

 Int. J. Computer Aided Engineering and Technology, Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Remote Computing Resource Management from

Small Devices by Utilizing WSRF

Shihong Huang
Dept. of Computer Science & Engineering, Florida Atlantic University
777 Glades Road, Boca Raton, FL 33431-0991, USA
E-mail: shihong@cse.fau.edu

Junwei Cao
Research Institute of Information Technology, Tsinghua University
Beijing 100084, China
E-mail: jcao@mail.tsinghua.edu.cn

Michael VanHilst
Dept. of Computer Science & Engineering, Florida Atlantic University
777 Glades Road, Boca Raton, FL 33431-0991, USA
E-mail: mike@cse.fau.edu

Jan Mangs
Lockheed Martin
5600 Sand Lake Road, Orlando Florida 32819, USA
E-mail: jmangs@gmail.com

Abstract: The increasing processing power and capabilities of mobile phones
enable them to become the next generation of computing platform. Mobiles
devices provide ubiquitous, inexpensive, and powerful computing resources
that people could use wherever they are. The increasing availability of Web
services and grid computing has made easier the access and reuse of different
kinds of services. Web services provide network accessible interfaces to
application functionality, while grid computing enables the efficient
distribution of computing resources and power. In the future, higher
functioning smart homes will need these capabilities. As a step in bringing grid
computing to smaller devices, this paper presents a framework that enables the
use of small mobile devices to conduct computing resource management in a
distributed environment. The mobile devices access stateful Web services on a
Globus-based grid environment. To illustrate the presented framework, a
phone-based user-friendly application has been created that uses the framework
libraries to demonstrate the various functionalities that are accessible from any
Nokia S60 phone.

Keywords: mobile devices, smart home, resource management, grid
computing, Web services, WSRF, Globus

 S. Huang et al.

Reference to this paper should be made as follows: Huang, S., Cao, J.,
VanHilst, M. and Mangs, J. (xxxx) ÔRemote computing resource management
from small devices by utilizing WSRFÕ, Int. J. Computer Aided Engineering
and Technology, Vol. x, No. x, pp.xxÐxx.

Biographical notes:

Shihong Huang is an Assistant Professor in the Department of Computer
Science & Engineering at the Florida Atlantic University. Her research interests
include program reverse engineering, comprehension, and redocumenation, and
software maintenance and evolution. She was the main research associate for
the ÒSoftware RecyclingÓ project joint work with BMW Group, and an
investigator for ÒOne Pass to ProductionÓ project joint work with Motorola.
She was General Chair of the 24th ACM International Conference on Design of
Communication (SIGDOC 2006), and Program Co-Chair of the 9th IEEE
International Symposium on Web Site Evolution (WSE 2007). Shihong Huang
received her PhD from the University of California, Riverside. She is a member
of the IEEE Computer Society and a member of the ACM.

Junwei Cao is currently a Professor and Assistant Dean of Research Institute of
Information Technology, Tsinghua University, China. He has worked on
advanced computing technologies and applications for more than 10 years.
Before joining Tsinghua in 2006, Junwei Cao was a Research Scientist at the
LIGO Laboratory, Massachusetts Institute of Technology, and as a research
staff member at the C&C Research laboratories, NEC Europe Ltd., Germany.
Junwei Cao got his PhD in computer science from University of Warwick, UK,
and his master and bachelor degrees from Tsinghua University. Junwei Cao has
published over 80 academic papers and books. He is a Senior Member of the
IEEE Computer Society and a Member of the ACM and the CCF.

Michael VanHilst is an Assistant Professor at Florida Atlantic University. His
research history includes software development methods, software security,
mobile agent and personal assistant software, and data visualization. He has 20
years of industry experience with HP Labs, IBM Research, CNRS (French
National Centre for Scientific Research), and the Harvard Smithsonian Center
for Astrophysics. Dr. VanHilst received his PhD from the University of
Washington in Seattle and his master and bachelor degrees from the
Massachusetts Institute of Technology.

Jan Mangs is currently with Lockheed Martin in Orlando, Florida. Prior to
working at Lockheed, he was funded by a National Science Foundation
Partnership for International Research and Education Program (PIRE) grant to
work on addressing the special issues and developing a methodology and
framework for migrating web and grid applications to small mobile devices. He
also worked on model driven engineering as a Research Assistant funded by
Motorola. Mr. Mangs earned his bachelor and master degrees from Florida
Atlantic University.

1 Introduction

The smart home of the future will act in many ways like a friend. The level of service
anticipated will require more computing power and different models of interaction than
what we see today. To take one example, to achieve higher levels of communication than
simple task-specific commands will require learning an individualÕs patterns,

 Remote computing resource management from small devices by utilizing WSRF

accumulating context, and a great deal of search and reasoning (Oh and Woo, 2005). The
underlying mechanisms for interaction must enable components to work together
seamlessly, and maintain state. To achieve this potential, tools and techniques being
developed to solve large science scale problems on a grid network will eventually
transfer to solve more personal problems with smaller devices in the networked home.
We have already seen the mechanisms of distributed computing evolve from large scale
distributed systems to sensor networks and networks of components on a chip, including
the Common Object Request Broker Architecture (CORBA) remote procedure call (RPC)
protocol (Gidding, 2006). Virtualization is also coming to the smart home (Perumal,
2008). In this paper we describe web services in grid computing, and report on work to
migrate their capabilities to the scale needed for use in the smart home. To facilitate
development at this initial stage, we used a cell phone and tasks involving manual
interaction.

