

Require: Nodes’ trust records, i.e. nodes observations from each other.

Ensure: A high quality route in the network, from node A to node Ndest.

1: Let {Si} denotes the set of all the nodes on all possible routes between

node A and node Ndest in the network.

2: for any node Si: do

if node A has a trust record about node Si then
Node A uses that trust record.

else
Node A sends trust recommendation request about node Si to

other nodes. Node A collaboratively with other nodes use Protocol 1

and Protocol 2 to securely evaluate its trust value in node Si.

3: Let R denote a particular route in the network and let {Ni} represent

the set of all the nodes on route R. Let Ti denote the trust value of

node A in node Ni. Node A calculates the quality of route R as:

Quality(R) =

8
>><

>>:

Q
i
Ti if Ti > 0 8 nodes Ni on R

min{Ti} otherwise

Note that the above multiplication is performed localy by node A.

However, each Ti is computed securely when node A does not have a

trust record about node Ni (see step 4).
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4: Let {Ri} denote the set of routes from node A to node Ndest in the network

among which node A wants to find a good quality route. Node A selects a

route which has a good quality, e.g., larger than a threshold or the route

with the maximum quality, as follows:

R⇤ = argmaxRi{Quality(Ri)}

5: Node A updates its trust records using the recent observations and

calculated trust values.

6: Node A initiates its desired action on the high quality route, i.e. route R⇤.

6.5 DISCUSSION

In this paper, we introduced a secure trust evaluation (STE) method. Our proposed

method is based on the information theoretic framework for modeling trust and two

approaches of trust evaluation in a network: the multipath trust propagation and the

idea of referral chains in a network. There are a few comments that we discuss in the

following.

The Beta reputation system [91] is a specific case of the information theoretic

framework for modeling trust. To see this, note that the trust value in the informa-

tion theoretic framework is measured using equation 6.2 in section 6.4. In the Beta

reputation system, the reputation of a user is calculated as r+1
r+s+2 (see [91] and [94]).

The Beta reputation system is one of the commonly referred reputation systems in

the literature. Thus, our secure trust evaluation method can be used wherever the

Beta reputation system is applicable. For instance, our proposed protocols can be

used in computer networks and Internet-based services that use the Beta reputation

system.

Another important point is that our proposed STE method is a decentralized sys-

tem. This has its own advantages and makes a network more reliable and trustworthy,
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because the nodes in a network do not reveal their private values to any third party

or any other nodes. Recall that the secure protocols (Protocol 1 and Protocol 2) in

our trust evaluation method use secure MPC and secret sharing schemes, e.g., the

Shamir’s (t, n)-threshold secret sharing scheme, which are powerful tools for secure

function evaluation.

An overlooked fact in many privacy-preserving trust and reputation systems (TRS)

is that regardless of using the cryptographic primitives or any other privacy measure,

a ratee in a TRS can figure out the impact of a rater’s feedback (rate) on its rep-

utation [94]. This is because a feedback is usually provided after a transaction is

completed; thus the ratee knows when the rater leaves his feedback. The ratee then

can see the impact of that feedback on their reputation. Although the ratee might

not be able to figure out the exact feedback rate, it is, at least, able to figure out

whether the feedback was positive or negative.

Our proposed secure trust evaluation method addresses the above-mentioned issue

appropriately. In our model, when a node (say node A) in a network wants to evaluate

its trust in another node (say node B), node A asks other nodes for their rating about

node B. The process of evaluating the trust value of node A in node B is carried out

in such a way that the latter node, i..e node B, may even not notice that its trust

is evaluated by other nodes. This makes sense because in a decentralized trust and

reputation system, the nodes are witnesses for each others’ behavior. Recall that in

our trust model, the trust value of a node is evaluated as a weighted average of other

nodes’ ratings in the network (see equations 6.4).

6.6 SECURITY AND COMPLEXITY ANALYSIS

The security analysis of the protocols is inherited from the security of the underlying

secret sharing scheme, which is the Shamir’s scheme [150]. In our proposed protocols,

the participating parties use the Shamir’s secret sharing scheme to generate distribute
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the shares of their secrets (i.e. trust values). They then perform their computations

on the shares of trust values, rather than on the trust values directly. Note that

our protocols work in a semi-honest (passive) adversarial model. In other words, we

assumed that the nodes in the network are honest-but-curious. In a passive adversarial

model, the participating parties act honestly and follow the protocols’ rules, but they

are curious to learn other parties’ private data.

