
Sizing Maintenance Tasks for Web Applications  

Harry M. Sneed Shihong Huang 
Anecon GmbH Computer Science & Engineering 
Vienna, Austria Florida Atlantic University 

Harry.Sneed@t-online.de shihong@cse.fau.edu 

Abstract 
Web applications are fast becoming the new legacy 
systems of today. While there is considerable similarity 
between traditional software systems and Web-based 
systems, there are also significant differences between 
them. One area that illustrates this dual nature is cost 
and effort estimation. There exists a mature body of 
knowledge for performing such estimates on traditional 
software systems, but such methods may not appear to be 
directly applicable to Web applications. This paper 
presents an effort estimation technique for maintaining a 
large-scale Web application by measuring and tracking 
the size and complexity of the Web-based system. 
Specifically, a combination of function-points and static 
impact analysis is used, tracing the change requests to 
different components of the Web application, and then 
measuring their size and complexity to aid the cost 
estimation for that particular change request based on 
function point productivity measurements. To illustrate 
the use of this technique, a case study from a real-world 
industrial product is presented. 

Keywords: software maintenance, metrics, Web size 
measurement, cost estimation, impact analysis, Web  

1. Introduction 

Financial institutions in Central Europe are under 
strong pressure to reduce their costs while at the same 
time increasing their services and fulfilling more legal 
requirements such as the Basel-II convention. On top of 
that, many banks have been merged together and have 
acquired subsidiary banks in Eastern Europe. 
Globalization now gives them the opportunity to have 
their development made either on site or to have it made 
by their subsidiary companies in Eastern Europe. 

Since the cost of labor differs greatly from more 
than €800 per person day in Austria to less than €100 per 
person day in Romania, the IT managers are now faced 
with the question of where they should have their IT 

systems maintained. They can choose between many 
sites. To help them in making this decision, they need to 
know the productivity of the different development 
groups and the size of the tasks to be performed. This 
way, they can decide whether it is more cost effective to 
develop and maintain their applications at the central 
office in Vienna or to move development and 
maintenance off to a subsidiary company in Prague, 
Warsaw, Budapest or Bucharest. The goal is to have 
applications developed, and maintained there where it is 
most cost effective to do. However, the question of cost 
effectiveness is not an easy one to answer, since there are 
many related issues such as productivity, quality, and the 
nature of the applications involved. 

1.1 Maintenance vs. Development 

In sizing software tasks, one must distinguish 
between development and maintenance. It is one thing to 
develop a new system from the requirements specified 
by the bank analysts and another to maintain an existing 
system based on the user error reports and change 
requests. If the requirements are not specified with 
sufficient detail, then users, analysts, developers, and 
testers have to be in close and constant contact with one 
another, as advocated by the proponents of agile 
development, meaning they have to be in the same 
proximity. This can inhibit outsourcing [20]. 

In the case of maintenance projects, the application 
exists in the form of software artifacts (e.g., code, 
documentation, and test cases). The maintainers have to 
be able to understand the error reports and the change 
requests and to link them to the software artifacts. The 
communication between users, analysts, and maintainers 
is much more formalized. Therefore, maintenance 
projects can be more easily outsourced to remote 
locations. In this case, the maintenance personnel would 
only have to understand German language comments, 
documents, error reports, and change requests. 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

1.2 Maintenance Cost Factors 

In outsourcing software maintenance, the question 
arises as to how much the maintenance work will cost. 
This raises two important issues: (1) what is the scope of 
the maintenance tasks, and (2) what is the productivity of 
the maintenance personnel? 

To answer the first question, one must know the size 
of the application in terms of some unit of measure of 
which there many candidates, among them lines of code, 
statements, function-points, object points, use-case 
points, etc. The literature on software measurement is 
abundant with alternative measures of software size [12]. 
Since the complexity and quality of software have a 
definite effect on the maintenance effort, these two 
factors should also be considered in adjusting the size of 
the application system. 

To answer the second question, one must know how 
productive the maintenance team is in terms of effort per 
size unit for each type of maintenance task. In software 
maintenance, there are at least two different maintenance 
task types: (1) corrective maintenance (error 
corrections), and (2) adaptive and perfective 
maintenance (changes) [10]. 

For both types, it is necessary to associate the hours 
worked with the size of the domain affected by the task. 
This requires data to be collected on the number of hours 
spent on correcting errors, the number of errors 
occurring and the impact domain of those errors as well 
as the numbers of hours spent on making changes, the 
number of changes made, and the impact domain of 
those changes. Collecting such data requires not only an 
error tracking and change management system, but also a 
precise time accounting system to be in place over a 
longer time period. It is not something that can be done 
within a short time frame [4]. 