Web services are network-accessible interfaces to application functionality.
Although there have been some discussions of the numerous technical challenges to fully
utilize their potential (Tilley et al., 2004), web services have already become part of
mainstream computing. A web service is defined by the W3C as Òa software system
designed to support interoperable machine-to-machine interaction over a networkÓ (Haas
and Brown, 2004). An individual who wishes to utilize a web service only needs to know
what a service does and not how it is implemented on the server side. Specif ically, that
individual needs to know where they can find a specif ic service, what input, if any, is
required by an invocation to a web service and what information is returned by that web
service. Web services describe themselves using the Web Service Description Language
(WSDL) (Chinnici et al., 2007) and developers utilize this description to automatically
generate client stubs that use Simple Object Access Protocol 2001 (Gudgin et al., 2007)
invocations to access services.

Otherwise known as SOAP, the Simple Object Access Protocol is responsible for
allowing servers and clients to communicate with each other regardless of their platform-
specific details. The most important point to remember is that Web services as defined by
the W3C do not save state information.

The convergence of grid computing and Web services has lead to the concept of
stateful Web services. While f irst generation grids were capable of massive
computational power, there were drawbacks due to the overhead required in managing
and configuring available computing resources and the relative lack of reusable end-user
applications (Foster, 2006). An application was tightly coupled to the platform it was
developed for and reusing previous work required additional effort. The latest trend has
involved movement towards applying Web services in grid computing in order to
improve some of the drawbacks of the first generation grids and has led to development
of ÒstatefulÓ Web services that are geared for use in grid computing environments.

Because of the lack of support for maintaining state information across web service
invocations, the current standard for Web services was insufficient for the grid computing
environment. In order to effectively support the collaboration required by grid
computing, the Open Grid Services Infrastructure (OGSI) standard was proposed
(Cjazkowski et al., 2004). OGSI was originally intended to provide the infrastructure to
add stateful resources to Web services. However, the advent of new Web Service
standards such as WSDL 2.0 (Booth and Liu, 2007) and WS-Addressing (Box et al.,
2004) necessitated the creation of the Web services Resource Framework (WSRF). The
WSRF standard is relatively similar to OGSI with the exception of syntax and naming
convention changes. Unlike stateless Web services, WSRF allows web servers that
implement it to create, maintain, and manage resources. Instead of existing as a singular
entity at one time or another, stateful Web services exist for a finite (or infinite) period of
time. As long as they are not destroyed they are associated with a resource on the service

 S. Huang et al.

provider. These resources can be a range of objects: an endpoint reference to a web
service, a database connection, or simply an integer or string value. The ability to save
state information is crucial to enabling grid computing through Web services; without
states to maintain, collaboration in grid computing environments becomes very difficult
to accomplish while utilizing Web services. Without the ability to save and effectively
manage state information, stateless Web services are ill-suited for grid computing.

1.1 The Growth of Mobile Devices

The explosive growth of mobile devices continues unabated. Each new generation of cell
phones and PDAs are smaller, faster, and consume less power. Most mobile devices in
existence today have both the capability to handle voice and data. Almost all models of
cell phones can access the Internet through cellular transmission and some have Wi-Fi
capabilities. First generation cell phones were nothing more than glorified analogue FM
receivers. They utilized the traditional FM spectrum to transmit cellular calls and were
costly to both operators and consumers. The advent of second-generation cell phones was
enabled by the transition to digital communications and the introduction of voice
encoding and compression. The current third generation provides features such as text
messaging, picture messaging, and access to internet-related functionalities. Because
mobile devices do not require extensive landline infrastructure, mobile devices are much
easier for people in developing countries to acquire. For example, while the ratio of cell
phones to PCs is 0.9 in the United States, the ratio of cell phones to PCs in China is an
astounding 3.6 cell phones to every PC (Kanellos, 2005). Many developing nations are
simply skipping over more traditional avenues of communication technology in favour of
less expensive and more attractive solutions like cellular phones. The availability of
mobile devices to people all over the world provides a new potential source of computing
power to exploit.

Web services have existed on the Internet for a relatively long time but support for
them on mobile devices is still relatively limited. For stateful Web services, there is little
existing support among the major cell phone manufacturers. The platform independent
nature of Web services makes them an ideal match for mobile devices. Because mobile
devices do not require extensive landline infrastructure, mobile devices are much easier
for people in developing countries to acquire. The availability of mobile devices to
people all over the world provides a new potential source of computing power to exploit.

1.2 Utilizing Mobile Devices in Grid Computing

In regards to distributed computing, mobile phones are in a position similar to personal
computers: they are relatively inexpensive, available to many, and continuing to grow in
computing power. Although still lagging behind traditional computers in technical
aspects, the potential of mobile devices cannot be easily dismissed. The current
generation of cell phone technology, for example, is suited for tasks which involve
remote management of tasks running in a grid environment. Because of their inherent
mobile nature, these devices are able to stay with a user regardless of their location. A
person is not limited to sitting by a desktop machine. Although they arenÕt well suited yet
for offering computational and storage, the processor speed and storage capacity of
mobiles continues to grow rapidly with the advent of low-power processors and flash
memory (Mudge, 2001). In the future, it may even be possible that mobile devices are
powerful enough to perform some level of computation for grids through CPU cycle
scavenging or voluntary participation in grids.

