
Autonomic Computing and VANET

James J. Mulcahy
Computer & Electrical Engineering

and Computer Science
Florida Atlantic University

Boca Raton, FL, United States
jmulcah1@fau.edu

Shihong Huang
Computer & Electrical Engineering

and Computer Science
Florida Atlantic University

Boca Raton, FL, United States
shihong@fau.edu

Imad Mahgoub
Computer & Electrical Engineering

and Computer Science
Florida Atlantic University

Boca Raton, FL, United States
imad@cse.fau.edu

Abstract— As modern wireless communication networks
continue to spread in coverage and ubiquity, so do the
applications for networks that take advantage of mobile
technology. One of the more interesting areas of research and
development is in the development and deployment of vehicular
ad hoc networks (VANETs). VANETs offer the potential for
intelligent transportation networks that can both actively and
passively improve travel efficiency and safety for the vehicles
that use them. Informative content can be delivered to drivers
informing them of road conditions or nearby traffic congestion.
Entertaining content like multimedia can be delivered to vehicle
passengers. To be usable and efficient, VANETs need to be
largely autonomous and self-adaptive. The software that
organizes the nodes entering and leaving a VANET must be self-
managing, without requiring their active participation of drivers
or passengers in the organization and maintenance of the
network. A VANET needs to automatically adapt to changes in
the geography over which the network is deployed, and to the
highly dynamic behavior of its participant vehicles. It must detect
and recover from failures during content delivery, protect the
integrity of data being delivered, and protect against malicious
attacks by intruders. It should optimize the exchange of
information between participant vehicles and roadside
infrastructure, making the best use of power and bandwidth. In
this paper, we describe the architecture of vehicular ad hoc
networks, the principles of autonomic software design, and how
the autonomic computing paradigm is applied to VANET
applications.

Keywords—wireless sensor networks, vehicular ad hoc
networks, software engineering, autonomic computing, self-
adaptive systems, self-managing systems, MAPE-K, control loops

I. INTRODUCTION

Specialized wireless sensor networks like intelligent
transportation systems (ITS) and vehicular ad hoc networks
(VANETs) are enjoying an increase in popularity in both
application and research. There are more than one billion
passenger cars on the road world-wide today [1]. This number
is projected to swell to four billion by 2050 [2]. The
improvement and ubiquity of increasingly cheaper hardware
allows modern vehicles to become rolling computing and
storage devices. With increasing sophistication and coverage
of wireless communication networks, especially those that are
composed of mobile nodes like vehicles, it is no wonder that
VANETs suffer from a problem of scale and complexity.

Government entities seek to improve public safety and
make traffic management more efficient and reliable.
Commercial entities are interested in improving the
experience and comfort of the vehicle occupants, supplying
navigation details, time-sensitive information and news, and
multimedia entertainment for passengers (“infotainment”) [3].
Researchers and practitioners strive to improve and evolve
techniques used to deploy and maintain ad hoc networks,
especially to improve their flexibility, efficiency, reliability,
and security. To achieve these goals, VANETs exhibit a
significant degree of autonomy to provide a seamless
experience for human drivers and passengers.

“Autonomic computing” is a term coined by IBM in 2001
to describe a design approach that imparts self-managing
behavior to software systems, aimed at reducing or mitigating
system complexity, while increasing reliability. The approach
involves the development of systems capable of managing
their own resources and behavior with little or no human
intervention, given certain high-level system objectives
defined by humans [4]. Since modern hardware and software
can be inextricably linked, this term naturally extends to the
usefulness of autonomic systems that are a synthesis of both
hardware and software. Wireless sensor networks (WSNs),
mobile ad hoc networks (MANETs), and vehicular ad hoc
networks (VANETs) are examples of types of systems that
stand to benefit from autonomic design. Ultimately, the most
efficient VANETs are those that operate completely
autonomously, responding to changes in the environment in
which they operate in a self-configuring, self-optimizing, self-
protecting, and self-healing manner.

While there is a body of literature that addresses the use of
the autonomic computing in the development of new software
systems and the extension of legacy software systems, and
literature that describes wireless sensor networks like
MANETs and VANETs, this paper aims to provide a synthesis
that describes how VANETs exhibit autonomic design and
behavior as described by IBM. The remainder of the paper is
organized as follows: Section II provides background about
wireless sensor networks and autonomic computing. Section
III describes vehicular ad hoc networks in the context of
autonomic computing, while Section IV concludes the paper
and offers ideas for future work in this area of engineering.

