
Autonomic Computing and VANET 

James J. Mulcahy 
Computer & Electrical Engineering 

and Computer Science 
Florida Atlantic University 

Boca Raton, FL, United States  
jmulcah1@fau.edu 

 

Shihong Huang 
Computer & Electrical Engineering 

and Computer Science 
Florida Atlantic University 

Boca Raton, FL, United States 
shihong@fau.edu 

Imad Mahgoub 
Computer & Electrical Engineering 

and Computer Science 
Florida Atlantic University 

Boca Raton, FL, United States 
imad@cse.fau.edu 

 
 
 

Abstract— As modern wireless communication networks 
continue to spread in coverage and ubiquity, so do the 
applications for networks that take advantage of mobile 
technology. One of the more interesting areas of research and 
development is in the development and deployment of vehicular 
ad hoc networks (VANETs). VANETs offer the potential for 
intelligent transportation networks that can both actively and 
passively improve travel efficiency and safety for the vehicles 
that use them. Informative content can be delivered to drivers 
informing them of road conditions or nearby traffic congestion. 
Entertaining content like multimedia can be delivered to vehicle 
passengers. To be usable and efficient, VANETs need to be 
largely autonomous and self-adaptive. The software that 
organizes the nodes entering and leaving a VANET must be self-
managing, without requiring their active participation of drivers 
or passengers in the organization and maintenance of the 
network. A VANET needs to automatically adapt to changes in 
the geography over which the network is deployed, and to the 
highly dynamic behavior of its participant vehicles. It must detect 
and recover from failures during content delivery, protect the 
integrity of data being delivered, and protect against malicious 
attacks by intruders. It should optimize the exchange of 
information between participant vehicles and roadside 
infrastructure, making the best use of power and bandwidth. In 
this paper, we describe the architecture of vehicular ad hoc 
networks, the principles of autonomic software design, and how 
the autonomic computing paradigm is applied to VANET 
applications.  

Keywords—wireless sensor networks, vehicular ad hoc 
networks, software engineering, autonomic computing, self-
adaptive systems, self-managing systems, MAPE-K, control loops 

I. INTRODUCTION 

Specialized wireless sensor networks like intelligent 
transportation systems (ITS) and vehicular ad hoc networks 
(VANETs) are enjoying an increase in popularity in both 
application and research. There are more than one billion 
passenger cars on the road world-wide today [1]. This number 
is projected to swell to four billion by 2050 [2]. The 
improvement and ubiquity of increasingly cheaper hardware 
allows modern vehicles to become rolling computing and 
storage devices. With increasing sophistication and coverage 
of wireless communication networks, especially those that are 
composed of mobile nodes like vehicles, it is no wonder that 
VANETs suffer from a problem of scale and complexity.  

Government entities seek to improve public safety and 
make traffic management more efficient and reliable. 
Commercial entities are interested in improving the 
experience and comfort of the vehicle occupants, supplying 
navigation details, time-sensitive information and news, and 
multimedia entertainment for passengers (“infotainment”) [3]. 
Researchers and practitioners strive to improve and evolve 
techniques used to deploy and maintain ad hoc networks, 
especially to improve their flexibility, efficiency, reliability, 
and security. To achieve these goals, VANETs exhibit a 
significant degree of autonomy to provide a seamless 
experience for human drivers and passengers.  

“Autonomic computing” is a term coined by IBM in 2001 
to describe a design approach that imparts self-managing 
behavior to software systems, aimed at reducing or mitigating 
system complexity, while increasing reliability. The approach 
involves the development of systems capable of managing 
their own resources and behavior with little or no human 
intervention, given certain high-level system objectives 
defined by humans [4]. Since modern hardware and software 
can be inextricably linked, this term naturally extends to the 
usefulness of autonomic systems that are a synthesis of both 
hardware and software. Wireless sensor networks (WSNs), 
mobile ad hoc networks (MANETs), and vehicular ad hoc 
networks (VANETs) are examples of types of systems that 
stand to benefit from autonomic design. Ultimately, the most 
efficient VANETs are those that operate completely 
autonomously, responding to changes in the environment in 
which they operate in a self-configuring, self-optimizing, self-
protecting, and self-healing manner. 

