

Measuring Effort in a Corporate Repository

Michael VanHilst, Shihong Huang, James Mulcahy

College of Computer Science & Engineering
Florida Atlantic University

Boca Raton, Florida, United States
(vanhilst, shihong, jmulcah1)@fau.edu

Wayne Ballantyne, Ed Suarez-Rivero,

Douglas Harwood
Motorola Mobility

Plantation, Florida, United States
(ewb001, edquarez-rivero, edh031)@motorola.com

Abstract

Project management and process improvement are a

critical part of software development in an organization,
especially for large scale and long-lived software. Metrics
can be used as one of the means to evaluate this process.
However, traditional methods of measuring effort, for
example, focusing on editing time and lines of code
produced, do not reflect the true cost to the organization.
The organization pays developers for their time, regardless
of whether they are writing code or performing other
activities. This paper describes an experimental approach
to track and measure effort in developer days, using log
files from a corporate repository. The data is fine-grained,
empirical, and non-invasively collected. Results have been
tested on several projects in a large organization over a
period of many years.

Keywords: Repository, effort, metrics, project
management.

1. Introduction

Effort is a core metric in both project management and

process improvement. Earned-Value Management, for
example, compares planned and actual effort to gauge
schedule progress and slippage. Lean Process Improvement
compares total effort to value-add when measuring
productivity. When comparing one project to another, total
effort can be used as an indicator of their relative size.

Effort, itself, is a fairly simple concept. It is measured in
person-hours or person-days. When the cost-per-hour for
each person is known, cost-adjusted effort can also be
computed. When the type of work is known, effort and cost
can also be classified by type. Unfortunately, in software
development, measuring effort empirically and per activity
is not always easy. Numbers self-reported by developers
are sometimes used. However, such numbers are unreliable
and only account for part of the developer’s time and
salary. The problem of assigning cost is further
complicated in organizations where staff members switch
back and forth among activities that sometimes overlap.
The problem of determining effort is captured in the

following excerpt from a published interview with a
manager concerning challenges in software development.

“The metrics are very hard to gather. One of the efforts
under way right now is to figure out what it’s costing us to
deliver (the product) because before we had no clue. Time
was being spent everywhere and it wasn’t being put in
granular buckets to know we spent this much on project
management, this much on testing, this much on rework or
whatever.” [1]

Current methods of measuring effort in software
development are based on surveys and self-reports. In one
method, developers are required to fill out reports to
account for their hours during the week. In another
practice, when each task is completed, the developer must
report how much time it took to complete the task. Both of
these methods are subjective and fail to account for much
of the time and effort. Neither method corresponds to the
actual cost to the company.

To date, the published work on measuring effort with
tool and repository data has measured only active coding
time or numbers of lines changed. These methods do not
correspond to the actual cost to the organization.
Repositories offer an interesting alternative. Extracting
metrics from the repository is non-invasive and low cost
[2]. The data is both objective and fine grained.

In this paper we report on our experiments with
repository data to produce empirical measurements of
effort in units of developer days. Developers are paid for
the full day, regardless of how they divide their time. Our
method assigns the time in a developer’s day to the tasks
and projects on which the developer is active. The data
used in this analysis was obtained from a large organization
and covers several projects over a period of many years.

This paper offers three unique contributions. First, the
data is from private industry. In this work we leverage
features of the data that are characteristic of mature
practices in private industry. Second, the measurement of
effort corresponds to what the organization actually pays.
Because developers are paid for entire days, regardless of
what they are doing, our approach assumes that cost is
based on days and uses it in assigning effort to projects,
tasks, and artifacts. Third, our goal is to automate this
process of measurement. Extracting data from the
repository is often a manual process where the data is

246IEEE IRI 2011, August 3-5, 2011, Las Vegas, Nevada, USA
978-1-4577-0966-1/11/$26.00 ©2011 IEEE

extracted, formatted, explored, and pruned. Here we
classify the issues that must be addressed and provide an
executable solution.