We now discuss the complexity analysis of our proposed protocols. Recall that

there are n parties in each protocol. In Protocol 1, the distribution of shares (in step

4 and 5) takes two rounds of communication, each one with n�1 exchanges of shares.

Each party also performs a multiplication of its shares (in step 6 of Protocol 1) and

performs n � 1 additions. Note that for each multiplication one degree reduction is

carried out. Each degree reduction consists of two rounds of communication, and n

multiplication in total. Thus, in total O(n2) multiplication is carried out. Another

round of communication is carried out in step 7 of Protocol 1. In total, the complexity

of Protocol 1 is five rounds of communication and O(n2) multiplication of finite field

elements.

For Protocol 2, the parties distribute their secrets (i.e. trust values) in one round

of communication (in step 3 of Protocol 2). Then they carry out n�1 multiplications

of finite field elements. For each multiplication, one degree reduction (with two rounds

of communication and n multiplication) is carried out. This results in a computation

complexity of O(n2). One round of communication is also carried out in step 5 of

Protocol 2. In total, the complexity of Protocol 2 is three rounds of communication

and O(n2) multiplication of finite field elements.

The complexity of the network routing protocol (Protocol 3) depends on the com-

plexity of Protocol 1 and Protocol 2. Assuming there are r routes in a network and

each route has at most m nodes, the complexity of the proposed routing protocol is

O(r ⇥m) rounds of communication and O(r ⇥m ⇥ n2) multiplication of finite field
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elements, where n is the maximum number of participating parties in secure multi-

party computation. It should be noted that in general the route discovery problem in

a network has an exponential communication complexity [156]. However, in Protocol

3 we assume that the routes in the network are already given.

6.7 CONCLUSION

In this paper, we introduced a secure trust evaluation (STE) method. Our STE

method consists of two protocols that allow the nodes a network to securely evaluate

their trust in one another. The proposed protocols in our STE method use secure

multiparty computation (secure MPC) based on the Shamir’s secret sharing scheme

to guarantee the security and privacy of the parties private data. As an application,

we also proposed a secure network routing protocol that shows how our proposed

STE method can be used for improving network protocols.

Our proposed STE method can be used in di↵erent networks, for providing more

secure and trustworthy networks/services. Our STE method relies on the information

theoretic framework for modeling trust is a powerful trust model. As such, our

STE method captures other trust and reputation systems, e.g., the Beta reputation

system and the weighted average reputation model. Indeed, soft security measures

(e.g., trust and reputation mechanisms) can compliment hard security measures (e.g.,

cryptography and secure MPC) to provide more reliable and trustworthy network.
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CHAPTER 7

SECURE TRUST EVALUATION (STE) USING AGGREGATION OF

TRUST EVIDENCE

In this chapter we provide a secure trust evaluation (STE) technique based the aggre-

gation of trust evidence [166]. Our proposed STE can use any secret sharing scheme

and we used Shamir’s secret sharing scheme [150] as an example. Compared to the

previous work of [166], that uses two non-colluding third parties, our proposed STE

scheme does not rely on any third parties. That is to say, the parties in a trust and

reputation system (TRS) are considered as a peer-to-peer (P2P) network and can

evaluate their trust values in each other collaboratively.

7.1 INTRODUCTION

In the last couple of decades, numerous models and mechanisms have been proposed

for evaluating social mechanisms such as trust and reputation. These social mech-

anisms are believed to enhance the reliability and security of systems and services.

As such, they have been studied and applied in di↵erent areas and application do-

mains [90] including in Internet of Things (IoT) [74,167], cloud computing [84], C2C

e-commerce [177], social networks [151], wireless sensor networks (WSN) [75], peer-

to-peer (P2P) networks [1, 92, 163], vehicle-to-vehicle (V2V) networks [176], ad hoc

networks [14, 41] etc.