While there is a body of literature that addresses the use of 
the autonomic computing in the development of new software 
systems and the extension of legacy software systems, and 
literature that describes wireless sensor networks like 
MANETs and VANETs, this paper aims to provide a synthesis 
that describes how VANETs exhibit autonomic design and 
behavior as described by IBM. The remainder of the paper is 
organized as follows: Section II provides background about 
wireless sensor networks and autonomic computing. Section 
III describes vehicular ad hoc networks in the context of 
autonomic computing, while Section IV concludes the paper 
and offers ideas for future work in this area of engineering. 
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II. BACKGROUND 

Nearly one hundred and forty years have passed since 
Alexander Graham Bell uttered the first words over a 
telephone, summoning Thomas Watson from his laboratory 
[5]. Today the world is connected by wired and wireless 
infrastructure. High-capacity fiber optic cables are draped 
along   the   bottom   of   the   world’s   oceans. Fiber, copper, and 
coaxial cables are buried into our infrastructure and strung 
between our buildings. The development of satellite-to-ground 
communications and mobile packet-based networks in the 
1960s and 1970s began to untether us from wired 
infrastructure [6]. More recently, radio, cellular, Wi-Fi, 
Bluetooth, and a host of other wireless technologies have 
appeared. Mobile sensors and devices have become cheaper 
and more ubiquitous, and access to a variety of mobile-based 
service without being limited by timing or location is now 
possible [7].  

A. Wireless Sensor Networks 
A wireless sensor network (WSN) is a distributed network 

of sensor nodes that has little or no permanent infrastructure 
[8]. In a WSN, the nodes themselves make up the structure of 
the network. The nodes can send, receive, and store data, and 
may act as routers of data packets destined for other distant 
nodes. (Fig. 1). WSNs are composed of a large number of 
sensors that can be deployed quasi-randomly and densely over 
a selected area of interest, and collectively used to monitor 
and exchange information about the surrounding environment 
[9]. Wireless sensors typically exchange data with other 
sensors via short range radio. Memory storage and power are 
limited in most applications, and consequently a modern 
engineering challenge is to produce sensors that consume as 
little bandwidth and power as possible. This drives the need 
for efficient distribution of data over sensor networks.  

 
 

 
 

Fig. 1.  Multi-hop wireless sensor network (WSN) example. 

 
 

Fig. 2. Wireless weather station network reporting in real-time. 
 

WSNs have been around in some form since at least the 
1950s, when the United States military deployed a network of 
submerged acoustic sensors to detect and track Soviet 
submarines [10]. By the 1970s, the U.S. Army was developing 
packet-switching technology and packet radio systems [11]. 
There are many applications for statically place WSNs, like 
monitoring air quality, the structural integrity of buildings 
[12], water temperature and composition of inland waterways 
[13]. WSNs can be used to monitor forest fires [14], seismic 
conditions [15], and even weather conditions over large 
geographical areas (Fig. 2). Other WSNs are designed for 
industrial applications that monitor and collect data from 
power plants, water treatment plants, factories, and data 
storage facilities [16]. In each of these examples, the sensor 
nodes are typically placed once and not subsequently 
relocated. 

B. MANETs and VANETs  
Mobile ad hoc networks (MANETs) and vehicular ad hoc 

networks (VANETs) are designed to perform similar types of 
sensory and communications tasks as WSNs, but composed of 
mobile nodes. VANETs are a special class of MANETs, 
composed of nodes represented by vehicles rather than people, 
floating buoys, or other less mobile or semi-mobile platforms 
[17]. MANETs and VANETs must both adapt to a wide 
variety of geographic topologies, and a dynamically changing 
set of mobile participant nodes. At any given moment, a node 
in a MANET or VANET can travel into or out of the range of 
other neighbor nodes and of any nearby fixed network 
infrastructure. In MANETs, the movement of the nodes is 
highly variable, and relatively slow. A battlefield scenario in 
which the participant nodes are soldiers wearing sensor and 
communication equipment is an example of a MANET [18].  



A VANET differs from a MANET with respect to node 
mobility and the topology of the network. In a VANET, nodes 
are vehicles, and move in more predictable directional 
patterns. Automotive vehicles typically travel along well-
defined roadways, but at a much higher rate of speed [19]. 