����������������������������������,(((

II. BACKGROUND

Nearly one hundred and forty years have passed since
Alexander Graham Bell uttered the first words over a
telephone, summoning Thomas Watson from his laboratory
[5]. Today the world is connected by wired and wireless
infrastructure. High-capacity fiber optic cables are draped
along the bottom of the world’s oceans. Fiber, copper, and
coaxial cables are buried into our infrastructure and strung
between our buildings. The development of satellite-to-ground
communications and mobile packet-based networks in the
1960s and 1970s began to untether us from wired
infrastructure [6]. More recently, radio, cellular, Wi-Fi,
Bluetooth, and a host of other wireless technologies have
appeared. Mobile sensors and devices have become cheaper
and more ubiquitous, and access to a variety of mobile-based
service without being limited by timing or location is now
possible [7].

A. Wireless Sensor Networks
A wireless sensor network (WSN) is a distributed network

of sensor nodes that has little or no permanent infrastructure
[8]. In a WSN, the nodes themselves make up the structure of
the network. The nodes can send, receive, and store data, and
may act as routers of data packets destined for other distant
nodes. (Fig. 1). WSNs are composed of a large number of
sensors that can be deployed quasi-randomly and densely over
a selected area of interest, and collectively used to monitor
and exchange information about the surrounding environment
[9]. Wireless sensors typically exchange data with other
sensors via short range radio. Memory storage and power are
limited in most applications, and consequently a modern
engineering challenge is to produce sensors that consume as
little bandwidth and power as possible. This drives the need
for efficient distribution of data over sensor networks.

Fig. 1. Multi-hop wireless sensor network (WSN) example.

Fig. 2. Wireless weather station network reporting in real-time.

WSNs have been around in some form since at least the
1950s, when the United States military deployed a network of
submerged acoustic sensors to detect and track Soviet
submarines [10]. By the 1970s, the U.S. Army was developing
packet-switching technology and packet radio systems [11].
There are many applications for statically place WSNs, like
monitoring air quality, the structural integrity of buildings
[12], water temperature and composition of inland waterways
[13]. WSNs can be used to monitor forest fires [14], seismic
conditions [15], and even weather conditions over large
geographical areas (Fig. 2). Other WSNs are designed for
industrial applications that monitor and collect data from
power plants, water treatment plants, factories, and data
storage facilities [16]. In each of these examples, the sensor
nodes are typically placed once and not subsequently
relocated.

B. MANETs and VANETs
Mobile ad hoc networks (MANETs) and vehicular ad hoc

networks (VANETs) are designed to perform similar types of
sensory and communications tasks as WSNs, but composed of
mobile nodes. VANETs are a special class of MANETs,
composed of nodes represented by vehicles rather than people,
floating buoys, or other less mobile or semi-mobile platforms
[17]. MANETs and VANETs must both adapt to a wide
variety of geographic topologies, and a dynamically changing
set of mobile participant nodes. At any given moment, a node
in a MANET or VANET can travel into or out of the range of
other neighbor nodes and of any nearby fixed network
infrastructure. In MANETs, the movement of the nodes is
highly variable, and relatively slow. A battlefield scenario in
which the participant nodes are soldiers wearing sensor and
communication equipment is an example of a MANET [18].

A VANET differs from a MANET with respect to node
mobility and the topology of the network. In a VANET, nodes
are vehicles, and move in more predictable directional
patterns. Automotive vehicles typically travel along well-
defined roadways, but at a much higher rate of speed [19].

Physical data storage is less of a concern in the
implementation of VANETs than other wireless sensor
networks. Unlike humans carrying mobile devices that are
necessarily limited in weight and size, automotive vehicles
can support heavier and more robust computing devices with
higher-capacity memory, computing power, communication
capability, and power storage capacity. Power is less of a
concern, since most vehicles are likely to contain alternators
or other power-generating equipment. With a constant power
source when the vehicle is running and access to a battery for
backup when the vehicle is off, on board units (OBUs) are less
affected by power limitations of other kinds of mobile devices
[20].