Social mechanisms such as trust and reputation are considered as soft security

measures that complement hard security measures [171]. In other words, using mech-

anisms such as trust and reputation alongside cryptographic techniques enables us
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to provide more trustworthy and reliable services and systems. While these mecha-

nisms altogether provide better security than what they provide solely, utilizing trust

and reputation mechanisms has its own challenges and opens up doors for other vul-

nerabilities [106]. For example, the cheating entities in trust and reputation systems

(TRS) can fake themselves as trusted entities or a group of entities can attack trusted

entities to take advantage of them. Another example is that the entities might not

be willing to participate in trust and reputation assessment due to the fear of retali-

ation [76, 106,132,144,147].

Secure multiparty computation (secure MPC) is a good workaround that can ad-

dress the above-mentioned challenges and relieve such vulnerabilities to some good

extent [76]. Secure MPC enables a group of (possibly untrusted) parties to evaluate

a public function on their private data without revealing their input data [166]. This

computational paradigm provides promising solutions for privacy-preserving compu-

tation and secure function evaluation (SFE). Secure MPC has already been utilized in

di↵erent application domains including in privacy-preserving trust evaluation [166],

secure trust evaluation (STE) [137] and other domains such as privacy-preserving

data mining [105], privacy-preserving scientific computation [57] etc.

Motivated by the applications of trust and reputation systems in di↵erent applica-

tion domains, in this article we use secure MPC and secure function evaluation (SFE)

techniques to provide a secure trust evaluation (STE) method. Our proposed STE

technique can be deployed in di↵erent internet-based applications such as Internet

of Things (IoT), cloud computing as well as other network-based systems to provide

more secure and trustworthy services.

7.1.1 Our Contribution

In this article we propose a secure trust evaluation (STE) technique that enables the

entities in a TRS system to securely assess their trust values in each other. More
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specifically, we use Shamir’s secret sharing scheme [150] to provide a STE technique

that enables a group of entities in a TRS system to securely evaluate their trust values

in each other without relying on other third parties. Our proposed STE scheme

is based on the aggregation (summation) of trust evidences and adapts the trust

evaluation approach of [166].

The STE technique that we propose provides a couple of improvements compared

to the schemes of [166]. First, the schemes of [166] use two non-colluding third parties

(i.e., servers) in order to preserve the privacy of the entities in the trust evaluation

system. Our proposed STE method is decentralized and does not rely on any sort

of third parties. In other words, in our STE scheme the parties involved in trust

evaluation securely evaluate their trust in each other without using any third parties.

An advantage of our STE technique is that as it is based on the summation of trust

evidences, it is a good candidate to be e�ciently implemented with secret sharing

schemes. Second, the schemes of [166] are based on Paillier encryption scheme [131],

thus they provide computational security. Our proposed STE scheme is based on

Shamir’s secret sharing scheme [150], thus provides information-theoretical security.

7.2 RELATED WORKS

Trust and reputation have been vastly studied and investigated in di↵erent appli-

cation domains. One of the early works on providing a computational model for

trust was done by Marsh [114]. After that, there has been various studies on trust

and reputation models and mechanisms [40, 74, 90, 121]. There are also numerous

surveys that have discussed di↵erent aspects of trust and reputation in various do-

mains, including in Internet of Things (IoT) [74, 167], cloud computing [40, 84], grid

computing [100], internet applications [71], social networks [151], intelligent trans-

portation system (ITS) [110], vehicular ad-hoc networks(VANETs) [176], mobile ad

hoc networks (MANETs) [41]. Briefly speaking, there are a couple of approaches
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for modeling the notions of trust and reputation. Some commonly-used approaches

for modeling trust include subjective logic [88, 89], fuzzy logic [113], entropy-based

models [156], Dempster-Shafer theory of evidence [56, 70,149,165].

While significant amount of works has been done on studying trust and reputa-

tion systems, previous works have rarely taken into account the security and privacy

of trust evidences during evidence aggregation and trust evaluation [166]. In what

follows we briefly review the works that are related to our work.

The authors in [137] used secure multiparty computation based on Shamir’s se-

cret sharing to propose secure trust evaluation techniques based on multipath and

referral chains trust propagation. Yan et al. [166] proposed two privacy-preserving

trust evaluation schemes. The proposed schemes use two non-colluding trusted third

parties and the Paillier homomorphic encryption scheme [131] to preserve the privacy

of the entities in trust evidence aggregation. In [12], the authors used the notion

of mailbox agents to propose protocols for privacy-preserving distributed reputation

systems. A distributed privacy-preserving reputation mechanism, called Malicious-k-

shares protocol, was proposed in [78]. The proposed machanism relies on the Paillier

homomorphic encryption scheme [131] to carry out reputation computation in a de-

centralized approach.