As an example of our type of result we can produce,
Figure 1 shows a graph of effort on a project, per day, from
inception to release. The X axis show the project day,
starting from day 1. The Y axis shows the number of
developers working on the project on that day. The lowest
(red) line that rises in the middle and crosses the other
(green) line, represents developers repairing bugs (rework).
The middle (green) line that rises at the beginning, and
drops in the middle, represents developers working on new
requirements. The highest (blue) line shows the total
number of developers, regardless of the kind of work being
done. As explained in the paper, the numbers are adjusted
to represent actual worker-day units of effort.

Figure 1. Number of active developers by

project day.

The rest of this paper is organized as follows. Section 2

discusses related work and positions the work in this paper.
Section 3 describes the important details of the research,
including issues and resolutions. This section details the
steps of transformation, from repository extraction to
metrics display. Section 4 shows results for different
projects while highlighting significant details. Section 5
concludes the paper with a discussion of broader
implications and immediate next steps that are planned.

2. Related work

The existing research on measuring effort in software

repositories differs from the work presented here in two
important respects. The first difference is that the existing
work is largely academic and based on data from student
experiments and open source projects. In open source
development, the work is often voluntary and performed by
developers in their spare time. Requirements and
contributed code appear at random intervals. There is no
real relationship between effort and cost, and bug fix times
are measured in weeks [3]. In our data, the relationship

between effort and progress is direct and the average bug
fix time is less than 3 days.

The second difference is that most of the existing
literature on effort defines effort rather narrowly as “active
time” spent editing source files. Both Johnson et al. [4] and
Hochstein et al. [5] instrumented the development
environment in order to identify times when the developer
was actually typing. Times between active work periods
were viewed as “interruptions” or “non-work intervals,”
and not counted. Measuring effort in this way makes sense
if the goal is to determine which tool is the easiest to use.
But when applied to industry, it fails to account for a large
part of the developers’ time, and the project’s overall cost.

Perry et al. conducted several studies of how developers
spend their time [6]. In their studies, they used self-reports
and direct observation. Not surprisingly, they found that
developers spend significant amounts of time in meetings,
on the phone, reading and answering email, preparing
reports, and creating documents. In an interesting comment,
they noted that much of the observed communication did
not involve technical matters, but instead concerned the
process. Process costs of this type do not appear in
measurements that include only “active time.”

In this paper, our concern is not about how developers
spend their time. Rather, our concern is simply to measure
total developer time, regardless of how it is spent, and to
count that time, as a cost attributed to specific projects,
tasks, and artifacts. Only when the developer works on a
different project, or does not work at all, is the time not
counted. In private industry all of the developers’ time
should be accounted for.

While not specifically concerned with effort, there is
other repository work that bears some relationship to the
work presented here. Connecting data from bug tracking
with data from configuration management is described in
Fischer et al. [7]. They used a process that is very similar to
the one described here – applying Perl scripts to the
extracted files and storing the results in a database. They
even faced a similar challenge of finding the task ID in
configuration management records and again applied a
similar solution – looking for the ID string embedded in
other fields. In their data, the ID appears in the comment. In
our data, the ID appears in the comment or the branch
name. Our work differs in that we describe the process of
identifying effort. In their case, the work produced release
histories for artifacts. We also look at release histories, but
not in the work described here.

Part of the work presented here concerns automating the
process of collecting repository data and reducing it to
produce the effort metrics. A number of papers describe
projects to automate the collection of repository data.
Bevan et al. for example, describe a system they call
Kenyon [8]. In their work, the main focus is on capturing
code changes. They mention capturing the developer ID
(author), but only in a discussion of making such
“metadata” consistent across different tools. Similarly, they
are concerned with correlation between commits of

247

different artifacts, but not between records in different
kinds of tools.

3. Our research

The goal of our work is to extract metrics from the

repository that can be used for both project management
and process improvement. In private industry, managers
want to know how much things cost. They want to know
how much effort is spent on work and how much is spent
on rework. At any given time, they want to know who is
doing what, and how it compares to prior estimates. When
improvements are made, they want measurements to show
if things are getting better. All of this information requires
tracking effort.