Like other wireless sensor networks, VANET nodes share
data wirelessly via radio transmission. Communication
between participating vehicles is known as “Vehicle to
Vehicle (V2V).” “Vehicle to Infrastructure (V2I)” refers to
data transmitted from individual vehicles to roadside units,
and “Infrastructure to Vehicle (I2V)” refers to communication
that originates with an RSU but is targeted at one or more
participating vehicles. The vehicle OBUs may in turn re-
broadcast information to other vehicles within its range,
extending the reach of the network beyond the physical range
of the RSU. Data targeted for a specific recipient may be
communicated directly when the sender and receiver are in
range of each other, referred to as “single hop”, or it may be
communicated by routing it through one or more other
vehicles in a “multi-hop” process (Fig. 3). For example, traffic
information data that is broadcast from a fixed roadside unit
(RSU) reaches all “listening” vehicle nodes within range of
that RSU.

This may not be the most efficient and reliable way to
route the data, however. If the target vehicle is beyond range
of the RSU, for example, it may be impossible. A more
efficient and reliable to send the data in several concurrent
pieces, or “packets,” via multiple “hops” using intermediary
vehicles as routers between the source and target of the data.
Efficient delivery of content is necessary for a reliable
network that does not consume significant portions of the
available bandwidth, particularly when the network topology
changes frequently [21].

To be useful, reliable, and efficient, a VANET must be
able to reconfigure itself when the topology of the network
changes. Individual vehicle nodes may have varying types of
OBUs with varying storage capacities, processing power, and
communication capability. The highly dynamic nature of a
VANET makes this organizational task too difficult for human
participants to maintain.

Within a VANET, communication between nodes is a
challenge of efficiency and reliability. To reduce consumption
of limited transmission bandwidth, a VANET must optimally
route data between nodes quickly and efficiently.

VANETs must have the ability to recover from faults
without disrupting the rest of the network. A vehicle suddenly
leaving the network with data that it hasn’t yet been forwarded
to a recipient node is an example of a fault. There are many
reasonable scenarios in which a vehicle node may leave a
VANET abruptly. For example, there may be a failure in
transmission capability, such as a faulty antenna [22]. Another
example is when a vehicle may travel beyond the range fixed
infrastructure and of all other vehicles that are members of the
network. In another scenario, a vehicle may crash and damage
the OBU or experience hardware failure in the OBU itself. A
third – and more common – scenario is described by a driver
reaching his or her intended destination and subsequently
shutting down the vehicle. Unless the OBU is designed to
communicate with the network on battery power, the node
disappears from the network when the vehicle is powered off.

A VANET must protect itself from malicious attacks
originating outside the network. They may be aimed at
disrupting network operation, corrupting the data transmitted
between nodes, or intercepting private data meant for another
vehicle. In short, a VANET must have a high degree of
autonomicity, which can be accomplished with a combination
of hardware architecture and software.

Node discovery, efficient data routing, recovery from
communication failures, and protection from malicious attacks
are but a few of the requirements of a vehicular ad hoc
network [19]. In this paper, these four requirements are used
to illustrate the self-*, or self-managing attributes that
VANETs inherently must exhibit to have value to its human
participants.

Fig. 3. A simplified model of a multi-hop VANET.

C. Autonomic Computing
In 2001, IBM published a “manifesto” that addressed the

growing complexity of software systems. The manifesto
coined the term “autonomic computing” that defines the
attributes of a system that reduces reliance upon humans to
monitor, configure, optimize, correct, and protect software
systems. Autonomic systems exhibit self-* (“self-star”)
behavior, meaning they have “adaptivity” properties [23]. An
autonomic system is also self-governing, or “self-managing”
[24]. Self-managing systems have each of the four properties
outlined in IBM’s manifesto, and are described as follows:

The self-configuring property refers the ability of a system
to detect and adapt to changing conditions in or requirements
by its environment. A self-configuring system may
automatically add or remove software components of the
system in real time without waiting for human intervention.
For example, the operating system of a personal computer
may install or remove driver software when it discovers newly
attached hardware peripherals or other software, anticipating
what a human would do in its stead. In this regard, the
operating system is said to be self-configuring. In industry, a
commercial enterprise resource planning system (ERP) may
be designed to monitor external computing systems, some of
them owned by other stakeholders. They need to be able to
recognize when connectivity to external systems are lost or
restored, and react accordingly. They may monitor local or
external data stores, and reacting to the appearance of
particular types of data. A case study is presented in [25] that
describes an autonomic solution for a commercial retailer. Its
self-configuring behavior included the detection and
processing of purchase orders by web-based customer orders
without any other human monitoring or action.