1.3 Project Objectives 

The goal of the project was restricted to measuring 
the size of existing web applications and to finding a 
method of predicting the impact domain of a particular 
maintenance task (i.e., error correction or change 
request). In accordance with the goal / question / metric 
approach advocated by Basili, this lead to two questions: 
(1) how many size units does the software system have, 
and (2) what proportion of those size units are affected 
by a given maintenance task [6]. 

To answer the first question, one needs to apply one 
or more sizing metrics. To answer the second question, 
one has to measure the size of the impacted domain. 
Thus, two metrics are required: (1) a size metric, and (2) 
an impact metric. These two metrics are discussed in the 
Sections 2 and 3, respectively. 

2. Measuring Web Application Size 

While there is considerable similarity between 
traditional software systems and Web-based systems, 
there are also significant differences between them. One 
area that illustrates this dual nature is cost and effort 
estimation. There exists a mature body of knowledge for 
performing such estimates on traditional software 
systems, but such methods may not appear to be directly 
application to Web applications. Section 2.1 below 
summarizes such of this related work. 

As with traditional software systems, there are 
several ways to measure the size of Web applications. 
Sections 2.2-2.4 discuss three specific techniques: 
function points, statements, and object points. Section 
2.5 describes how the measurements resulting from these 
techniques are normalized and used for measuring Web 
application size. 

2.1 Related Work 

There is some research on cost estimation models 
for Web applications, such as the COBRA model [24]. 
To have an appropriate cost estimation for web 
applications, one must have an accurate assessment of 
the size of the software system. Web-based applications’ 
unique features require new size metrics to accurately 
represent the effort involved in projects, since the 
traditional approaches such as LOC and FPs may not 
apply. Therefore, some size metrics tailored for Web 
development have emerged, such as object points, 
application points, and multimedia points [11]. 

Some sizing methods are based on existing software 
size measurement. For example, Candido et al use a 
simplified function point based on IFPUG (International 
Function Point User Group) and NESMA (Netherlands 
Software Metrics Association) to estimate the size of 
application developed in PHP, HTML, Java, and 
MySQL. In [1], the authors evaluated a functional size 
measurement called OO-Method Functional Points for 
the Web (OOmPFWeb) and shown that OOmPFWeb can 
improve function point counting. 

Reifer [23] developed a new sizing metric called 
Web Objects, and an adaptation of the COCOMO II 
model called WebMo to accurately estimate Web-based 
software development effort and duration. Based on over 
40 projects, the author reports that WebMo is quite 
useful for quick-to-market development efforts. 

2.2 Measuring Size in Function Points 

User are often convinced by consulting companies 
that function points are the universal measure of 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

software size. There are, however, many problems with 
the function point sizing method.  One problem is that 
there are many variations which claim to be counting 
function points, but are all counting something quite 
different, including the original Albrecht method [3], the 
official IFPUG method [16], the Mark II method [27], 
the COSMIC full function- point method [2], the IBM 
Germany function-point method [22] and the fast 
function-point method [18]. It seems there are almost as 
many function-point counting methods as there are 
organizations counting function-points. 

Another problem is that function-point advocates 
claim that the method is independent of the information 
technology used, which it never was. Therefore, the 
count will differ depending on the type of database and 
data communication systems employed. Web-based 
systems will exhibit another function-point count that is 
different than client/server systems or monolithic 
mainframe systems. Normalized relational databases will 
render more function points than hierarchical file 
systems. The definition of what is an input and what is 
an output is influenced by the technical environment that 
an application is running in. 

2.3 Measuring the Size in Statements 

In light of the problem with function points 
described above, counting statements (in addition to 
function points) is seen as a wise choice. Statements are 
arguably a better measure for sizing software than lines 
of code because in the era of modern text editors, a line 
does not mean anything. Lines can vary from 72 to 720 
characters. It is a question of the editor and the 
programming style how many lines there will be. With 
modern languages such as Java, JSP, XML and XSL 
lines tend to be particularly long with many elements and 
statements on one line. With older programming 
languages there are often many lines per statement such 
as with complex if-statements in COBOL. Therefore, 
lines of code are a highly unreliable measure of software 
size, despite the coincidental correlations which some 
researchers have found between lines of code and 
program complexity [13]. 

Statements can, on the other hand, be defined as 
syntactical units in terms of the language used. C-type 
languages have statements that end with a semicolon or 
with a sweeping bracket as with a function or method 
definition. There are some exceptions to this rule (e.g., 
macros), but these exceptions can be managed. XML-
type languages have statements that begin and end with 
paired tags. Thus each end tag like </name> can be 
counted as a statement. 