Our hypothesis is that it is possible to construct reliable
measurements of effort, with daily and per-artifact
granularity using data from the repository of a development
organization in private industry. We make an important
assumption about the data, that it reflects an organization
with reasonably mature practices. Our goal is to construct
such measurements automatically and on demand.

Effort is measured in developer days or hours. For a
given day, the effort is the number of developers working
on that day. To compute this effort, we leverage the fact
that our data comes from private industry. In a business,
developers are on a payroll. If they are active, they work
for the business and generate repository events on a nearly
daily basis. Project effort can be computed daily by
counting the number of developers working on that project
on that day. The challenge is to figure out which developers
are active and on which tasks and projects they are
working. In cases where developers are working on more
than one task and/or project, or are switching between
projects, the overlap must be detected and addressed.

As previously mentioned, our process assumes that the
data is from a mature organization. Mature organizations
have practices and enforce policies that assure order and
avoid trouble. These practices affect the quantity, quality,
and reliability of data in the repository. Specific practices
and their implications are described below. The teams
whose data we used were certified at the Software
Engineering Institute’s CMMI level 3 or higher. The work
reported here uses data from historical records maintained
by Rational ClearQuest and Rational ClearCase.

3.1 The Data

In a mature organization, all development work must

have a reason and be associated with a documented work
request. Work requests, or tasks, are maintained by a task
tracker. A task tracker record includes the task, the project,
the date submitted, the date resolved, and the type of task.
The two main types of tasks are new requirements and
defect repairs. A record in the task tracker may contain
additional information such as assigned developers, the
developers’ reported hours (as indicated above), and the

identity of the test that found the bug. For this work, we
needed only the task’s ID, its project, the task type
(requirement or fix), and the resolved date.

In the Rational repository, all development work is done
on separate branches. The main product branch contains
only approved and tested code. When a developer starts
work on a new task, a new branch for development is
opened. Work continues on that branch until all changes are
tested and complete. Only then are the changes merged
with the product back onto the main branch. Thus we see
the beginning of an activity in configuration management
logs as the creation of a branch. The continuation of the
activity appears as the checking in of versions of artifacts
on that branch. Records from the configuration
management log contain a date and time, a developer ID,
the event type (e.g. “create branch”), the name of the
branch, and the name of the artifact. There is also a
comment field. For this work we need only the event date
and type, the branch name, and the developer ID. Once we
have the raw data, work proceeds in three phases:
preprocessing, data reduction, and data extraction. As
mentioned earlier, our data came from a ClearQuest task
tracker and ClearCase history logs. Similar data would be
found in Bugzilla and CVS or SVN. The vendor in our case
(IBM) provides a tool for extracting the raw data, including
some formatting options.

The projects in our study are substantial, with up to 100
developers, task counts in the thousands, and numbers of
configuration management events approaching six figures.
The exact size, in terms of lines changed or function points,
is proprietary and cannot be published.

Our goal is not to create a benchmark for other
corporations or entities, nor to indicate that the organization
involved in our study is doing better or worse than others.
Organizations have different people, different practices,
and projects. Rather, the data is used to create an
organization’s own baseline and metrics to plan and track
improvement. From one project to the next, within an
organization, the people, practices, and projects are not so
different. The contribution in this paper concerns the
process of deriving the metrics, and their ability to shed
light within the organization from which they are collected.

3.2 Preprocessing

Most of our analysis work is done using a database. In

the initial preprocessing step we transform raw data,
obtained from a software repository, into forms that can be
loaded into database tables. The database dictates formats
for date and time and puts limits on the size of various
fields. The order of the fields is also fixed. Each table field
must be given either a meaningful value or the database
equivalent of a null value. Preprocessing “cleans up” data,
formats it correctly, infers values that are not directly
given, and excludes data that is not needed.