Self-optimizing systems automatically monitor and tune
themselves with the goal of improving the quality of system
attributes like reliability and efficiency. For example,
operating systems use automated process schedulers to
achieve high system utilization rates while executing
applications according to priority, and this is done without a
human operator needing to intervene. In commercial systems,
internal and external resources are monitored and resource
allocations altered according to pre-defined rules or
parameters designed to keep the system operating within
specific performance requirements. In sensor networks,
optimal shortest-distance or shortest-time paths may be
computed for optimal routing of data to and from origin and
destination nodes.

A self-healing system is one that recognizes and recovers
from system faults without any human assistance. Similar to
the concept of “fault tolerance,” self-healing is a more robust
behavior than the simple recovery from a fault [26]. The goal
of a self-healing system is to return it back to normal
operation once the fault is detected and handled [23]. Modern
virus detection software is an example of application-level
solutions that monitor for, detect, and quarantine malicious
software to keep the host system operating normally.
Commercial ERPs can be designed to exhibit self-healing

behavior by detecting and adapting to unplanned lapses in
connectivity with other systems they communicate with [27].

Self-protecting systems are designed to anticipate system
faults, recover from human error, and prevent malicious
attacks from external sources, acting automatically to prevent
or mitigate further damage [23]. This behavior is proactive,
while a self-healing behavior reactive. A self-protecting
system actively monitors itself in order to detect threats to
system integrity as they occur, before a system fault occurs.
An anti-malware application on a personal computer, for
example, may automatically “blacklist” a website that is
known to infect target machines with viruses or worms, or it
may quarantine a virus as soon as it is recognized and before it
can damage any data.

These four self-* attributes describe the behavior of an
autonomic system. At the root of the design of autonomic
systems is the architectural model that helps impart these
attributes. An autonomic system may consist of one or more
autonomic components that interact with each other. A
component can itself be further composed of other autonomic
components. Components can be inputs to yet other
autonomic components. Autonomic components consist of the
resource being managed and the software that manages that
resource.

An autonomic manager is a software mechanism that
monitors software or hardware (or both), decides how to alter
the system, and automatically applies the changes needed to
alter that behavior. The autonomic manager is a control loop
that intelligently monitors a managed element, and adapts its
behavior accordingly. A more complicated or inclusive
autonomic manager can be designed to impart several or all of
the self-* attributes to system or subsystem in which it
operates. A common model used to describe the architecture
of the control loop that a typical autonomic manager employs
upon a managed element is the MAPE-K model described by
IBM [4].

D. The MAPE-K Model
MAP-K is an acronym that represents the major

components of an autonomic control loop architecture, and is
illustrated in Fig. 4. The monitoring component allows the
autonomic manager to detect – or sense – changes in its
operating environment, using hardware sensors or software-
based detection schemes.

The analysis component determines whether the collected
data indicates a change in the system worthy of action. The
planning component determines what action or actions should
be taken, and the execution component applies necessary
changes to the system or managed resource. The knowledge
component stores information that is gathered about the
element being managed, the environment in which it operates,
and the rules that govern expected system behavior.
Information can include historical operational data that is later
mined and used to more intelligently and finely tune system
behavior.

Fig. 4. MAPE-K control loop model.

III. AUTONOMIC COMPUTING AND VANET

The autonomic computing paradigm described by IBM
addresses the growing complexity of hardware and software
systems. At the most abstract level, an autonomic manager
controls a managed resource. Managed resources may include
individual computers, servers, and data storage devices, but
they also may include operating systems, commercial software
applications, and the middleware that connects and integrates
them. A managed resource may even be an entire business
process, like a commercial order fulfillment systems workflow
in [25]. VANETs are themselves a blend of hardware and
software components and processes that inherently need to be
autonomic.

In a VANET, the nodes (OBUs and RSUs) are the
autonomic elements. A vehicle’s OBU monitors its
environment using sensors attached to the vehicle or its
occupants, and monitors a communication channel for
broadcasts from roadside units and other vehicles (I2V and
V2V). A RSU monitors the network to detect vehicles
entering and leaving its range, and listens for broadcasts from
the individual OBUs (V2I).