2.4 Measuring Size in Object Points 

Some years ago, one of the authors introduced the 
object-point method for sizing object-oriented systems 
based on weighted counts of the object model [26]. The 
units of measure are classes, interfaces, attributes, 
methods and associations. Classes are weighted 4, 
interfaces 3, associations 2 and attributes 1. Methods are 
weighted from 1 to 5, depending on the complexity of 
their flow graphs, i.e. McCabe metric [19]. 

In the case of relational databases, each table is 
counted as a class and each foreign key and index as an 
association. In the case of XML data structures, data 
types are counted as classes whereas the data elements 
are counted as attributes. This method has proven to be 
very stable in measuring the code of existing, object-
oriented applications and corresponds well to the number 
of statements. 

Since function-points are intended to measure the 
communication between an application system and its 
environment, whereas object-points are intended to 
measure the architecture of a system, these two size 
measures will not always correlate. In fact, they seldom 
do. By using both of them, the user is given two 
independent size measures: (1) one for the system 
communication, and (2) one for the system architecture. 

Statement counts tend to correlate with object-point   
counts, except in cases where the methods are 
particularly large. This happens quite frequently when 
programmers are working in a procedural mode. To 
balance this off, the statement count should also be used 
as an indicator of code size. 

2.5 Normalizing the Raw Size Measures 

The counts described above give the raw size of a 
system independently of the complexity and quality of 
that system. However, as is known from the literature, 
both complexity and quality have an effect on the 
maintenance effort [5]. Therefore, the raw size of a 
system should be adjusted by both measures. It goes 
beyond the scope of this paper to deal with all of the 
possible complexity and quality measures. In this 
project, eight complexity attributes and eight quality 
attributes were used. 

The complexity attributes used were class hierarchy, 
data usage, data flow, interface, control flow, coupling, 
cohesion, and language complexity. All of them were 
normalized to a rational scale of 0 to 1 with 0.5 as the 
median complexity as recommended by the ISO standard 
9126 [17]. The complexity of a given component is the 
average complexity of the eight different normalized 
metrics. (See Sample 1.) 

 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

To adjust the raw size of a system by its complexity, 
the actual complexity, e.g. 0.6, is divided by the median 
complexity 0.5, giving for example a multiplication 
factor of 1.2. 

 Complexity_Adjustment_Factor  =  
Actual_Complexity 

Median_Complexity  
If the complexity is low, say 0.4, the adjustment factor is 
0.8. Multiplying the raw size by the adjustment factor 
will give the adjusted size of the software. If the raw 
count of function points is 1000 and the complexity 
metric is 0.6, the adjusted size will be 1200 function-
points. 

 Quality_Adjustment_Factor  =  
Median_Quality 

Actual_Quality  
The quality attributes used were modularity, 

portability, flexibility, testability, reusability, readability, 
conformance, and maintainability. These too were 
normalized to a rational scale of 0 to 1 with 0.5 as the 
median complexity. The quality of a given component is 
the average quality of the 8 different normalized metrics. 
(see Sample 2) 

 
To adjust the raw size of a system by its quality, the 

median   quality of 0.5 is divided by the measured 
quality, e.g. 0.6, giving for example a multiplication 
factor of 0.8. 

 Quality_Adjustment_Factor  =  
Median_Quality 

Actual_Quality  
If the quality is high, say 0.6, the adjustment factor 

is 0.8. Multiplying the raw size by the adjustment factor 
will give the adjusted size of the software. If the raw 
count of function points is 1000 and the quality metric is 
0.6, the adjusted size will be 800 function-points. 

 Adjusted_Count = Raw_Count  · _  (  
Actual_Complexity 

Median_Complexity 
)  

 

3. Measuring Web Maintenance Impact 

In maintenance it is not enough to know the size of 
the system being maintained. One must also know which 

portion of the system is being affected by the change. To 
answer that question, it is necessary to know which 
entities of a system are affected down to a very low level 
of granularity and to measure the size and complexity of 
those entities. This is referred to as impact analysis [7]. 

3.1 Identifying Elementary Software Entities 

In procedural systems, the lowest-level entities are 
the procedures, which in C are functions, in PL/I are 
procedures, in FORTRAN are subroutines, and in 
COBOL are paragraphs. To them must be added the 
variables they use and the files, masks, and database 
entities they access. 

In object-oriented systems, the lowest-level entities 
are the methods and attributes of classes, as well as the 
interfaces through which the methods are accessed and 
the files and databases, which the methods access. 