The two main challenges in preprocessing are: 1)
extracting the data needed for correlating configuration

248

management events with task tracking records, and 2)
determining which repository events represent valid work.
We discuss each problem in turn.

In mature organizations, it is common to have a policy
that code cannot be changed without a corresponding task.
Unfortunately, most configuration management tools do
not support, let alone enforce, the connection to a task
tracker task. However, this functionality can often be
added. For many tools, example scripts can be found on the
Web. In our case, the connection between a branch and its
task was enforced only by a convention for naming
branches. The name of the branch included information that
identified the task. Preprocessing extracted this
information, including variations and misspellings, and
generated the needed field for task ID. In some cases, a
branch is associated with more than one task. When this
occurs, we simply duplicate the event for each task. The
method of counting effort, described below, addresses
multiple and overlapping tasks, so that double counting of
the effort does not occur.

Not every event in the repository represents work. Some
repository events reflect activity by tool administrators or
automated scripts or daemons. In our metric, effort is
activity by a developer working on a task. Each episode of
work has a beginning, a period of continuation, and an end.
In preprocessing, we add a tag that specifically identifies
non-developer and non-development work. Several
heuristics are required, including the type of event, fixed
and stylized comments, specific branches, and the types of
artifacts involved. We eliminate records from certain
administrative acts and any activity associated with
automatic processes.

One type of event not found on a development branch is
still needed to complete the analysis. When a task is
completed, the work on a development branch is merged
back to the product branch. This special event marks the
real completion of the task. The event appears as new
artifact versions, by a select group of developers, on the
main branch of the product. Unless it is included in the
comment, these main branch records lack any reference to a
task ID. The problem, and our solution, is very similar to
one described in Fisher et al [7]. In the preprocessing step,
we identify all version events on a main product branch and
give them a special tag for later processing.

A Perl script was used to automate the preprocessing
phase. Automation makes it possible to make adjustments
and quickly repeat the entire phase. The preprocessing
script generates a separate SQL script to load the data into
database tables.

3.3 Reduction

In the reduction phase, we combine the task tracker and

configuration management data into a single work event
table. A work event is one developer working on one
branch for one task over a contiguous period of time. A
record in the work event table includes the developer, the

branch name, the first and last dates of valid change events,
the task, and the type of work (requirement or repair). The
table is specific to a single project.

Using branches to represent work proves very
convenient. On a branch, work happens between the date
when the first artifact is checked in and the last artifact
change occurs. But there are issues to be resolved. A
developer may be working on several branches at the same
time. More than one developer may be using the same
branch. Finally, work may start on a branch, be interrupted,
and resume at a later date. We address each of these issues
in turn.

We often find instances where a developer has several
branches active at the same time. While performing work,
developers may open additional branches. Branching can
be used to separate instrumented from non-instrumented
code, to try alternatives, or to test changes against different
product variants. In the extraction phase, we count a
developer as being active if they have work that is active on
any branch. Work is allocated by developer, not by branch.
Thus, there is no danger of double counting effort when the
same developer is active on more than one branch.

A special case of developers with multiple branches
occurs when a developer is active on branches for more
than one project at the same time. In this case, we have to
decide if the developer is multi-tasking, or if one branch
was interrupted to work on the other project. The
determination is made depending on whether events on the
two projects interleave, or all of the work on one project
fits entirely between two stretches of work on the other
project. In the former case, where there is multitasking in
active periods that include the same day, we divide the time
evenly among the tasks involved. In the latter case where
there is an interruption causing the developer to work on a
different project, the surrounding stretches are split into
separate work events. Because we have data on all projects
(it is in the same repository), we can do the necessary
comparison, even with tasks in different projects.

Two developers may work on the same task, or, though
rare, even the same branch. For branch begin and end dates,
we group the events by both developer and branch. Thus
each developer’s work is treated separately with their own
begin and end dates. These dates are then used to decide,
on a given date, which developers are working in some
capacity on the current project.