 Remote computing resource management from small devices by utilizing WSRF

Currently, because cell phones and other mobile devices have been seldom
envisioned as being powerful enough for grid computing, there is little support for their
use in grid environments. Attempting to develop a Java-based cell phone application to
access stateful Web services exposed by a grid toolkit ,such as Globus, revealed a major
problem. The software running on the cell phone cannot access the grid services offered
by Globus because Globus implements the Web services Resource Framework (WSRF)
standard for stateful Web services (Foster et al., 2005). The most notable attempt to solve
this problem was a project called Òwsrf4j2meÓ which had full or partial support for WS-
Addressing, WS-ResourceProperties, WS-ResourceLifetime, and WS-BaseFaults (Knerr,
2006). While promising, the project has not seen any action since August 2006 and seems
to have been abandoned by its creator. No other notable attempts to fully integrate WSRF
into Java ME or other mobile platforms can be readily found.

Because of the lack of notable solutions to the problem mentioned, this paper
proposes to create a new and complete solution that will finally make it possible to
readily utilize WSRF on a mobile device. I t presents a framework created to address the
issues that occur when trying to utilize WSRF from a mobile device. The purpose of the
framework presented is threefold:
(1) To solve the complications when communicating to a stateful web service from a

mobile device

(2) To allow more complicated use of stateless Web services simultaneously, and

(3) To lay the foundation for incorporating mobile devices into the grid environment

The rest of the paper is organized as follows: Section 2 presents the technology upon
which the framework is initially based and details some of the diff iculties in interactions
between the environments of grid and mobile computing. Section 3 presents the proposed
framework that allows mobile devices to access WSRF-enabled Web services. Section 4
describes a case study done to demonstrate the functionalities of the proposed framework.
Section 5 provides a summary of the paper, points out the limitations of the framework in
its current state, and describes the future work planned for the framework.

2 Background

This section presents the background upon which this research work is based. The
objective of this framework is to enable mobile devices to connect to WSRF-enabled
Web services and lay the foundation for future work on incorporating mobiles into the
grid computing environment. In order to appeal to as many users of grid software as well
as mobile device users, the framework had to be applicable to the most number of users
in both domains. Although the framework that is proposed in this paper is applicable to
all Web servers that implement WSRF, not every WSRF implementation is equal. At the
same time, the framework had to be implemented on a specific software platform for use
on mobile devices. This section describes the details of the server-side component that
implements WSRF and the client-side software platform upon which the framework is
built, the reasons why each was chosen, and the difficulties in establishing successful
communication.

2.1 Grid Component - Globus Toolkit

The open source Globus Toolkit (Foster, 2006) is a toolkit used for building distributed
computing grids. It allows organizations to bring numerous independent computers

 S. Huang et al.

together into a single virtual ÒsupercomputerÓ otherwise known as a computing grid. The
Globus Toolkit was created by the Globus Alliance some of whose members include the
University of Chicago, the U.S. Argonne National Laboratory, and the University of
South Carolina. Globus has widespread industry adoption with many companies, such as
IBM, Sun, Oracle, and Hewlet-Packard, pursuing Globus-based Grid strategies (Globus
Alliance, 2008).

One of the main reasons the Globus Toolkit was chosen as the platform to develop
our framework was its implementation of WSRF (Pu and Lewis, 2007). As mentioned in
the introduction, WSRF is an evolution of OGSI which is another standard which Globus
also implemented. In Globus, stateful Web services are used to expose grid computing
services to the internet in a platform-independent manner. The services provided by
Globus are well-suited for testing the framework proposed in this paper. Rather than
relying on mock-up Web services, the framework has been built in conjunction with
testing on robust Web services in Globus such as job submission and management and
file transfers. The case study in Section 4 demonstrates the use of these services in an
application built upon the framework.

The Globus Toolkit provides the most complete implementation of WSRF and has
superior response times to invocation calls when compared to WSRF.NET, WSRF::Lite,
and pyGridWare (Humphrey et al., 2005). Because the Globus Toolkit has a robust
implementation of WSRF, it eliminates the problem of dealing with an incomplete
server-side implementation of WSRF and concentrates work on the client-side issues of
communicating with WSRF-based web services from a mobile phone. In addition, the
Globus Toolkit offers a high-performance version written in the C language and a
platform-agnostic version written in Java. Combined with the substantial support and use
among both academic and professional institutions, including the University of Chicago,
U.S. Argonne National Laboratory, University of South Carolina, and IBM, the Globus
Toolkit was chosen as the WSRF implementation to test our framework development.
Although the case study in Section 4 is run solely on the Globus Toolkit, the standardized
nature of WSRF allows it to be ported to other implementations that adhere to the same
standard.

2.2 Software Platform - Java ME

The target platform on which our framework is developed also plays a crucial role.
Because of the wide variety of cell phones, handsets, and PDAs available, we decided to
develop our framework for the Java ME programming language. The reason for this
decision is simply that Java ME is not limited to a single manufacturersÕ platform, the
framework which is built upon it will be applicable to as many phones as possible. For
example, if we had to chosen to develop in .NET Mobile, it would only be applicable to
devices that can run Windows Mobile.

The JSR-172 Web services package (Coward, 2008) is a subset of the Java API for
XML-based Remote Procedure Calls (JAX-RPC) (GlassFish, 2009). JAX-RPC provides
asynchronous RPC to Web services using Extensible Markup Language (XML) and
works over a wide variety of protocols including HTTP. In both JSR-172 and JAX-RPC,
client-side stubs are used to hide the implementation details of the web service being
called. The client-side stub includes the operation name, the input and output types, and
miscellaneous parameters. In short, JSR-172 provides basic support for web service
invocations and not much else.