The authors in [125] proposed the 3PRep protocol, which is the privacy-preserving

version of the P2PRep reputation system [13]. The 3PRep protocol uses the Paillier

homomorphic encryption scheme [131] to enhance the entities privacy in the P2PRep

system. Pavlov et al. [132] used secret sharing schemes, e.g., the Pederson secret

sharing [133], to preserve the privacy of the entities in decentralized additive repu-

tation management systems. The researchers in [77] proposed the k-shares protocol.

The k-shares protocol relies on the protcol of [132], but has a smaller communication

complexity. Gudes et al. [73] used secure summation [132] and secure dot prod-

uct [11] techniques to compute the reputation of entities in reputation systems in a
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privacy-preserving manner.

7.2.1 Privacy-Preserving Trust Evaluation Schemes of [166]

In [166], the authors proposed two privacy-preserving trust evaluation (PPTE) schemes

that allow a node in a network to calculate its trust value in another node without

revealing their trust values. In this section we briefly review the overall idea of the

proposed schemes and how they work. Since the two schemes of [166] are similar and

have minor di↵erences, we briefly review their main idea in the computation part of

trust evaluation.

The proposed PPTE schemes [166] consider a period of J time slots (which are

represented by t = {t1, t2, ..., tJ}). The idea is that first the aggregation of trust

evidences is calculated in each time slot (see equation 7.1). Then these aggregated

trust evidences are fed into a trust evaluation function which produces the final trust

value (see equation 7.2). The schemes, however, carry out the computation in a

privacy-preserving fashion. To do so, they rely on the Paillier homomorphic encryp-

tion scheme [131] and use two trusted third parties (i.e., servers): an Authorize Proxy

(AP) server and Evaluation Party (EP) server. The AP server is responsible for ac-

cess control and managing collected trust evidences. The EP server, on the other

hand, is responsible for processing and doing computation on the trust evidences. In

particular, EP performs computation on encrypted data which were encrypted using

AP’s public-key for homomorphic encryption (i.e., HPKAP). Figure 7.1, equation 7.1

and equation 7.2 demonstrate how to idea of trust evaluation using the aggregation

of evidences works.

In the schemes of [166], the aggregation of trust evidences is carried out using the

Paillier homomorphic encryption scheme [131] by the AP and EP servers [166]:

Enc
n
HPKAP , tej(y)

o
=

NjY

i=1

Enc{HPKAP , te(zi, y)}. (7.1)
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Figure 7.1: Aggregation of Trust Evidences using two Trusted
Third Parties, i.e., AP and EP (the proposed model in [166])

wherein tej(y) =
PNj

i=1 te(zi, y) denotes the aggregation of trust evidences in the

j-th time slot. te(zi, y) denotes the trust evidence provided by node zi about node y.

Moreover, Nj indicates the number of provided trust evidences (also the number of

evidence providers) in the j-th time slot.

When a node (e.g., node x) wants to evaluate its trust in another node (e.g., node

y), node x first asks the EP server for trust pre-evaluation. EP then collects trust

evidences about node y from trust evidence providers (i.e., nodes zi). The evidence

provider nodes (e.g., nodes zi, for i = 2, ..., Nj) encrypt their trust evidences using

the public key of the AP server (i.e., HPKAP) and send the results to the EP server.

EP calculates the summation of the evidences by multiplying the encrypted trust

evidences (see equation 7.1). Since the schemes use the Paillier encryption scheme

[131], which is an additive homomorphic encryption scheme, the multiplication result

is an encryption of the summation of trust evidences. After finding the summation of

trust evidences, EP sends the result along with the statistics of trust evidences sj(y)

(e.g., the number of evidences Nj) to the AP server. AP then checks node x’s access

control and verifies whether node x’s secret key is valid. If node x is eligible to get

the result, AP first decrypts the result. AP then re-encrypts the result with node

x’s public key and sends the result along with the statistics of trust evidences (e.g.,
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the number of evidences) to node x. Finally, node x decrypts the result and gets the

summation of trust evidences.