When we compare dates reported in the task tracker
with actual dates found in the configuration management
event log, we face a new issue. Work occurs on branches
after the date when the corresponding task was reported as
resolved. Three possible explanations are considered: 1) the
task tracker data was incorrect, 2) the task tracker data was
correct, but final adjustments were needed before merging
with the main branch, or 3) work that was attributed to the
task was not being done for the current project.

In the first case, task tracker reports are subjective and
might not be entirely accurate. Work actually continues for
1 or 2 additional days after the report of resolution. In the

249

second case, the task work has passed inspection and
acceptance testing. But before the work can be merged
back into the main branch, last minute adjustments are
needed to resolve conflicts. The work typically appears
within 10 days of the reported completion, does not involve
a new branch, and is immediately before the merge. In
either case, the work is counted towards project effort.

In the third case, the existing task ID is used for work
that ultimately becomes part of a different variant, or future
product release. Typical scenarios could be that the original
fix proved valuable and was quickly applied to other
product variants without opening a new task. In an alternate
explanation, a better solution was found and tested, but
only for use in a later release. In both of these cases, the
work has its own sub-branch, and is begun later than the
reported resolved date. The work being done is also never
merged with the current project’s main branch. In these
cases, the effort is not counted towards the current project.

The reduction phase is performed by an SQL script and
output to a single work event table containing all the data
for one project. The work event table includes the
developer ID, the branch name, the first and last dates of
the developer’s work on that branch, the task ID, and the
type of work (requirement or repair).

3.4 Extraction

In the last step, we count how many developers are

actively working for the project on each project day. The
output is an effort table with one record for each project
day. An effort record has fields for calendar day, number of
active workers, number of workers active on requirements,
and number of workers active on repairs. To perform the
adjustments for overlapping work, we count workers
involved in both development and repair tasks, workers
involved in development and non-project tasks, workers
involved in repairs and non-project tasks, and workers
involved in all three types of work (development, repair,
and outside the project). The last case is very rare. These
last counts are used to adjust the data, dividing the effort so
that the totals match the actual number of developers.

At this point, the major challenge is deciding what to
count as a project day. If we count every calendar day, we
would also count weekends and holidays when no work is
actually being done. It seemed better to count just the
traditional work days – Monday through Friday, minus
holidays. But looking in the repository, some weekends had
significant activity. A project could show less effort by
having work done on weekends, and thus not counted as
effort. In the end we included weekend days which, after
adjusting for work in different time zones, showed
evidence of significant work. We excluded holidays when
there was relatively little work.

A developer is counted as working if they have a work
event record (as described in the previous section) where
the current day falls between its first and last day of work.
As explained earlier, a developer may have multiple

branches within a task, and may also be working on more
than one task, in which case only part of the day is counted
under each activity.

3.5 Display

After extraction, the data is ready for display. The daily

records of effort are output to a Comma-Separated-Value
(CSV) text document, which is then loaded into a
spreadsheet. The data is then displayed. A sample result is
shown in Figure 1.

 Because we adjust for overlapping effort on different
projects, tasks, and task types, the line for all developers is
in fact the sum of the other two lines (development and
repair). Since a few developers may be working on both
requirements and repairs at the same time, without
adjusting the allocated effort, a simple sum would have
counted them twice. Similarly, the effort of workers active
in more than one project might otherwise be counted twice
between the projects.

 Days in this graph are project days, not calendar days.
In general, weekends and holidays are excluded. But busy
“non-work” days were included, as explained above.

To draw the graph in Figure 1, we smoothed the data
using a 7 day sliding window average. Without the
smoothing, daily fluctuations obscure the longer trends.
The 7 days was chosen as the window size to also smooth
over variations due to the day of the week. Figure 2 shows
the same data, prior to being smoothed.

Figure 2. The same data as Figure 1 without

smoothing.