Although HTTPS support is stated to be included in the JSR-172 package (Coward,
2008), it was revealed through testing and examining source code that the package only
creates unsecure HTTP connections and does not support TSL. Also, JSR-172 does not

 Remote computing resource management from small devices by utilizing WSRF

support complex data types that are required to communicate to Globus Web services
(Globus Alliance, 2008). The lack of support for complex data types results in an
inability to communicate with any Web services inside Globus that require more than a
simple data type such as a string or integer when using JSR-172.

3 The Framework

Because of the limitations mentioned in the Section 2.2, the use of the JSR-172 standard
was not possible when communicating to Globus. The JSR-172 standard is fairly basic
and only provides support for simple XML RPC commands over Java ME. It is not
adequate when used to communicate to WSRF-based Web services because JSR-172 has
no built-in support for the WSRF standard and does not allow the use of complex XSD
data types which are required in order to communicate with Globus. The framework
described in this section was created to fix the problem of communicating to stateful Web
services (such as those running in Globus) by implementing standards required by WSRF
and allowing the use of complex data types.

3.1 Architecture of the Framework

The methodology applied to this framework was to emulate the strong points of the JSR-
172 specification including its standardized approach and eff icient support of web service
invocations while addressing the problems of a lack of Web Services Resource
Framework support, a non-WSRF-compatible parser, and incomplete support for
complex types. The idea is to improve in the areas where JSR-172 is lacking by
leveraging concepts used in Apache Axis-based Java clients running in desktop
environments. In these Axis-based clients, users do not need to deal with many of the
stub properties present in JSR-172 and can simply utilize an addressing class to
automatically set the various properties associated with an endpoint address. In the
WSRF-ME framework, one goal was to support the concept of functionality with ease of
use. Because the WSRF-ME framework operates in a limited Java ME environment,
limitations had to be set as to how simplif ied the implementation of a client stub could be
versus its ease of use. A parser is included in the framework to automatically generate
code and complex types from a WSDL file; this allows developers to bypass the tedious
portions of code generation and deal with any specif ic issues they may have with their
WSRF-based web services.

Since the SOAP encoder and decoder used by JSR-172 were not available publicly,
the framework required the use of a custom SOAP encoder and decoder. This allowed us
to add additional property fields to the stub such as those defined by WSRF or any of its
related standards. I t also allowed us to add an object-oriented method of constructing the
numerous different SOAP messages required to communicate successfully. This method
was derived from Apache Axis as it is used in Globus (Feller et al., 2007).

In Figure 1 the architecture of the WSRF-ME Framework and its relationship with
the source WSDL files, the Java ME platform, and the WSRF web service provider is
detailed. The WSRF-ME framework as shown in the diagram consists of three parts: the
WSDL parser, the client stubs, and the framework run-time. The process begins with the
developer creating or obtaining a WSDL file for a web service. This WSDL file is then
input into the WSRF-ME parser to generate the client stubs required by a Java ME
application to communicate with that web service. The developer then can utilize an
instance of a client stub object and sets its associated stub properties such as the service
endpoint, resource key, and WS-Addressing messaging properties accordingly. In the

 S. Huang et al.

same manner as which client stubs are used with JSR-172, the developer typecasts a
binding stub to a portType class object and then invokes whichever method of the target
web service that they require. The WSRF-ME run-time handles the invocation to the
target web service and handles the encoding and decoding of the SOAP request and
response respectively. The run-time returns any data from the web service according to
its method invocation to the Java ME application as well. For example, a client portType
could define an integer as its return value; if the invocation is successful, the run-time
will return the integer value to the Java ME application running on the mobile device.

Figure 1 WSRF-ME Framework Architecture

3.2 Description of the Framework

In JSR-172, when the developer utilizes a method defined by the port type that requires
complex input that is not a simple data type. There was no clear way to submit the
information required. There are no methods to define custom XML tags in the SOAP
message such as those utilized by WS-Addressing, for example. This meant that it was
not possible to input enough data in the SOAP message to successfully communicate to
the Globus server. The solution to this limitation required the aforementioned object-
oriented approach. Rather than only accepting simple data types, such as in JSR-172, the
frameworkÕs encoder was modified to accept classes that implement an interface called
Gl obusObj ect . This simple interface consisted of a single method called
Gener at eMessage() , which when called, would create a SOAP message representation
of the object. This allows the developer to define the specific construction of the object as
it would appear in the SOAP message.

This method was applied to most of the default Web services in Globus that required
complex input. For example, assume a complex data type called Per sonnel Type which
consists of two complex data types called Per sonal I nf oType and Addr essType. The

 Remote computing resource management from small devices by utilizing WSRF

developer would create a new Addr essType and Per sonal I nf oType object and fill
each with their respective information. Per sonal I nf oType and Addr essType both
implement Gl obusObj ec t and its Gener at eMessage() method. The developer simply
has to call the Gener at eMessage() method of each object in Per sonnel TypeÕs
Gener at eMessage() method. When the Per sonnel Type is passed to an invocation,
the encoder will automatically construct the SOAP message through the
Gener at eMessage() method. This has an added benefit when dealing with the more
complicated XSD definitions that could have inheritance and contain arrays of objects;
the developer simply has to create a Java representation of arrays and inheritance instead
of trying to compose an enormous SOAP message in one single Java class.