By having the aggregation of trust evidences, node x can then use a trust evalu-

ation function to calculate its trust value in node y. The trust evaluation function of

[166] is given in equation 7.2. The inputs of this function are as follows. Tv0(y) denotes

node x’s personal (direct) trust in node y. Moreover, te(y) denotes the set of aggre-

gated trust evidences in all J time slots. That is, te(y) = {tej(y)|j = 1, ..., J} where

tej(y) =
PNj

i=1 tej(zi, y) for j = 1, ..., J . Furthermore, s(y) = {sj(y)|j = 1, ..., J}

represents the set of all statistics of trust evidences about node y, where sj(y) is

the statistics of trust evidences at time slot tj (e.g., the number of collected trust

evidences Nj). Lastly, tc denotes the evaluating time (i.e., the time whereat trust

evaluation is performed) [166].

Tv(y) = F (Tv0(y), te(y), s(y), tc)

= ↵⇥ Tv0(y) + � ⇥ 1

S

JX

j=1

✓(sj(y))⇥
tej(y)

sj(y)

⇥ (1� |tej(y)
sj(y)

� Tv0(y)|)⇥ e�
|tj�tc|2

⌧

(7.2)

where the weight parameters ↵ and � are defined as � = ⌘

J

P
J

j=1(1 � | tej(y)
sj(y)

�

Tv0(y)|) and ↵ = 1��. Moreover S =
P

J

j=1 ✓(sj(y))⇥(1�|
tej(y)
sj(y)
�Tv0(y)|)⇥e�

|tj�tc|2

⌧ .

Further, ⌘ is a parameter for adjusting the contribution of collected trust evidences.

The function ✓ is the Rayleigh cumulative distribution function which is defined as

follows [166]:

✓(I) = 1� exp(�I2/2�2) (7.3)

wherein � > 0 is a parameter which adversely governs how the number I influences

the increment of ✓(I).
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In summary, the schemes of [166] use the Paillier sncryption scheme [131] and rely

on two non-colluding trusted third parties (i.e., the AP and EP servers) in order to

enable node x to evaluate its trust in node y in a privacy-preserving fashion. The

summation of trust evidences is calculated using equation 7.1 by the two servers and

is handed out to node x along with the statistics of trust evidences (e.g., the number

of collected trusted evidences). Node x then uses equation 7.2 to calculate the final

trust value about node y.

7.3 SECURE TRUST EVALUATION USING AGGREGATION OF

TRUST EVIDENCE

The proposed schemes of [166] use two trusted (semi-trusted) non-colluding servers

(i.e., AP and EP servers) that perform trust evaluation in a privacy-preserving fash-

ion. While this approach preserves the privacy of the nodes to a good extent, in

reality finding such two non-colluding parties might not be easy. In particular, since

such two third parties need to communicate in the setup phase in order to exchange

their cryptographic keys, they can also simply reveal nodes’ trust evidences to each

other and violate nodes’ data privacy. In fact, in most cases it might be in the two

parties best interest to reveal nodes’ data to each other.

Secure multiparty computation (secure MPC) based on Shamir’s secret shar-

ing [150] provides promising solutions for secure function evaluation (SFE), e.g., se-

cure trust evaluation (STE). This approach of secure trust evaluation has two main

advantages. First, there is no need for the two trusted third parties (i.e., the AP

and EP servers). In other words, the nodes in a trust evaluation system can evaluate

their trust in each other by themselves and without relying on any third parties. Sec-

ond, secure trust evaluation based on Shamir’s secret sharing provides information-

theoretical security, whereas the schemes of [166] provide computational security.

However, it should be mentioned that these improvements are achieved at the cost
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of more communication (which is created as a result of using secret sharing schemes

rather than relying on homomorphic encryption techniques).

7.3.1 The Proposed Secure Trust Evaluation Technique

In this section we propose a secure trust evaluation (STE) technique that enables

the entities in a TRS system to securely evaluate their trust in each other without

relying on any third parties. More specifically, we use secure multiparty computation

based on Shamir’s secret sharing [150] to securely evaluate the aggregation of trust

evidences and the trust evaluation function.