Physical data storage is less of a concern in the 
implementation of VANETs than other wireless sensor 
networks. Unlike humans carrying mobile devices that are 
necessarily limited in weight and size, automotive vehicles 
can support heavier and more robust computing devices with 
higher-capacity memory, computing power, communication 
capability, and power storage capacity. Power is less of a 
concern, since most vehicles are likely to contain alternators 
or other power-generating equipment.  With a constant power 
source when the vehicle is running and access to a battery for 
backup when the vehicle is off, on board units (OBUs) are less 
affected by power limitations of other kinds of mobile devices 
[20].  

Like other wireless sensor networks, VANET nodes share 
data wirelessly via radio transmission. Communication 
between   participating   vehicles   is   known   as   “Vehicle   to  
Vehicle   (V2V).”   “Vehicle   to   Infrastructure   (V2I)”   refers   to  
data transmitted from individual vehicles to roadside units, 
and  “Infrastructure  to  Vehicle  (I2V)”  refers to communication 
that originates with an RSU but is targeted at one or more 
participating vehicles. The vehicle OBUs may in turn re-
broadcast information to other vehicles within its range, 
extending the reach of the network beyond the physical range 
of the RSU. Data targeted for a specific recipient may be 
communicated directly when the sender and receiver are in 
range  of  each  other,   referred   to  as  “single  hop”,  or   it  may  be  
communicated by routing it through one or more other 
vehicles  in  a  “multi-hop”  process (Fig. 3). For example, traffic 
information data that is broadcast from a fixed roadside unit 
(RSU) reaches all “listening”   vehicle nodes within range of 
that RSU.  

This may not be the most efficient and reliable way to 
route the data, however. If the target vehicle is beyond range 
of the RSU, for example, it may be impossible. A more 
efficient and reliable to send the data in several concurrent 
pieces,   or   “packets,”   via  multiple “hops” using intermediary 
vehicles as routers between the source and target of the data. 
Efficient delivery of content is necessary for a reliable 
network that does not consume significant portions of the 
available bandwidth, particularly when the network topology 
changes frequently [21]. 

To be useful, reliable, and efficient, a VANET must be 
able to reconfigure itself when the topology of the network 
changes. Individual vehicle nodes may have varying types of 
OBUs with varying storage capacities, processing power, and 
communication capability. The highly dynamic nature of a 
VANET makes this organizational task too difficult for human 
participants to maintain.    

 

Within a VANET, communication between nodes is a 
challenge of efficiency and reliability. To reduce consumption 
of limited transmission bandwidth, a VANET must optimally 
route data between nodes quickly and efficiently.  

VANETs must have the ability to recover from faults 
without disrupting the rest of the network. A vehicle suddenly 
leaving the network with data  that  it  hasn’t  yet  been  forwarded 
to a recipient node is an example of a fault. There are many 
reasonable scenarios in which a vehicle node may leave a 
VANET abruptly. For example, there may be a failure in 
transmission capability, such as a faulty antenna [22]. Another 
example is when a vehicle may travel beyond the range fixed 
infrastructure and of all other vehicles that are members of the 
network. In another scenario, a vehicle may crash and damage 
the OBU or experience hardware failure in the OBU itself. A 
third – and more common – scenario is described by a driver 
reaching his or her intended destination and subsequently 
shutting down the vehicle. Unless the OBU is designed to 
communicate with the network on battery power, the node 
disappears from the network when the vehicle is powered off.  

A VANET must protect itself from malicious attacks 
originating outside the network. They may be aimed at 
disrupting network operation, corrupting the data transmitted 
between nodes, or intercepting private data meant for another 
vehicle. In short, a VANET must have a high degree of 
autonomicity, which can be accomplished with a combination 
of hardware architecture and software. 

Node discovery, efficient data routing, recovery from 
communication failures, and protection from malicious attacks 
are but a few of the requirements of a vehicular ad hoc 
network [19]. In this paper, these four requirements are used 
to illustrate the self-*, or self-managing attributes that 
VANETs inherently must exhibit to have value to its human 
participants. 

 
Fig. 3.  A simplified model of a multi-hop VANET. 