The project’s total developer effort, measured in person
days, is the area under the curve. This area is easily
computed by summing the daily counts over the life of the
project. For the project in Figures 1 and 2, total developer
effort was 14,600 developer days. For new work and
rework, the numbers were 9,700 and 4,900 respectively.
Rework accounted for 33% of total effort. At the time of
this project, 33% was slightly better than average for
similar projects within the organization.

250

4. Results

In the previous section we described how the data is

collected and transformed to produce effort metrics. Here
we discuss our experience and some uses of the data.

Figure 3. Effort graphs for a recent project with

better practices.

Figure 4. A troubled project with major effort for

rework.

Figures 3 and 4 show effort curves for two other
projects. The project in Figure 3 is a more recent project.
Total effort was 7,700 developer days. In this case, rework
effort was only 22%. We have not investigated all of the
differences to account for this improvement. But the
organization has improved its use of unit testing. Another
difference, visible in the graphs is the steeper ramp up at
the beginning and ramp down at the end, showing better
time utilization, partly due to better coordination among
projects.

The project in Figure 4 was an older project that
experienced significant difficulties. The effort ramped up
quickly in the beginning, but soon ran into trouble.
Developers were pulled from requirements early to focus
on rework. Another interesting feature, visible in the data,
is a design change around day 300, resulting in a second
hump on the line for new work. Total effort was 15,650

developer days. But rework accounted for 48% of total
effort.

Views like those presented here are not currently
available to managers in our organization. Current
measurements of effort are based on reports collected from
developers. We had access to these reports for some of the
projects in the study. Overall, the reports varied widely.
Many showed little relationship to the evidence in the
repository. More significantly, as we reported in an earlier
paper [9], they only account for 20% of the developers’
time. When we compared developer days with hours
reported for thousands of tasks, short and long, the 20%
figure was surprisingly consistent. We don’t know if it is a
coincidence, but 20% matches the industry average value-
add efficiency for development engineers reported by
Kennedy [10]. Developers are paid for days at work, not
just self-reported hours of value-adding activity. Thus the
method of measurement presented here is a more realistic
indicator of cost.

Starting with the views shown, and based on the same
methods of data reduction and analysis, our approach
presents many opportunities for further drill-down analysis.
It is possible, on any day, to determine who is working on
what project, which task, and which type of task. That data
is actually present, and in that exact form, in the reduction
step. Managers we spoke to said they often wanted that
information, but cannot get a reliable report. From the same
data, managers could also determine which tasks, are
started but not yet complete, have been running for the
longest time and are consuming the most effort.

By changing the grouping criteria, again in the reduction
step, the approach could be used to divide the effort by
product subsystem or component, or types of artifact.
Hindle, Godfrey, and Holt [11] describe a method of
partitioning among document update, test preparation, and
other activities. Their method could be applied with the
data here.

5. Conclusion and future work

We had produced a graph, much like the one in Figure

1, during an earlier phase of our research [9,12]. But the
data from that one project was cleaned manually, and the
metrics for effort was extracted only after many
intermediate steps of data reduction and transformation. In
the work presented here, we wanted to demonstrate that the
metrics for effort are generally available, and that the
process of extracting them from common repository data
could be automated. We are now able to produce these
graphs for any project in our repository, at will.

When publishing details of our work, we frequently
encounter the question of whether the numbers we produce
are comparable across organizations. These metrics depend
on specific reporting practices, the way in which work is
organized, and the individuals involved. But, in process
improvement, the goal is to do better than we ourselves
have done in the past. The processes, practices, and people

251

within an organization stay pretty much the same. Thus the
metrics are highly reliable for internal and longitudinal
measurements of process improvement. While specific
details may vary, what is generalizable across the industry,
is the general method of extracting data and presenting it in
a view. Moreover, practices of using branches for
development work and associating changes with tasks, are
themselves best practices and not unique to the
organization that was studied. We believe that our method
of allocating and measuring effort can be applied beyond
the organization in this study.