Nodes in a VANET are tasked with optimizing the
appropriate routing path for data transmission between
infrastructure and vehicles, and between vehicles.
Optimization reduces network overhead like power
consumption and bandwidth usage, while improving the
reliability of the network by reducing data collisions and
packet losses, and reacting to interference. The network must
heal from data loss by detecting when a participant vehicle has
left the network without delivering its data payload to the next
vehicle in an active routing path. The data must be rebroadcast
and routing tables need to be updated to exclude the missing

vehicle. OBUs and RSUs must be designed to detect and
protect from malicious attacks upon the network, while
preserving the integrity and confidentiality of the data being
transferred between participating nodes.

Like other autonomic systems, VANETs must have self-
managing characteristics for the network to be useful to its
users, and should not require humans to actively configure,
operate, or maintain the network. The self-configuring, self-
organizing, self-healing, self-protective attributes of an
autonomic VANET must be seamless and invisible to the
humans operating vehicles in the network. The following
subsections elaborate upon the autonomic attributes that
VANETs have.

A. A VANET is Self-Configuring
Vehicular ad hoc networks automatically respond to

changes in their operating environment. A VANET’s
operating environment consists of a set of participating
vehicles that form the nodes of the network, plus the set of
roadside infrastructure units that communicate with them.
RSUs are generally permanent infrastructure and are therefore
geographically static nodes. Vehicles, however, may enter and
leave the network at any time with no forewarning. They may
change direction, change speed or acceleration, and may even
be shut down or powered on while in range.

A self-organizing, or self-configuring VANET detects
changes in the network topology and makes the appropriate
adjustments, like modifying routing tables to reflect new
participant vehicles or departing vehicles. A vehicle will
typically leave a network by traveling outside the range of the
RSUs, and outside the range of the closest vehicle that still
maintains contact with the network.

Alternatively, a vehicle may reach its intended destination
while still in range of the network, and disappear from the
network when the driver shuts it down. Conversely, vehicles
that are powered up within range of a VANET or otherwise
enter the network must be accounted for. In worst-case
scenarios, a vehicle can crash and damage its OBU, or the
OBU equipment could fail for other reasons. Connectivity
between the vehicle and the network can also fail, effectively
removing the vehicle from being seen by other nodes in the
network.

B. A VANET is Self-Optimizing
A self-configuring VANET automatically handles the

scaling of the network from just a few vehicles (or even one)
to dozens or hundreds of vehicles or more. A self-optimizing
network transmits data between participating vehicles and
infrastructure as efficiently as possible, even as the topology
constantly changes. A self-optimizing network is able
compute the most efficient routing of the data the goal of
reducing network overhead and increasing the reliability of the
exchange of data between nodes.

Topology-based and geographical-based are two types of
routing schemes used to optimize the flow of data in a

VANET. Topology-based proactive protocols like Fisheye
State Routing are table-driven. Reactive protocols like Ad Hoc
on Demand Distance Vector (AODV), Dynamic Source
Routing (DSR), and Temporally Ordered Routing Protocol
(TORA). Geographical-base routing protocols include Delay
Tolerant Network (DTN), Greedy Perimeter Stateless Routing
(GPSR), and Vehicle-Assisted Data Delivery (VADD). The
advantages and disadvantages of each protocol is beyond the
scope of this work, but are presented to show how VANETs
are designed to be self-optimizing [20].

C. A VANET is Self-Healing
Vehicles typically leave a VANET with no warning. If a

departing vehicle is in possession of one or more data packets
that are destined for another vehicle, those packets are lost. A
self-healing VANET recognizes that a packet has been lost,
updates its routing tables to exclude the now-missing node,
and retransmits the failed packets. In table-based routing
models, the tables are updated accordingly. In this manner, the
network has “healed” itself by first detecting the fault and then
taking action to restore the intended function of the network –
delivering of data to target nodes.

D. A VANET is Self-Protecting
While self-healing describes a reactive behavior, self-

protecting describes both reactive and proactive behaviors. A
self-protecting system is able to anticipate the possibility of a
fault or failure before it occurs, and is able to automatically
take steps to prevent or block the problem from occurring or
causing more damage. For example, a VANET may be
designed to compute the speed and orientation of each vehicle
in its range, rerouting data packets through interior nodes
rather than edge nodes to their intended destination, to
increase the changes that the data arrives at its intended
destination without interruption. While VANETs protect
themselves from data loss, they must also protect themselves
from intentional attacks from sources external to the network.
Some attacks are intended to disrupt or corrupt the
communication of data across the network, or to overwhelm
the network’s resources. The latter is known as a “denial of
service” (DoS) attack [29].