Finally, one key benefit is the ability to directly control the size of the SOAP
messages; it is possible to use all the features supported by WS-Addressing or just the
bare minimum. As long as the message contains the very minimum required by that
service, it would still function correctly. For example, instead of defining all the f ields
such as To, From, Action, and so on in the SOAP header, the framework can simply
define the corresponding EndpointReference (EPR) and resource key and still
successfully utilize a Globus service such as Web services Grid Resource Allocation
Management (WS GRAM). This can apply to the entire SOAP envelope and applies as
long as the message satisfies the information required by the Globus web service
container.

Figure 2 WSRF-ME Framework Runtime

The high-level view of the WSRF-ME framework run-time is shown in Figure 2. It

consists of the three main classes: GlobusHTTPSOperation, GlobusSOAPEncoder, and
GlobusSOAPDecoder. Each class has a specif ic role in the process of handling a remote
web service invocation. The GlobusHTTPSOperation class is the main orchestrator for
communicating with a web service. Since the SOAP encoder and decoder used by JSR-
172 were not available publicly, the WSRF-ME framework required the implementation
of a custom SOAP encoder and decoder. The GlobusSOAPEncoder and
GlobusSOAPDecoder handle the request and response details related to the process of
invoking a web service.

3.3 Features of the Framework

The framework provides full support for the WS-Addressing, WS-ResourceProperties,
and WS-ResourceLifetime standards as well as partial support for WS-Trust, WS-
Security, and WS-BaseFaults. Due to the complexity in running a mobile phone as a

 S. Huang et al.

server, there is no current support for the WS-Notification standard as it is implemented
in the Globus Toolkit (Vinoski, 2004). There is also limited inherent support for WS-
BaseFault and its sub-faults; the framework parses errors returned by the server and
throws an exception with the server-side error and its details. Since WSRF is platform
independent, any web service provider that implements WSRF should be able to utilize
our framework to communicate with their respective Web services. Although the WSRF-
ME framework has primarily been tested with the Globus Toolkit, its functionality is
applicable to any other implementations that correctly implement the Web Services
Resource Framework.

The frameworkÕs SOAP encoder is able to encode simple types, arrays of simple
types, and objects that implement GlobusObject. When creating a stub, the user is able to
specify which WS-Addressing tags to utilize in the SOAP envelope. The decoder is able
to parse simple types, arrays of simple types, complex types, and error messages. Also
because the framework is based partially upon JSR-172, there is inherent support for
stateless web service invocations. The WSRF-ME frameworkÕs support for the Web
Services Resource Framework is summarized in Table 1.

Table 1 WSRF-ME Framework's WSRF Support

Specification Support Descr iption

WS-Addressing Full Supports both EPRs and
messaging properties

WS-Resource Full Supports WS-Resources as part
of web service invocations

WS-ResourceProperties Full Pre-generated client stubs/types
for all WS-RP methods

WS-ResourceLifetime Full Pre-generated client stubs/types
for all WS-RL methods

WS-BaseFaults Partial Returned as an exception

WS-Notification None No support

4 Case Study

In order to demonstrate the functionalities of the framework and provide a user-friendly
manner in which to utilize its functionalities, an application is created and built upon the
framework libraries previously created. The case study application demonstrates the
effective use of the WSRF-ME framework to communicate with Globus web services
that utilize WSRF. In addition, the application is intuitively geared towards a mobile
experience; the assumption is made that data input on a cell phone is less efficient than in
desktop environments. Instead of forcing a user to directly invoke the operations needed
to utilize job submissions and Reliable File Transfers, the application streamlines the
various steps into the mobile phoneÕs user interface.

 Remote computing resource management from small devices by utilizing WSRF

4.1 Simulation Platform: Nokia S60

Although it was decided early on that the case study application would be written in Java
ME, other questions remained such as on what phone to test the application, how to test
the application, and what environment would host the Globus services. Rather than
choosing to concentrate solely on one single model of a phone created by a manufacturer
or concentrating on the entire range of mobile devices available from a manufacturer, the
decision was made to pick an intermediate point. It was decided to concentrate on a
product line of phones to allow for the widest possible utilization of our framework while
ensuring the functionality remained identical on all devices. After some research, it was
decided to restrict the case study implementation to NokiaÕs S60 platform. The reasoning
for this choice is two-fold: Nokia supports a fully open-source initiative for its Symbian
OS on which the S60 platform is based and the number of devices supported by the S60
platform is extensive.

The latest S60 SDK provided by Nokia comes with an emulator and integrates into
Eclipse through a plug-in called EclipseME (Setera, 2009). The emulatorÕs debugger
integrates into Eclipse and allows a developer to perform real-time debugging of the
actual code as if it were running in a physical device. The emulator also provides
numerous diagnostics such as CPU and memory usage statistics as well as tracking
messages sent over HTTP/HTTPS.

Because the objective of this case study is to demonstrate the use of the WSRF-ME
framework on a wide variety of devices, the application needed to be developed on a
platform that supports a wide multitude of phones and not just a small subset of one
manufacturerÕs product line. NokiaÕs S60 platform provides a wide range of support for
various Nokia phones as well as other manufacturerÕs phones that utilize the S60, like
Samsung, LG, and Panasonic (Nokia, 2007). In addition, NokiaÕs global market share for
mobile devices is about 40% (Nokia, 2008); in the case of mobile grid computing where
the quantity of computing platforms is as important as the impact, widespread use, and
acceptance of Nokia devices is important. Rather than forcing possible developers to
possibly adopt new devices to test the case study application created in this thesis, the use
of a standardized product line platform allows for simpler replication of these results by
reducing interoperability issues between different phone platforms. In Figure 3, the
architecture of the case study simulation environment is detailed.