In web-based systems, elementary entities are the 
widgets of the web pages and the operations of the web 
services, together with the procedures that are embedded 
in the page definitions, as is the case with Java Script. 
These web-specific entities are combined with other 
object-oriented entities to form a complex network of 
interacting, interdependent units of code. 

3.2 Tracing Source Entity Relationships 

Since software entities are highly interrelated, 
changing any one entity will have an effect on all its 
dependent entities. Therefore, these relationships have to 
be identified and stored for tracing. In procedural 
programs, there are two basic interdependencies between 
separate procedures: (1) the sharing of common data 
attributes, and (2) the calling of other procedures. 

To trace these dependencies, one must store all of 
the procedure calls, giving the caller, the callee and the 
parameters, as in: 

<calling_procedure><called_procedure><parameters> 
as well as all of the common data usages, giving the user, 
the used data, and the usage type, input, output, ID: 

<using_procedure><used_data_group><usage_type> 
In object-oriented systems, there are three basic 

interdependencies: (1) inheritance, (2) association, and 
(3) sharing of common attributes. Classes are dependent 
on higher level classes in so far as they inherit methods 
and attributes from them: 
<inheriting_class><inherited_class><overriding_parameters> 

Methods are dependent on other methods within the 
same class or class hierarchy, if they share the same data 
attributes. This gives the dependency 

<using_method><used_data_attribute><usage_type> 
A further type of entity to be found in the source 

that is often neglected by the research community is the 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

database. Database tables are defined in the data base 
schemas, e.g. in the create table SQL declarations. A 
table declaration will give the table name, the names and 
types of attributes, the key names and the index name. 
Data base tables will refer to one another. This gives the 
relationship: 

<base_table><target_table><connecting_key> 
Besides that, methods access database tables. So 

when analyzing the source, it is necessary to recognize 
database access operations. These relationships should 
be stored together with the database relationships. They 
are of the type: 

<target_table><accessing_method><access_type> 
Finally, there are file type entities defined by a DTD 

or XML schema. These schema descriptions are kept in 
separate libraries and are connected to the physical files 
by the schema name. Every file name will be associated 
with one or more schema names, thus giving the 
relationship 

<schema><file><file_type> 
As is the case with database tables, there are 

methods or procedures which access the files described 
by the schemas. When parsing the source code, it is 
possible to recognize file operations. These methods to 
file relations should be extracted from the source and 
stored as tuples, together with the database access 
relationships: 

<file><accessing_method><access_type> 
In web-based systems, some additional 

dependencies are added to the conventional ones. There 
are four additional dependencies: (1) XML data types, 
(2) templates, (3) Web pages, and (4) Web services. 

In XML, any data element of one type can refer to 
another data type, giving a type relationship. This 
relationship can be conditional or non-conditional, e.g. 

<referring_type><referred_type><reference_condition> 
Template dependencies occur when a style sheet 

contains a template and when a template contains 
another template as depicted by the tuple: 

<base_template><target_template><conditionality> 
Web pages are implemented as either HTML forms 

or XSL style sheets. Both contain templates to define the 
layout of their data presentations. Any one webpage will 
be related to one or more templates with the relationship: 

<webpage><template><conditionality> 
Web service dependencies are a chain of 

dependencies. Operations have inputs and outputs, inputs 
and outputs are messages, and messages have data types. 
Operations in the web service interface are also methods 
in some server class. Thus, an entity type is required: 

<base_type><base_entity><target_type><target_entity> 
 

Operation Input & Output 

Input Message 

Output Message 

Message Type 

Type Type 

 
Web services have to be traced from the operation 

name to the name of a method or interface within the 
server source. In addition, they have to be traced from 
the message to the data types that represent that message. 
It is imperative to first extract the data type relations 
from the schema descriptions and the methods from the 
server source before processing the web services. 

3.3 Tracing Error Reports and Change Requests 

All of the entities and relationships outlined above 
can be extracted from the source code. However, there 
are entities outside of the software itself, namely the 
error reports and the change requests that are actually 
requirements. As such, they need to be stored and 
processed in the requirements management system. The 
requirements, including their error reports and change 
requests, will have their own structure and their own 
ontology. The entities are the names of artifacts 
perceived by the user, namely interfaces and reports. 

Other applications that use this system see the 
import and export files and the web service interface 
offered. Thus, any change request or error will refer to 
an entity perceived by the end user or the using system. 
These are in total the user interfaces (e.g. web pages with 
links), the reports, the import/export files, and the web 
services. 

In making an error report or a change request, it is 
up to the initiating user to relate his or her requirement to 
an existing entity, which could be any of the four user 
entities listed above. The user will want to change or 
correct a user interface, a report, an import/export file, or 
a web service. 