C. Autonomic Computing 
In 2001, IBM published   a   “manifesto”   that addressed the 

growing complexity of software systems. The manifesto 
coined   the   term   “autonomic computing”   that   defines   the  
attributes of a system that reduces reliance upon humans to 
monitor, configure, optimize, correct, and protect software 
systems. Autonomic systems exhibit self-*   (“self-star”)  
behavior, meaning they have “adaptivity” properties [23]. An 
autonomic system is also self-governing,   or   “self-managing”  
[24]. Self-managing systems have each of the four properties 
outlined  in  IBM’s  manifesto, and are described as follows: 

The self-configuring property refers the ability of a system 
to detect and adapt to changing conditions in or requirements 
by its environment. A self-configuring system may 
automatically add or remove software components of the 
system in real time without waiting for human intervention. 
For example, the operating system of a personal computer 
may install or remove driver software when it discovers newly 
attached hardware peripherals or other software, anticipating 
what a human would do in its stead. In this regard, the 
operating system is said to be self-configuring. In industry, a 
commercial enterprise resource planning system (ERP) may 
be designed to monitor external computing systems, some of 
them owned by other stakeholders. They need to be able to 
recognize when connectivity to external systems are lost or 
restored, and react accordingly. They may monitor local or 
external data stores, and reacting to the appearance of 
particular types of data. A case study is presented in [25] that 
describes an autonomic solution for a commercial retailer. Its 
self-configuring behavior included the detection and 
processing of purchase orders by web-based customer orders 
without any other human monitoring or action.  

Self-optimizing systems automatically monitor and tune 
themselves with the goal of improving the quality of system 
attributes like reliability and efficiency. For example, 
operating systems use automated process schedulers to 
achieve high system utilization rates while executing 
applications according to priority, and this is done without a 
human operator needing to intervene. In commercial systems, 
internal and external resources are monitored and resource 
allocations altered according to pre-defined rules or 
parameters designed to keep the system operating within 
specific performance requirements. In sensor networks, 
optimal shortest-distance or shortest-time paths may be 
computed for optimal routing of data to and from origin and 
destination nodes. 

A self-healing system is one that recognizes and recovers 
from system faults without any human assistance. Similar to 
the  concept  of  “fault   tolerance,” self-healing is a more robust 
behavior than the simple recovery from a fault [26]. The goal 
of a self-healing system is to return it back to normal 
operation once the fault is detected and handled [23]. Modern 
virus detection software is an example of application-level 
solutions that monitor for, detect, and quarantine malicious 
software to keep the host system operating normally. 
Commercial ERPs can be designed to exhibit self-healing 

behavior by detecting and adapting to unplanned lapses in 
connectivity with other systems they communicate with [27]. 

Self-protecting systems are designed to anticipate system 
faults, recover from human error, and prevent malicious 
attacks from external sources, acting automatically to prevent 
or mitigate further damage [23]. This behavior is proactive, 
while a self-healing behavior reactive. A self-protecting 
system actively monitors itself in order to detect threats to 
system integrity as they occur, before a system fault occurs. 
An anti-malware application on a personal computer, for 
example, may automatically   “blacklist”   a   website   that   is  
known to infect target machines with viruses or worms, or it 
may quarantine a virus as soon as it is recognized and before it 
can damage any data.  

These four self-* attributes describe the behavior of an 
autonomic system. At the root of the design of autonomic 
systems is the architectural model that helps impart these 
attributes. An autonomic system may consist of one or more 
autonomic components that interact with each other. A 
component can itself be further composed of other autonomic 
components. Components can be inputs to yet other 
autonomic components. Autonomic components consist of the 
resource being managed and the software that manages that 
resource. 

An autonomic manager is a software mechanism that 
monitors software or hardware (or both), decides how to alter 
the system, and automatically applies the changes needed to 
alter that behavior.  The autonomic manager is a control loop 
that intelligently monitors a managed element, and adapts its 
behavior accordingly. A more complicated or inclusive 
autonomic manager can be designed to impart several or all of 
the self-* attributes to system or subsystem in which it 
operates. A common model used to describe the architecture 
of the control loop that a typical autonomic manager employs 
upon a managed element is the MAPE-K model described by 
IBM [4]. 

D. The MAPE-K Model 
MAP-K is an acronym that represents the major 

components of an autonomic control loop architecture, and is 
illustrated in Fig. 4. The monitoring component allows the 
autonomic manager to detect – or sense – changes in its 
operating environment, using hardware sensors or software-
based detection schemes. 