Figure 3 Case Study Simulation Environment

 S. Huang et al.

4.2 Implementation Overview

The client application for the phone is able to submit jobs, perform third party f iles
transfers, view/browse a shared server space, and obtain delegated credentials. The user
interface is geared for use on mobile phones and to simplify functionality as much as
possible. The application allows the user to connect to one or more servers at one time
and keeps track of currently open connections. To keep navigation simple, the user can
see only one ÔviewÕ of the server connection at a time but is free to independently switch
between at will. In order to connect to a server, the phone requires a valid user certificate
from a certif icate authority.

Instead of creating a new certif icate for the mobile phone, the application reused a
certificate that was obtained beforehand. In order to do this, it required the conversion of
the user certificate/key from the PEM format used by Globus to the PCKS12 format that
is utilized by S60 platform phones. Fortunately, installation of certif icates is
straightforward and simply required transferring it to the phoneÕs storage. Once installed,
the phone will recognize user certif icate requests from the server automatically and
prompt the user to select from an installed certificate on the phone. The phone also
prompts the user if they wish to temporarily or permanently trust the serverÕs certif icate
when they connect to the server and receive its certif icate.

Figure 4 Case Study Basic Functions Flow Chart

 Remote computing resource management from small devices by utilizing WSRF

In this case study, the application was built using NokiaÕs S60 3rd Edition Feature

Pack 2 Software Development Kit and was developed in Eclipse using the EclipseME
1.7.9 plug-in. Globus Toolkit 4.0.7 (GT4) was utilized to host the stateful Web services
and simpleCA was used as the Globus certif icate authority. Currently, the application
includes support for the several services in Globus. These services are: Web services Grid
Resource Allocation Management (WS GRAM), Reliable File Transfer (RFT), and the
Delegation Service.

4.3 Features of Mobile Application

This section illustrates an overview of the application developed through the course of
the case study. The main features enabled in this application are reviewed including file
browsing, remote f ile transfers, and job submission & management etc. Figure 4
illustrates the basic functionalities that can be done by this framework. The next sections
will describe some selected features in the framework, such as File Browsing, Remote
Job Submission by using mobile devices.

Figure 5 Main Menu Screen

 S. Huang et al.

4.4 Main Screen

The main menu screen presents the user with several options shown in Error: Reference
source not found. The user can choose to view current jobs submitted from the phone,
view the shared space in the applications file browser, enable credential delegation for a
specific server, open a new connection, or switch between connections. The main
function of the main menu is to provide access to the other key features of the
application. Users are able to save connection info to different servers and connect to
them at will; the application manages each connection independently and allows the user
to switch between servers at freely. The ÒView FoldersÓ command shows the root
directory of the shared space on the current view and provides a good majority of the
functionality enabled by the framework. The ÒView JobsÓ command is only used when
jobs are submitted from file browser; it provides a list of all job submissions and allows
the user to manage them. The ÒDelegateÓ command is simply used to activate credential
delegation with the current server. The final two commands allow for switching between
open server connections and creating and opening new server connections.

4.5 File Browser

To provide the functionalities of remote resource management, such as browsing files
located on a different machine, conducting file transfer, submitting jobs remotely etc, a
user friendly user interface, i.e., file-browsing interface, is created as shown in Figure 6.
This is the main point of interaction with the Globus server and its shared space. The
shared space is a directory defined by a stateful web service called DirectoryService
which lists the contents of this directory and provides a method for getting the contents of
the files listed. The user can navigate up and down the shared spaceÕs folder hierarchy
similarly as in desktop operating systems. When selecting a specif ic f ile, several options
become available; some of which are show in Figure 7. The user can choose to view the
contents of the file, submit the file as a RSL description to WS GRAM, mark it as a
source or destination, or mark the file for a deletion request. The application is able to
transfer files both locally and remotely using the f ile browser using the source and
destination marking features. File deletion is also supported much like file transfers; users
simply mark the file they wish to delete and then start the file deletion from the file
browsers. The file deletion command is not shown in Figure 7 due to the limited
resolution on the phone.

Figure 6 File Browser

 Remote computing resource management from small devices by utilizing WSRF

Figure 7 File Browser Option Menu

For mobile job submission, the application allows the mobile device to get jobs

through the ÒSubmit JobÓ option as shown in Figure 7. In a separate screen which can be
accessed from the main menu through ÒView JobsÓ, users are able to manage operations
perform operations such as ÒDestroyÓ to remove a finished job and ÒGet StatusÓ to query
a job resource property for its state. The resulting EPR of a job submission through
ÒSubmit JobÓ and the result of ÒGet StatusÓ on that same job are shown in Figure 8. The
left screen shows the information returned by Globus when a job is created; the right
screen shows the status of the job retrieved using the applicationÕs job manager.

4.6 Mobile Job Submission

The ability to submit jobs and manage their lifetimes demonstrates the possibility of
leveraging stationary server resources for the benefit of a mobile user. Rather than
perform intensive or repetitive tasks on their mobile device, a user can create a job
description that allows them to allocate a workload to the Globus server. This
functionality allows the mobile device to delegate computationally-heavy calculations to
a remote server and retrieve the result without dealing with the issues normally involved
with managing grid computing clusters. The end result is a savings in both battery power
and time because the cluster grid environment can perform calculations much more
efficiently than the single mobile device can; a single mobile device would require much
more time to complete its calculations and also be limited by the amount of power it can
consume in order to achieve the same results.