Since these entities are also among the source 
entities, they represent a union of the set of user entities 
with the set of source entities. 

Change request -> UserInterfaces ^  Webpages 

Reports  <=   Files 

Imports / Exports <=   (Files & 

Databases) 

WebServices <= Web Service 

Descriptions 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

Once a link has been established from the user 
request to some user entity to the top-level source entity, 
it is then only a question of searching through all of the 
related source entities to identify which entities can be 
affected by the change. In so far as each source entity 
has been analyzed, it will have at least two size 
measurements in the metric table: (1) in function points 
or object points, and (2) in statements. The size of the 
impact domain is then the sum of these sizes of all of the 
source entities affected by that change. 

     Impact size = Sum {Source.Entty_Size} 
Not the size of the system as a whole but the size of 

the impact domain is used to estimate the costs of a 
maintenance task. If several such tasks are being 
performed at one time, when preparing a new release, 
then the impact domain is the super set of all entities 
impacted by the various error corrections and changes. 

Since maintenance estimates must be both quick and 
cheap, the impact analysis must be automated and 
combined with the component sizing activities.  

4. A Case Study: Measuring the Size of a 
Web Application at an Austrian Bank 

This two section of the paper presents a case study 
of a project launched in the summer of 2006 to measure 
a web application in a Viennese bank. One of the authors 
was assigned the task of coming up with at least two 
independent size measures (including function points.) 
The objects of measurement were: 

• C++ sources in the backend library 
• Java sources in the front end library 
• SQL sources in the data base library 

and in the web library: 
• XML sources for the web pages 
• XSL sources for the templates 
• XSD sources for the data schemas 
• WSDL sources for the web services 

4.1 Measuring C++ and Java Sources 

The first three source types (C++, Java, and SQL) 
could be analyzed independently from one another. For 
this, the author already had source analyzers from 
previous projects, which have also been described in 
previous papers [25]. The source analysis tools, 
C++Audit and JavAudit, parse the source to identify and 
count classes, methods, attributes interfaces and foreign 
method calls. This gives the object points. In addition, 
the statements are counted. 

Counting function-points in C++ and Java Code is 
done by recognizing file operations and report writing. 
The file operations are weighted from 3 to 6 or from 4 to 

7 depending upon whether the file is read from or written 
to. The complexity level is determined by the complexity 
rating of the source member as a whole, thus deviating 
somewhat from the IFPUG counting rules which 
determine the weight of a file depending on the number 
of individual data elements (DETS) and the number of 
data groups (RETS). Reports are considered to be 
outputs and are weighted from 4 to 7. (See Samples 3 & 
4)  

 

4.2 Measuring SQL Services 

Counting function-points in the SQL schemas is 
done in a different manner. Database tables have to be 
classified as either internal or external. Internal files 
should be weighted from 7 to 15 depending on the 
number of attributes (DETS) and data groups (RETS). 
External files that serve to transport data from one 
system to another are weighted from 5 to 10. Since 
normalized tables have no data groups, the author 
decided to count the number of indexes for each table to 
give the RETS. This is not exactly in accordance with 
the IFPUG counting rules, but one must realize that the 
function-point counting methods prescribed by the 
IFPUG are rather dated. However, if the customer insists 
on counting them, then it must be done, so whoever 
counts them must come up with individual 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

interpretations. For distinguishing between internal and 
external files, the user had to prepare a special parameter 
table, since this could not be recognized in the source. 

Counting object points and statements in SQL is a 
rather straightforward matter. Tables are counted as 
classes and attributes as attributes. Foreign keys are 
interpreted as associations. Thus, a table with 10 
attributes and one foreign key has an object point count 
of 4 + 10 + 2 = 16. Statements are counted as each 
attribute, key, index, table and name space declaration, 
ending with a closed parenthesis, a comma or a 
semicolon. (See Sample 5.) 

 

4.3 Measuring XML Sources 

For measuring XML web pages, templates, 
schemas, and web services, a new set of analyzers had to 
be developed: 

• HTMLAudit for the XML/HTML definitions  
• XSLAudit for the XSL style sheets  
• XSDAudit for the XSD schema descriptions  
• WSDLAudit for the WSDL interfaces.  
The XSLAudit Analyzer analyzes the web page 

templates to count the variables contained within them 
and to trace the links to other templates. Each variable is 
counted as a data item (DET) and each included template 
as a data access (FTR). Embedded Java procedures are 
counted as methods, variables as attributes and the 
template as a class to give the object-points. Statements 
are counted as each pair of tags, i.e. each tag </ indicates 
a statement. The DETs and FTRs per template are stored 
in a transient template table. 