Other malicious techniques include “Sybil” attacks in
which a malicious node broadcasts information to multiple
neighboring vehicles, spoofing each with a fake identity [30].
Node impersonation is another example in which a malicious
node pretends to be another vehicle [31]. A malicious node
may broadcast false information to impersonate another node,
or to have an effect on traffic flow in a biased or otherwise
disruptive way. A self-protecting VANET is one that is able to
successfully detect the presence of a malicious node or vehicle
and block it from participating in the network or minimizing
its impact.

Fig. 5. Three-level self-* hierarchy.

The four attributes of a VANET discussed in this section
collectively describe an autonomic system as defined by IBM.
Other researchers have elaborated on the autonomic
architecture, expanding it beyond the four basic attributes
identified by IBM (Fig. 5). In [23], Salehi and Tahvildari
describe a three-level hierarchy of self-* properties. The top
level is the self-adaptive or self-organizing attribute, a
generalized term to describe all of, or the result of, the self-*
behaviors of an autonomic system. The middle level consists
of the four major properties from IBM: self-configuring, self-
optimizing, self-healing, and self-protecting. The third and
most primitive level of attributes are those that describe the
behavior of a system that is self-aware and context-aware. In
VANET this is accomplished by self-monitoring and limiting
communication between trusted participating vehicles and
roadside infrastructure over a discrete geographical range.

IV. SUMMARY & FUTURE WORK

In this paper, we described the autonomic computing
paradigm, detailing four major attributes that define the
behavior of such systems. We described the general structure
of wireless and vehicular ad hoc networks, and how VANETs
by design manifest the attributes of an autonomic system. The
examination of the autonomic structure of VANETs in this
paper is limited, and future work will include a more thorough
review and evaluation of the existing and planned applications
of VANET and autonomic design.

Future work will also explore how the autonomic design
approach in VANETs may be extended to other modes of
commercial travel. Perhaps a day approaches when airlines,
rail traffic, boat traffic, and vehicular traffic will all be
interlinked into one seamless, mode-agnostic autonomous
transportation network.

V. REFERENCES

[1] "Automobiles & Trucks Business Trends Analysis," Plunkett Research
Ltd., 11 November 2014. Web. 01 March 2015.
<http://www.plunkettresearch.com/trends-analysis/automobiles-hybrid-
electric-business-market/>.

[2] L. Chou, J. Tseng, and J. Yang, "Adaptive Virtual Traffic Light Based
on VANETs for Mitigating Congestion in Smart City," The Third
International Conference on Digital Information and Communication
Technology and its Applications (DICTAP2013), The Society of Digital
Information and Wireless Communication, 2013.

[3] P. Salvo, F. Cuomo, A. Baiocchi, and A. Bragagnini, "Road side unit
coverage extension for data dissemination in VANETs," in Wireless On-
Demand Network Systems and Services (WONS), Proc. of the 9th Annu.
Conf. on, pp. 47-50, January 2012.

[4] IBM, “Architectural blueprint for autonomic computing,” http://www-
03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20
V7.pdf 2005. Web. 1 November 2014.

[5] T. Watson, "How Bell invented the telephone," American Institute of
Electrical Engineers, Proceedings of the, vol. 34, no. 8, pp. 1503-1513,
August 2015.

[6] A. Butrica, Ed., Beyond the Ionosphere: Fifty Years of Satellite
Communication, NASA Special Publication-4217, 1997.

[7] K. Chung, J. Yoo, and K. Kim, “Recent trends on mobile computing and
future networks,” Personal and Ubiquitous Computing, vol. 18, no. 3,
pp. 489-491, 2014.

[8] J. Garcia-Macias and J. Gomez, “MANET versus WSN,” in Sensor
Networks and Configuration: Fundamentals, Standards, Platforms, and
Applications, pp. 369–388, 2006.

[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393-
422, March 2002.

[10] R. Holler, “The Evolution of the Sonobuoy from World War II to the
Cold War,” No. JUA-2014-025-N, NAVMAR Applied Sciences Corp,
2014.