Figure 8 Mobile Job Submission Process

 S. Huang et al.

Because the user interface design of cell phones is not normally well suited for

efficiently inputting large amounts of textual information, applications developed on cell
phones must take this limitation into account. In the context of the case study, requiring
the user to input information required to execute a job on a Globus server manually
would be too cumbersome. Not all mobile devices are equipped with a fully-fledged
keyboard to provide input. Even with an onboard keyboard, the small size of both the
keyboard itself and the screen requires the user to carefully input any information to the
device. I t is not feasible to expect users to remember the locations of f iles or directories
mentally of one or more serversÕ shared spaces. To solve the problem of limited user
input, the application provides functionality that simplifies job submission by allowing
the DirectoryService to utilize server-side f iles to construct a Resource Specification
Language (RSL) job description.

The diagram from Figure 8 presents the steps that a user would follow in order to
remotely submit a job description called Òsimple-stage-job.rslÓ from the mobile device.
The user selects a valid RSL job description file that has been saved on the server and
chooses the ÒSubmit JobÓ command. This causes the application to retrieve the fileÕs
contents from the server through the Directory Service. Once successfully retrieved, the
application displays the basic information about the job that is about to be submitted and
allows the user to verify the correctness of the job submission. The user then chooses to
finally submit the f ile and the job submission is sent to the ManagedJobFactory for
execution. If the RSL job description file is correctly formatted and the job submission is
successful, the application then displays the time of the job creation, the termination time
of the job, and an EndpointReference to the ManagedJobExecutableJobService and the
jobÕs corresponding unique resource identifier.

5 Conclusions and Future Work

This paper presented a framework for utilizing stateful Web services from a mobile
device. A case study is demonstrated as how this framework can be used in remote job
management by using small and mobile devices. The JSR-172 package as implemented
only provides support for simple RPC operations. Our framework takes the concept of
this package and expands upon it to allow developers to connect not only WSRF-enabled
Web services but also stateless Web services. I t allows for the use of complex data types
and arrays; something which was impossible to do under JSR-172. To demonstrate the
functionality of this framework, the paper showcases an example application built on top
of this framework which allows users to browse and view files on a Globus server,
submit jobs, and transfer f iles between multiple servers.

The main limitations in our framework are those created by the restrictions imposed
by Java ME. Many features that could have been salvaged from APIs already created for
Java SE could not be directly reused, due to the limitations in the Java ME environment.
It required some effort in order to understand what libraries were and were not available
and find ways to work around problems that required features that were not available.
Also, it should be noted that because Java ME works in a limited environment,
performance will not always be ideal; for example, a loss of connectivity will prevent
many web service-based application from working properly. A poor connection through
wireless or cellular means can result in slow performance.

One final limitation involves utilizing the framework on non-Nokia devices. In order
to utilize the framework on other phones, the manufacturer must support the same
features in their MIDP implementation for Java ME (Nokia, 2009). Because the Globus

 Remote computing resource management from small devices by utilizing WSRF

Toolkit utilizes Transport Layer Security (TLS) (Welch et al., 2003), the manufacturer
must provide full support for TLS. Otherwise they will only be able to connect a non-
secure container (Feller et al., 2007). Message level security is still possible in a non-
secure container but performance suffers greatly. A reference implementation such as
SunÕs Java ME SDK does not support client certificates under TLS and as such does not
work with our framework. The framework itself does not support message level security.
So any service that requires authentication, such as WS GRAM, will not be useable on
the small device. Security is a major concern in smart homes and must be addressed
before connecting small devices to web and grid services. To reduce the threat of man-in-
the-middle attacks, future web services will require key management on both sides. Work
has already been done to address this problem, but more work remains to be done (Al-
Muhtadi, 2000).

In the future, the framework will address some of the challenges presented in this
paper such as developing a method to implement WS-Notif ication. In addition work will
be done in order to deploy the application to another manufacturerÕs phone platform to
test compatibility and improve the user interface. Other possible areas of work involve
simplifying the framework itself and creating a tool to automatically generate Java ME
client stubs from Globus WSDL files. Currently, the Globus Toolkit does not support the
listing of all jobs available by default. In order to get a listing of jobs submitted by other
users, the container running WS GRAM must have audit logging enabled and configured
to allow for dynamic listing of all jobs. The method described is not entirely secure but in
the future this framework will possibly support a secure method of obtaining the status of
all job submissions. The framework may also implement an optional service that securely
maintains a list of these jobs and then use the mobile phone framework to retrieve that
list.

This material is based upon work supported by the National Science Foundation
(NSF) under Grant No. OISE-0730065.

References

Booth, D. and Liu, C.K. (2007). Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer. Available: http://www.w3.org/TR/wsdl20-primer/. Last accessed 19 June 2009.

Al-Muhtadi, J., Anand, M., Mickunas, M.D. and Campbell, R. (2000) ÔSecure smart homes using
Jini and UIUC SESAMEÕ, Proceeding for the 16th Annual Conference on Computer Security
Applications, pp. 77 Ð 85.

Box, D., Christensen, E., Curbera, E., Ferguson, D., Frey, J., Hadley, M., Kaler, C., Langworthy,
D., Leymann, F., Lucco, S., Millet, S., Mukhi, N., Nottingham, M., Orchard, D., Shewchuk,
Sindambiwe, E., Storey, T., Weerawarana, S. and Winkler, S. (2004). Web Services
Addressing (WS-Addressing). Available: http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810/. Last accessed 19 June 2009.