In many fields, project managers use the Earned Value
(EV) method of tracking progress. Earned Value counts the
effort of a task as its value, and tracks how much of the
expected effort has been achieved to date. It is difficult to
apply the Earned Value method of management when your
only metrics are hours spent, lines written, and defects not
yet fixed. In the future, we hope to show that we can
produce reliable metrics to support this type of
management.

Our work began with efforts to use repository data for
objective, and actionable measurements of the process
using the types of data available in private industry [13].
We are succeeding in that effort. More recent work has
focused on methods of visualization [14]. At this time, our
effort is shifting to put these kinds of tools directly in the
hands of the organization’s decision makers. The work
presented here is a step closer to that goal.

6. References
[1] A.R. Hevner, R.W. Collins, and M.J. Garfield, “Product and
Project Challenges in Electronic Commerce Software
Development”, SIGMIS Database 33(4), 2002, pp. 10-22.
DOI=10.1145/590806.590810

[2] S. Huang, S.R. Tilley, M. VanHilst, and D. Distante,
“Adoption-Centric Software Maintenance Process Improvement
via Information Integration”, Proceedings of the 13th IEEE
International Workshop on Software Technology and Engineering
Practice, 2005, pp. 25-34.

[3] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How
Long Will It Take to Fix This Bug?”, Proceedings of the Fourth
International Workshop on Mining Software Repositories (MSR).
IEEE Computer Society, 2007.

[4] M. Johnson, K. Hongbing, M. Paulding, Q. Zhang, A.
Kagawa, and T. Yamashita, “Improving Software Development
Management Through Software Project Telemetry”, IEEE
Software, 22(4), 2005, pp. 76-85.

[5] L. Hochstein, V.R. Basili, M.V. Zelkowitz, J.K.
Hollingsworth, and J. Carver, “Combining Self-reported and
Automatic Data to Improve Programming Effort Measurement”,
Proceedings of the 10th European Software Engineering
conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE)
ACM, 2005, 356-365. DOI=10.1145/1081706.1081762

[6] D.E. Perry, N.A. Staudenmayer, and L.G. Votta,
“Understanding and Improving Time Usage in Software
Development”, in Volume 5 of Trends in Software: Software
Process, John Wiley & Sons, 1995.

[7] M. Fischer, M. Pinzger, and H. Gall, “Populating a Release
History Database from Version Control and Bug Tracking
Systems”, Proceedings of International Conference on Software
Maintenance (ICSM), IEEE Computer Society Press, 2003, 23–
32.

[8] J. Bevan, E.J. Whitehead, S. Kim, and M. Godfrey,
“Facilitating Software Evolution Research with Kenyon”,
Proceedings of the 10th European Software Engineering
conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(ESEC/FSE), ACM, 2005, pp. 177–186.

[9] M. VanHilst, S. Huang, and H. Lindsay, “Process Analysis
of a Waterfall Project Using Repository Data”, International
Journal of Computers and Applications. ACTA Press, 2011.

[10] Kennedy, M.N. Product Development for the Lean
Enterprise: Why Toyota’s System Is Four Times More Productive
and How You Can Implement It, Oaklea Press, 2003.

[11] A. Hindle, M.W. Godfrey, and R.C. Holt, “Release Pattern
Discovery via Partitioning: Methodology and Case Study”,
Proceedings of the Fourth International Workshop on Mining
Software Repositories (MSR). IEEE Computer Society,
Washington, DC, USA., 2007.

[12] M. VanHilst and S. Huang, “Mining Objective Process
Metrics from Repository Data”, Proceedings of the 21st
International Conference on Software Engineering and
Knowledge Engineering (SEKE), 2009, pp. 514-519.

[13] M. VanHilst, P.K. Garg, and C. Lo, “Repository Mining and
Six Sigma for Process Improvement”, SIGSOFT Software.
Engineering Notes 30(4), 2005, pp. 1-4.

[14] S. Huang, and C. Lo, “Analyzing Configuration Management
Repository Data for Software Process Improvement”,
Proceedings of the 19th IEEE International Conference on
Software Engineering and Knowledge Engineering (SEKE), 2007.

252