The analysis component determines whether the collected 
data indicates a change in the system worthy of action. The 
planning component determines what action or actions should 
be taken, and the execution component applies necessary 
changes to the system or managed resource. The knowledge 
component stores information that is gathered about the 
element being managed, the environment in which it operates, 
and the rules that govern expected system behavior. 
Information can include historical operational data that is later 
mined and used to more intelligently and finely tune system 
behavior. 



 
 

Fig. 4.  MAPE-K control loop model. 

 

III. AUTONOMIC COMPUTING AND VANET 

The autonomic computing paradigm described by IBM 
addresses the growing complexity of hardware and software 
systems. At the most abstract level, an autonomic manager 
controls a managed resource. Managed resources may include 
individual computers, servers, and data storage devices, but 
they also may include operating systems, commercial software 
applications, and the middleware that connects and integrates 
them. A managed resource may even be an entire business 
process, like a commercial order fulfillment systems workflow 
in [25]. VANETs are themselves a blend of hardware and 
software components and processes that inherently need to be 
autonomic.   

In a VANET, the nodes (OBUs and RSUs) are the 
autonomic elements. A vehicle’s OBU monitors its 
environment using sensors attached to the vehicle or its 
occupants, and monitors a communication channel for 
broadcasts from roadside units and other vehicles (I2V and 
V2V). A RSU monitors the network to detect vehicles 
entering and leaving its range, and listens for broadcasts from 
the individual OBUs (V2I).  

Nodes in a VANET are tasked with optimizing the 
appropriate routing path for data transmission between 
infrastructure and vehicles, and between vehicles. 
Optimization reduces network overhead like power 
consumption and bandwidth usage, while improving the 
reliability of the network by reducing data collisions and 
packet losses, and reacting to interference. The network must 
heal from data loss by detecting when a participant vehicle has 
left the network without delivering its data payload to the next 
vehicle in an active routing path. The data must be rebroadcast 
and routing tables need to be updated to exclude the missing 

vehicle. OBUs and RSUs must be designed to detect and 
protect from malicious attacks upon the network, while 
preserving the integrity and confidentiality of the data being 
transferred between participating nodes. 

Like other autonomic systems, VANETs must have self-
managing characteristics for the network to be useful to its 
users, and should not require humans to actively configure, 
operate, or maintain the network. The self-configuring, self-
organizing, self-healing, self-protective attributes of an 
autonomic VANET must be seamless and invisible to the 
humans operating vehicles in the network. The following 
subsections elaborate upon the autonomic attributes that 
VANETs have. 

A. A VANET is Self-Configuring    
Vehicular ad hoc networks automatically respond to 

changes in their operating environment. A VANET’s 
operating environment consists of a set of participating 
vehicles that form the nodes of the network, plus the set of 
roadside infrastructure units that communicate with them. 
RSUs are generally permanent infrastructure and are therefore 
geographically static nodes. Vehicles, however, may enter and 
leave the network at any time with no forewarning. They may 
change direction, change speed or acceleration, and may even 
be shut down or powered on while in range.   

A self-organizing, or self-configuring VANET detects 
changes in the network topology and makes the appropriate 
adjustments, like modifying routing tables to reflect new 
participant vehicles or departing vehicles. A vehicle will 
typically leave a network by traveling outside the range of the 
RSUs, and outside the range of the closest vehicle that still 
maintains contact with the network.  

Alternatively, a vehicle may reach its intended destination 
while still in range of the network, and disappear from the 
network when the driver shuts it down. Conversely, vehicles 
that are powered up within range of a VANET or otherwise 
enter the network must be accounted for. In worst-case 
scenarios, a vehicle can crash and damage its OBU, or the 
OBU equipment could fail for other reasons. Connectivity 
between the vehicle and the network can also fail, effectively 
removing the vehicle from being seen by other nodes in the 
network.  

B. A VANET is Self-Optimizing 
A self-configuring VANET automatically handles the 

scaling of the network from just a few vehicles (or even one) 
to dozens or hundreds of vehicles or more. A self-optimizing 
network transmits data between participating vehicles and 
infrastructure as efficiently as possible, even as the topology 
constantly changes. A self-optimizing network is able 
compute the most efficient routing of the data the goal of 
reducing network overhead and increasing the reliability of the 
exchange of data between nodes. 