Our STE method works as follows. We consider a general trust evaluation system

and treat it as a network (of nodes). Examples of such networks can be online social

networks, networks of IoT objects, nodes in a wireless sensor network etc. We assume

that there are two nodes x and y, where node x is interested in evaluating its trust

in node y. In other words, node x wants to find out how trustable node y is. In order

to measure the trust value of node x in node y, similar to the approach of [166] we

consider J time slots. In each time slot tj, for j = 1, ..., j = J , node x asks other

nodes, who had interactions with node y in the past, to provide their trust evidences

about node y. The evidence provider nodes are represented by zi for i = 2, ..., n.

Figure 7.2 shows nodes x, y and zi’s in a trust evaluation system, where node x wants

to assess the trust value of node y and nodes zi’s, for i = 2, ..., n, are the evidence

provider nodes.

Node x can get the trust evidences from nodes zi and evaluate its trust in node

y using equation 7.4 and equation 7.2. However, nodes zi’s are not willing to reveal

their trust values about y. Our proposed STE method enables node x and nodes zi

to collaboratively evaluate its trust value in node y in a secure way.

tej(y) =

NjX

i=1

te(zi, y) (7.4)
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Figure 7.2: Aggregation of Trust Evidences without any Trusted
Third Parties (our proposed model)

In order to securly evaluate the trust of node x in node y, nodes x and nodes

zi, for i = 2, ..., n, use Shamir’s threshold secret sharing scheme [150] to generate

and exchange the shares of their trust values among themselves. For the sake of

simplicity, we assume that x = z1 and other evidence provider nodes are represented

by zi for i = 2, ..., n, where n can be any positive integer which denotes the number

of evidence provider nodes.

After exchanging the shares of trust evidences, node x and each node zi, for i = 2,

..., n, adds up their shares locally. Nodes zi, for i = 2, ..., n, then send their result

to node x. Finally, node x performs a Lagrange interpolation on the received shares

and gets the summation of trust evidences. After calculating the summation of trust

evidences, node x uses equation 7.2 to calculate its trust in node y. Protocol 4 shows

the step-by-step procedure of our proposed STE method.

7.4 COMPLEXITY ANALYSIS

In this section, we provide the security and complexity analysis of our proposed secure

trust evaluation (STE) technique.

The security of our STE technique relies on secure MPC based on Shamir’s secret

sharing scheme [150]. Secure MPC enables a group of parties to securely evaluate a

public function on their private data while the parties do not reveal their inputs to

82



Protocol 4: Secure Trust Evaluation using Aggregation of Evidences

Require: Trust evidences {te(z1, y), te(z2, y), ..., te(zn, y)}.

Ensure: Calculates Tv(y) (i.e., trust value of node x in node y) using secure

MPC based on Shamir’s secret sharing scheme [150].

1: Let te(y) {}; and s(y) {};

2: for j = 1 to J do
3: Each party zi, for i = 1, ..., Nj, uses the Shamir’s secret sharing scheme

to generate the shares of its input te(zi, y). Party zi selects a polynomial

as follows:

fi(x) = te(zi, y) + ai,1x+ ai,2x
2 + ...+ ai,t�1x

t�1.

where te(zi, y) is the trust evidence provided by node zi about y.

4: Each party distributes the shares of its input among all the parties. The

share-exchange matrix (wherein party zi generates the i-th row and

receives the i-th column) is as follows:

Ef =

2

66664

f1(1) f1(2) . . . f1(Nj)
...

...
. . .

...

fNj(1) fNj(2) . . . fNj(Nj)

3

77775

5: Party zi, for i = 1, ..., Nj, performs the following computation:

erj,i(y) =

NjX

k=1

fk(i).

where fk(i) is the share of te(zk, y) that party zi has received from

party zk. Moreover, erj,i(y) means the share of party zi from the

aggregation of trust value tej(y) =
P

n

k=1 te(zk, y) in time slot tj.

end
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6: for j = 1 to J do
7: Each party zi for i = 2, ..., Nj sends its result of the computation in the

previous step to party x (i.e., party z1).