Chinnici, R., Moreau, J.-J., Ryman, A. and Weerawarana, S. (2007). Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language. W3C, Available:
http://www.w3.org/TR/wsdl20/. Last accessed 19 June 2009.

Cjazkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Maguire, T., Snelling, D. and
Tuecke, S. (2004) From open grid services infrastructure to WS-Resource framework:
Refactoring & evolution, Globus Alliance, Available:
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf, Last accessed 19 June 2009.

Coward, D. (2008). JSR 172: J2ME Web Services Specification. Sun Microsystems, Available:
http://jcp.org/en/jsr/detail?id=172. Last accessed 19 June 2009.

Feller M., Foster I., and Martin S. (2007) ÔGT4 GRAM: A functionality and performance studyÕ,
TeraGrid Conference.

 S. Huang et al.

Foster, I., Czajkowski, K., Ferguson, D. E., Frey, J., Graham, S., Maguire, T., Snelling, D., and
Tuecke, S. (2005). ÔModeling and managing state in distributed systems: The role of OGSI
and WSRFÕ, Proceedings of the IEEE, Vol. 93 No. 3, pp. 604-612.

Foster I. (2006) ÔGlobus toolkit version 4: Software for service-oriented systemsÕ, Journal of
Computational Science and Technology, Vol. 21 No. 4, pp. 523-530.

Gidding, C. (2006), ÔNot your fatherÕs CORBA Ð An architecture for real-time and embedded
systemsÕ, RTC Magazine, Available:
http://www.rtcmagazine.com/magazine/articles/view/100752/, Last accessed 19 June 2009.

GlassFish (2009), JAXP Reference Implementation, Sun Microsystems, Available:
https://jaxp.dev.java.net/, Last accessed 19 June 2009.

Globus Alliance. (2008). About the Globus Toolkit. Available:
http://code.google.com/p/wsrf4j2me/. Last accessed 19 June 2009.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, Nielsen, H.F., Karmarkar, A. and Lafon, Y.
(2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). W3C, Available:
http://www.w3.org/TR/soap12-part1/. Last accessed 19 June 2009.

Haas, H. and Brown, A. (2004). Web Services Glossary. W3C, Available:
http://www.w3.org/TR/ws-gloss/. Last accessed 19 June 2009.

Humphrey M., Wasson, G., Jackson, K. Boverhoh, J., Rodriguez, M., Gawor, J. Bester, J. Lang, S.
Foster, I. Meder, S. Pickles, S. and McKeown, M. (2005) ÔState and events for Web services:
A comparison of five WS-Resource framework and WS-Notification implementationsÕ,
Proceedings of the 4th IEEE International Symposium on High Performance Distributed
Computing, IEEE, pp.3-13.

Kanellos, M. (2005) Cell phones outnumber PCs in China, CNET News, Available:
http://news.cnet.com/Cell-phones-outnumber-PCs-in-China/2110-1039_3-5978594.html, Last
accessed 19 June 2009.

Knerr, T. (2009). Implementation of the Web Services Resource Framework (WSRF) for J2ME.
Available: http://code.google.com/p/wsrf4j2me/. Last accessed 19 June 2009.

Mudge, T. (2001) ÔPower: A first-class architectural design constraintÕ, Computer, Vol. 34 No.4,
pp. 52-58.

Nokia. (2007). S60 Devices. Available: http://www.s60.com/life/s60phones. Last accessed 19 June
2009.

Nokia. (2008) Annual Information 2008, Nokia Corporation, Available:
http://www.nokia.com/about-nokia/financials/quarterly-and-annual-information/quarterly-and-
annual-information-2008, Last accessed 19 June 2009.

Nokia. (2009) Nokia Java ME DeveloperÕs Library, Available:
http://www.forum.nokia.com/document/Java_Developers_Library_v2/ Last accessed 19 June
2009.

Oh, Y. and Woo, W. (2005) ÔA unified application service model for ubiHome by exploiting
intelligent context-awarenessÕ, Springer Lecture Notes in Computer Science, Vol. 3598/2005,
pp.192-202

Perumal, T. (2008) ÔVirtualization for smart home technologiesÕ, Home Technology eMagazine,
Vol. 13 No. 4. Available: http://www.hometoys.com/ezine/08.08/perumal/virtualization.htm.
Last accessed 19 June 2009.

Pu, L. and Lewis, M.J. (2007) ÔUniform dynamic deployment of web and grid services",
Proceedings of the IEEE International Conference on Web Services, pp.26-34.

Setera, C.. (2009). J2ME Development using Eclipse. Available: http://eclipseme.org/. Last
accessed 19 June 2009.

Tilley, S., Gerdes, J., Hamilton, T., Huang, S., MŸller, H., Smith, D., and Wong, K. (2004) ÔOn the
business value and technical challenges of adopting web servicesÕ, Journal of Software
Maintenance and Evolution: Research and Practice, Vol. 16 No. 1-2, John Wiley & Sons, pp.
31-50.

 Remote computing resource management from small devices by utilizing WSRF

Vinoski, S. (2004) ÔMore web services notificationsÕ, IEEE Internet Computing, Vol.8 No.3, pp.
90-93.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J. Czajkowski, K., Gawor, J., Kesselman, C.,
Meder, S., Pearlman, L. and Tuecke, S. (2003) ÔSecurity for grid servicesÕ, Proceedings of the
12th IEEE International Symposium on High Performance Distributed Computing, pp. 48-57.