Topology-based and geographical-based are two types of 
routing schemes used to optimize the flow of data in a 



VANET. Topology-based proactive protocols like Fisheye 
State Routing are table-driven. Reactive protocols like Ad Hoc 
on Demand Distance Vector (AODV), Dynamic Source 
Routing (DSR), and Temporally Ordered Routing Protocol 
(TORA).  Geographical-base routing protocols include Delay 
Tolerant Network (DTN), Greedy Perimeter Stateless Routing 
(GPSR), and Vehicle-Assisted Data Delivery (VADD). The 
advantages and disadvantages of each protocol is beyond the 
scope of this work, but are presented to show how VANETs 
are designed to be self-optimizing [20].  

C. A VANET is Self-Healing   
Vehicles typically leave a VANET with no warning. If a 

departing vehicle is in possession of one or more data packets 
that are destined for another vehicle, those packets are lost. A 
self-healing VANET recognizes that a packet has been lost, 
updates its routing tables to exclude the now-missing node, 
and retransmits the failed packets. In table-based routing 
models, the tables are updated accordingly. In this manner, the 
network  has  “healed”  itself  by  first  detecting  the  fault  and  then  
taking action to restore the intended function of the network –
delivering of data to target nodes.   

D. A VANET is Self-Protecting 
While self-healing describes a reactive behavior, self-

protecting describes both reactive and proactive behaviors. A 
self-protecting system is able to anticipate the possibility of a 
fault or failure before it occurs, and is able to automatically 
take steps to prevent or block the problem from occurring or 
causing more damage. For example, a VANET may be 
designed to compute the speed and orientation of each vehicle 
in its range, rerouting data packets through interior nodes 
rather than edge nodes to their intended destination, to 
increase the changes that the data arrives at its intended 
destination without interruption. While VANETs protect 
themselves from data loss, they must also protect themselves 
from intentional attacks from sources external to the network. 
Some attacks are intended to disrupt or corrupt the 
communication of data across the network, or to overwhelm 
the network’s   resources. The latter is known as a “denial   of  
service”  (DoS)  attack [29].   

Other malicious techniques include “Sybil”   attacks   in 
which a malicious node broadcasts information to multiple 
neighboring vehicles, spoofing each with a fake identity [30]. 
Node impersonation is another example in which a malicious 
node pretends to be another vehicle [31]. A malicious node 
may broadcast false information to impersonate another node, 
or to have an effect on traffic flow in a biased or otherwise 
disruptive way. A self-protecting VANET is one that is able to 
successfully detect the presence of a malicious node or vehicle 
and block it from participating in the network or minimizing 
its impact. 

 

 

 
Fig. 5.  Three-level self-* hierarchy. 

The four attributes of a VANET discussed in this section 
collectively describe an autonomic system as defined by IBM. 
Other researchers have elaborated on the autonomic 
architecture, expanding it beyond the four basic attributes 
identified by IBM (Fig. 5). In [23], Salehi and Tahvildari 
describe a three-level hierarchy of self-* properties. The top 
level is the self-adaptive or self-organizing attribute, a 
generalized term to describe all of, or the result of, the self-* 
behaviors of an autonomic system. The middle level consists 
of the four major properties from IBM: self-configuring, self-
optimizing, self-healing, and self-protecting. The third and 
most primitive level of attributes are those that describe the 
behavior of a system that is self-aware and context-aware. In 
VANET this is accomplished by self-monitoring and limiting 
communication between trusted participating vehicles and 
roadside infrastructure over a discrete geographical range.  

IV. SUMMARY & FUTURE WORK 

In this paper, we described the autonomic computing 
paradigm, detailing four major attributes that define the 
behavior of such systems. We described the general structure 
of wireless and vehicular ad hoc networks, and how VANETs 
by design manifest the attributes of an autonomic system. The 
examination of the autonomic structure of VANETs in this 
paper is limited, and future work will include a more thorough 
review and evaluation of the existing and planned applications 
of VANET and autonomic design. 

Future work will also explore how the autonomic design 
approach in VANETs may be extended to other modes of 
commercial travel. Perhaps a day approaches when airlines, 
rail traffic, boat traffic, and vehicular traffic will all be 
interlinked into one seamless, mode-agnostic autonomous 
transportation network. 
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