The HTMLAudit analyzer then parses the 
HTML/XML page descriptions to identify which 
templates are referred to therein. Their DETs and FTRs 
are then taken from the template table to compute the 
function-points for that page. Here again a question 
comes up: whether to count the webpage as a whole as 
an input or output, or to count each template as an input 
or output depending on whether it is filled by the system 
or the user or both. The author opted for the template, i.e. 
widget, as the input or output. 

Counting object-points and statements was again a 
simple matter. The web page is considered a class and 
each referenced template as an association. Data 
elements are counted as attributes. Statements are as with 
all XML type documents paired tags. (See Sample 6.) 

 
As a prerequisite to the web service interface 

analysis, the XSD schemas had to be parsed first. The 
XSDAudit analyzer did this. It navigates through the 
XML schemas picking up the references to the enclosed 
complex data types and counting the number of data 
elements in each type. The number of data fields – DETs 
– assigned to a base data element is the sum of the data 
elements of all data types referred to in the type 
hierarchy of that element. Instead of counting the 
number of databases accessed – FTRs – as prescribed by 
the IFPUG counting method, the author counted the 
number of nested complex data types. These counts were 
attached to the base element name and stored in a table. 

The last step was to analyze the web service 
descriptions themselves. For this, the WSDLAudit 
analyzer was used. It identifies the operations referred to 
by the Java sources that were analyzed previously. For 
this, the tool must search the method table for each 
WSDL operation. If it is found, the input and output 
messages of that operation are traced to the data element 
that describes them. The data element is then located in 
the table of data types from which the number of 
elementary data elements and the number of data groups 
is taken. This gives the function-point count for the input 
and the output of that particular operation.  

This tracing of web service operations to messages 
and from there to the data type descriptions also gives 
the number of attributes, the number of interfaces and 
the number of objects for the object-point count. In 
addition, the statements are counted as pairs of XML 
tags. Both the function-points and the object-points taken 
from the web services are assigned to the client method 
that invokes them, in lieu of assigning them to the server 
component that implements them. The statement counts 
were also assigned to the invoking component. (See 
Sample 7.) 

 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

In this way, the user interfaces were sized as 
separate components to be stored along side the client; 
server component sizes derived from the C++ and Java 
Sources and the database table sizes were taken from the 
SQL sources. The size counts of the web services were, 
however, assigned to the invoking Java classes to give 
the following size metric tables: 

Source Elements FuncPts. ObjtPts. Stmts. 

C++ Server 
Classes 

339 13874 32479 

Java Client 
Classes * 

202 2943 3208 

SQL Tables 606 2542 1564 

XML GUIs 98 2744 8995 

 
This master table was broken down in four sub-

tables, one for each type. In the application analyzed, 
there were 533 C++ classes, 61 Java classes, 82 SQL 
tables and 24 XML GUIs with a total of 1245 function 
points, 22103 object points and 46246 statements. 

4.4 Measuring the Impact Domain 

To validate the estimation of a maintenance task, 
three sample tasks were selected and estimated: 

1. To correct an incorrect result, displayed in a 
user interface; 

2. To change an algorithm to compute a result 
written out in an XML export file by a web 
service; 

3. To add an attribute to a data base table. 

Each of these tasks is briefly described below. 

Measuring the Impact Size of an Error Correction 
In the case of the first maintenance task, it was 

necessary to link the error report to the target GUI. The 
GUI was then linked to the classes that processed the 
GUI, the classes inheriting from these classes, and the 
classes associated with them. The size of those classes 
and the size of the GUI were added together to give the 
total size of the impact domain for the error correction. 

Measuring the Impact Size of an Interface Change 
In the case of the second maintenance task, the 

export file was connected to the class that wrote it, which 
in turn was connected to the inherited and associated 
classes. The web service sizes were as pointed out above, 
included in the classes using those web services. (See 
Sample 8.) 

 

Measuring the Impact of a Database Change 
In the case of the third maintenance task, the data 

base table was linked via the access relationships to the 
C++ classes that accessed it. These were then linked to 
the inherited and associated classes and their sizes added 
to the sizes of the data base table itself to give the size of 
the domain impacted by the database change. 

5. Conclusions 

Unfortunately, the project did not include estimating 
the maintenance tasks and comparing the estimates with 
the actual effort involved, since this was not a pure 
research project, but an industrial pilot project aimed 
solely at sizing impact domains of maintenance tasks; 
the estimation was not part of the contract. The author 
did the best job possible in the limited time allowed to 
measure the size of individual software artifacts and to 
link those sizes to the maintenance tasks planned. 