[11] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the
mobile internet,” Computer Networks, vol. 55, no. 2, pp. 457-469,
February 2011.

[12] T. Fu, A. Ghosh, E. Johnson, and B. Krishnamachari, “Energy-efficient
deployment strategies in structural health monitoring using wireless
sensor networks,” Structural Control and Health Monitoring, vol. 20,
no. 6, pp. 971-986, 2013.

[13] Zennaro, Marco, et al. "On the design of a water quality wireless sensor
network (WQWSN): An application to water quality monitoring in
Malawi," Parallel Processing Workshops, (ICPPW'09), Int. Conf. on,
pp. 330-336, September 2009.

[14] Y. Aslan, I. Korpeoglu, and Ö. Ulusoy, "A framework for use of
wireless sensor networks in forest fire detection and monitoring,"
Computers, Environment and Urban Systems, vol. 36, no.6, pp. 614-625,
November 2012.

[15] Liu, Guojin, et al., "Volcanic earthquake timing using wireless sensor
networks," Information Processing in Sensor Networks , Proc. of the
12th Int. Conf. of., pp. 91-102, 2013.

[16] S. Huang and X. Zhao, “Application of wireless sensor networks on
power plants monitoring,” Applied Mechanics and Materials, vols. 321-
324, pp. 762-766, June 2013.

[17] R. Raut, P. Thakare, and R. Bhoyar, "Conspectus of Various Routing
Protocols in VANET," International Journal of Advent Research in
Computer & Electronics, vol. 1, no. 2, 2014.

[18] G. Thomeczek, I. Colwill, and E. Stipidis, "Mission aware topology
healing for battlefield MANET," Journal of Battlefield Technology. vol.
17, no. 3, December 2014.

[19] M. Sood, S. Kanwar, "Clustering in MANET and VANET: A
survey," Circuits, Systems, Communication and Information Technology
Applications (CSCITA), 2014 International Conference on, pp. 375-380,
April 2014.

[20] B. Paul, M. Ibrahim, and M. Bikas, “VANET Routing Protocols: Pros
and Cons,” International Journal of Computer Applications, vol. 20, no.
3, pp. 28-34, April 2011.

[21] S. Zeadally, R, Hunt, Y. Chen, A. Irwin, and A. Hassan, "Vehicular ad
hoc networks (VANETS): status, results, and
challenges," Telecommunication Systems, vol. 50, no. 4, pp. 217-241.
December 2010.

[22] S. Worrall, G. Agamennoni, J. Ward, E. Nebot, "Fault Detection for
Vehicular Ad Hoc Wireless Networks," Intelligent Transportation
Systems Magazine, IEEE, vol.6, no.2, pp.34-44, April 2014.

[23] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 14:1-14:42, May 2009.

[24] J. Kephart and D. Chess, "The vision of autonomic computing,"
Computer , vol. 36, no. 1, pp. 41-50, January 2003.

[25] J. Mulcahy and S. Huang, "Autonomic Software Systems: Developing
for Self-Managing Legacy Systems," Software Maintenance and
Evolution (ICSME), 2014 Int. Conf. on, pp. 549-552, October 2014.

[26] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, “Self-
healing systems — survey and synthesis,” Decision Support Systems,
vol. 42, no. 4, pp. 2164-2185, January 2007.

[27] J. Mulcahy, S. Huang, and A. Veghte, "Leveraging service-oriented
architecture to extend a legacy commerce system," Systems Conference,
2010 4th Annual IEEE, pp.243-248, April 2010.

[28] M. Huebscher and J. McCann, “A survey of autonomic computing:
degrees, models, and applications,” ACM Computing Surveys, vol. 40,
no. 3, pp. 1–28, August 2008.

[29] R. Raw, M. Kumar, and N. Singh, "Security challenges, issues and their
solutions for VANET," Int. Journal of Network Security & Its
Applications (IJSNA), vol. 5, no. 5, September 2013.

[30] B. Yu, C. Xu, B. Xiao, “Detecting Sybil attacks in VANETs,” Journal
of Parallel and Distributed Computing, vol. 73, no. 6, pp. 746-756, June
2013.

[31] G. Guette, and C. Bryce, "Using tpms to secure vehicular ad-hoc
networks (VANETs)," Information Security Theory and Practices.
Smart Devices, Convergence and Next Generation Networks, vol. 5016,
pp. 106-116, 2008.