8: Party x uses Lagrange interpolation to obtain the aggregation of trust

evidences in the j-th time slot (i.e., tej(y)):

tej(y) =

NjX

i=1

(

NjY

k=1
k 6=i

k

k � i
⇥ erj,i(y))

te(y) te(y) [ {tej(y)}; and s(y) s(y) [ {sj(y)}.

end

9: Party x uses his trust evidence Tv0(y), statistics s(y), the set of all

aggregated trust evidences te(y) and evaluating time tc to obtain

the final trust value using the trust evaluation function F [166]:

Tv(y) = F (Tv0(y), te(y), s(y), tc)

= ↵⇥ Tv0(y) + � ⇥ 1

S

JX

j=1

✓(sj(y))⇥
tej(y)

sj(y)

⇥ (1� |tej(y)
sj(y)

� Tv0(y)|)⇥ e�
|tj�tc|2

⌧
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each other. Briefly, in secure MPC based on Shamir’s secret sharing scheme, each

party selects a polynomial with random coe�cients and put his secret input as the

constant term of the polynomial. Each party then generates the shares of his secret

by evaluating his polynomial on di↵erent points and distribute the generated shares

among the parties. To evaluate a function on the parties’ secret inputs, the parties

perform the function evaluation on the shares of the secret inputs. Finally, the parties

perform a Lagrange interpolation on their updated shares and get the function value

(output). Since the shares of secret values are completely random numbers and the

computations are performed on the shares of inputs, no private data is revealed during

the computation. Secure MPC based on Secret sharing is a well-known technique for

secure function evaluation and it has been utilized in many application domains.

Our proposed protocol consists of J time slots (which are represented by t =

{t1, t2, ..., tJ}). In each time slot, the nodes (participating parties) use Shamir’s secret

sharing scheme [150] to securely evaluate a node’s trust value (e.g., node x) in another

node (e.g., node y). As such, the round complexity of our STE technique is J rounds.

In time slot tj, where j = 1, ..., J , there are Nj nodes (parties) that participate in

trust evaluation. In each time slot, the nodes cooperatively calculate the aggregation

(summation) of their trust evidences. For each summation the nodes use the addition

gate of secure MPC based on Shamir’s secret sharing. Therefore, in total,
P

J

j=1 Nj

addition operations are required for calculating the summation of all trust evidences

in all J time slots. It should be mentioned that the evaluation of the trust function

(i.e., function F in equation 7.2) is performed by node x on node x’s computational

device.

7.5 CONCLUSION

Trust and reputation are social mechanisms that can increase the security and trust-

worthiness of internet-based and network-based services and systems. These measures
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have been vastly studied and utilized in di↵erent areas and application domains. In

spite of that, previous works have rarely considered the privacy of entities involved

in trust and reputation systems (TRS). In this article, we proposed a secure trust

evaluation (STE) technique using secure multiparty computation based on Shamir’s

secret sharing scheme. The proposed technique is based on the aggregation (summa-

tion) of trust evidences. It enables the nodes in a TRS system to securely evaluate

their trust in each other without revealing their trust values and without relying on

any trusted third parties.
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CHAPTER 8

CONCLUDING REMARKS

Secure multiparty computation (secure MPC) is a branch of modern cryptography

that has attracted significant attention during the last couple of decades. In this

dissertation we focused on di↵erent approaches for secure computation, namely fully

homomorphic encryption (FHE) and secret sharing schemes.

In particular, we studied fully homomorphic encryption schemes based on the

LWE [142] and RLWE [109] problems and provided a C++ implementation of the

ring variant of a third generation FHE scheme, called the approximate eignevector

method (a.k.a., the GSW scheme) [67] ( [58] and [38]). We utilized our implementation

for homomorphic evaluation of pseudorandom functions (PRFs), that can be used for

improving other secure MPC protocols such as the SPDZ protocol and compiler [53].

Furthermore, we provided several novel protocols for secure trust evaluation (STE)

[137]. Our proposed STE protocols, which are based on Shamir’s secret sharing

scheme [150], can be used for improving trust and reputation systems (TRS).

As secure computation becomes a reality in the digital era, we hope our research

can contribute to this interesting area of research and can be utilized in technolo-

gies that rely on secure computation. Particularly, our proposed FHE-based con-

structions and secure protocols can be used for providing more secure and robust

data/computation infrastructures.
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