The project demonstrated that it is necessary to 
create a metrics database with the sizes of all classes, 
components, interfaces and database tables. Furthermore, 
a repository is required to store all of the relationships 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

between the software artifacts. Then it proved to be 
possible to link error messages and change requests to 
the exterior artifacts visible to the user and to link them 
to the interior artifacts invisible to the users. The artifacts 
of the repository are then linked to the entries in the 
metric database to aggregate the sizes of the artifacts 
affected. The linking of the sizes of related individual 
sources members leads in the end to the total size of the 
impact domain. 

With that, the goal of the project was reached, albeit   
with more effort than was allocated. The project was 
budgeted for 20 days. In the end it required 32 days. At 
this time, it is not clear how the customer will proceed. 
The outsourcing of software maintenance to the 
subsidiary companies in Eastern Europe is a highly 
political issue since the newly elected socialist 
government wants to restrict the exporting of jobs. The 
rationale for this project was to offer upper management 
a proof of concept, that the size of maintenance tasks can 
be automatically extracted from the source code. To that 
end it was a success. 

5.1 Lessons Learned 

The main lesson learned in this project was that it is 
not easy to measure the size of software. A line of code 
is a useless measurement that is totally dependent on 
how the code is formatted. Even statements are hard to 
count if there is not a specific definition of what a 
statement is for every language analyzed. 

Function-points are claimed to be a technology 
independent form of sizing a system by measuring its 
external behavior in term of inputs, outputs, interfaces 
and database tables [14]. In practice however it turns out 
that these entities are not at all independent of the 
technical environment. The languages and technologies 
being used determine inputs, outputs, interfaces, and 
databases. Inputs and outputs in a web-based system are 
quite different from inputs and outputs in a mainframe 
online system or a client/server system. Relational 
database tables are also far removed from the VSAM 
files and hierarchical databases that the authors of the 
function-point method had in mind when they proposed 
the method. The sheer number of data items in a user or 
system interface has little bearing on the complexity of 
the algorithm behind those interfaces. Besides that, they 
are, as this project demonstrates, not at all easy to count, 
especially with web applications. 

For these and many other good reasons, the authors 
oppose the use of function-points to estimate 
maintenance tasks – particularly for Web applications. 
The fact that they were counted here was due solely to 
the insistence of an unwary customer under the influence 
of deceitful business consultants. If given a choice, the 

authors would have restricted themselves to statements 
and object-points. It was the attempt to count function- 
points rigidly according to the IFPUG rules that caused 
the project budget to be exceeded by over 50 %. 

5.2 Future Work 

As concerns the impact analysis, it was discovered 
that there are several flaws to detecting related methods 
via static analysis. Polymorphism and dynamic binding 
(i.e. determining the method to be called at runtime) are 
impossible to resolve with only the sources. Either you 
consider all of the potential callees to be within the 
impact domain or you leave all of them out. This flaw 
has been pointed out by L. Briand and others [8], but 
their alternative to performing dynamic analysis is not a 
viable solution in industry. Thus, the problem remains 
unsolved. 

Another flaw was the external coupling of C++ 
modules by means of external files.  In case the user did 
not use the same file names in both the producing and 
the consuming modules, the link went unnoticed. The 
same applies to data objects addressed via pointers set at 
run time. For these and other reasons, the impact domain 
measured was certainly only a subset of the real impact 
domain. Here much more research is required than what 
is currently available. In that respect, this project serves 
to demonstrate how far removed the research community 
sometimes is from solving real industrial problems. 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



 

References  

[1] Abrahao, S.; Poels, G.; Pastor, O.: “Evaluating a 
Functional Size Measurement Method for Web 
Applications: An Empirical Analysis.” Proceedings of the 
10th International Symposium on Software Metrics 
(METRICS’04). 

[2] Abran, A.; Silva, I.; Primera, L.: “Field Studies Using 
Functional Size Measurement in Building Estimation 
Models for Software Maintenance.” Journal of Software 
Maintenance and Evolution, 14(1), March 2002, pp. 31 – 
64. 

[3] Albrecht, A.; Gaffney, J.: “Software Function, Source 
Lines of Code and Development Effort Prediction: A 
Software Science Validation.” IEEE Transactions on 
Software Engineering, 9(6), November. 1983, p. 639 -648. 

[4] April, A.; Hayes, J.; Abran, A.; Dumke, R.: “Software 
Maintenance Maturity Model: the software maintenance 
process model” Journal of Software Maintenance and 
Evolution, 17(3), May 2005, pp. 197-223. 

[5] Basili, V.; Briand, L.; Melo, W.: “A Validation of Object-
Oriented Design Metrics as Quality Indicators.” IEEE 
Transactions on Software Engineering, 22(10) October 
1996, pp. 751-761. 

[6] Basili, V.; Caldiera, C.; Rombach, H.-D.: “Goal Question 
Metric Paradigm.” Encyclopedia of Software Engineering, 
Vol. 1, John J. Marciniak (Editor), John Wiley & Sons, 
1994, p. 528-532. 

[7] Bohner: “Impact Analysis in the Software Change 
Process: a Year 2000 Perspective.” Proceedings of the 
12th International Conference on Software Maintenance 
(ICSM’96: Monterey, CA; November 4-8,1996), IEEE 
Computer Society Press, pp. 42-51. 

[8] Briand, L.; Di Penta, M.; Labiche, Y.: “Assessing and 
Improving State-based Class Testing: a Series of 
Experiments.” IEEE Transactions of Software 
Engineering, 30(11), November 2004, pp. 770-783. 

[9] Candido, E.; Sanches, R.: “Estimating the Size of Web 
Applications by Using a Simplified Function Point 
Method.” Proceedings of the WebMedia & LA-Web 2004, 
pp.98-105, 2004.  

[10] Chapin, N.; Hale, J.; Khan, K.; Ramil, J.: “Types of 
Software Evolution and Software Maintenance.” Journal 
of Software Maintenance and Evolution: Research and 
Practice, 13(1), Feburay 2001, pp. 3-30. 

[11] Cowderoy, A.J.C.: “Size and Quality Measures for 
Multimedia and Web-site Production.” Proceedings of the 
14th International Cocomo Forum, 1999. 

[12] Ebert, C.; Dumke, R.; Bundschuh, M.; Schmietendorf, A.: 
Best Practices in Software Measurement: How to Use 

Metrics to Improve Project and Process, Springer Berlin, 
October 2004. 

[13] El Emam, K.; Benlarbi, S.; Goel, N.; Rai, S.: “The 
Confounding Effect of Class Size on the Validity of 
Object-Oriented Metrics.” IEEE Transactions on Software 
Engineering, 27(7), July, 2001, pp. 630 – 650. 

[14] Garmus, D.; Herron, D.: Function-Point Analysis: 
Measurement Process for successful Software Projects, 
Addison-Wesley, Reading MA., December 15, 2000.  

[15] IFPUG (International Function Point User Group) online 
at http://www.ifpug.org/ 

[16] IFPUG (International Function Point Users Group), 
Function Point Counting Practices Manual, release 4.2, 
Westerville, Ohio, 1999. 

[17] ISO/IEC: Software Product Evaluation: Quality 
Characteristics and Guidelines for their use, ISO/IEC 
Standard 9126, International Standards Organization, 
Genf, 1994 

[18] Jones, C.: Estimating Software, McGraw-Hill, New York, 
July 1998.   

[19] McCabe, T.: “A Complexity Measure.” IEEE 
Transactions on Software Engineering, Vol. 2, No. 4, 
December 1976, p. 308. 

[20] Nerur, S.; Mahapatra, R.; Mangalaraj, G.: “Challenges of 
Migrating to Agile Methodologies.” Communication of 
the ACM. 48(5), May 2005, pp. 72-78. 

[21] NESMA (Netherlands Software Metrics Association) 
online at http://www.nesma.nl/sectie/home/ 

[22] Poensgen, B. and Bock, B. Function-Point Analyse, 
dpunkt.verlag, Heidelberg, 2005 

[23] Reifer, D.: “Web Development: Estimating Quick-to-
Market Software.” IEEE Softeware, November/December 
2000. 

[24] Ruhe, M.; Jeffery, R.; Wieczorek, I.: “Cost Estimation for 
Web Applications.” Proceedings of the 25th International 
Conference on Software Engineering (ICSE 2003: May 3-
10, Portland, Oregon). 

[25] Sneed, H.: “Impact Analysis of Maintenance Tasks for A 
Distributed Object-Oriented System” Proceedings of 17th 
International Conference on Software Maintenance 
(ICSM 2001: Florence, Italy, November 7-9, 2001) IEEE 
CS Press, pp. 180-189. 

[26]  Sneed, H.M.: “Estimating the Development Costs of 
Object-Oriented Software.” Proceedings of 7th European 
Software Control and Metrics Conference, Wilmslow, 
UK, 1996, p. 135. 

[27] Symons, C.: “Function-Point Analysis: Difficulties and 
Improvements.” IEEE Transactions on Software 
Engineering, Vol. 14, Nr. 1, January 1988, pp. 2-11. 

 
 

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00  © 2007

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 


