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Abstract 
 
Project management and process improvement are a 

critical part of software development in an organization, 
especially for large scale and long-lived software. Metrics 
can be used as one of the means to evaluate this process. 
However, traditional methods of measuring effort, for 
example, focusing on editing time and lines of code 
produced, do not reflect the true cost to the organization. 
The organization pays developers for their time, regardless 
of whether they are writing code or performing other 
activities. This paper describes an experimental approach 
to track and measure effort in developer days, using log 
files from a corporate repository. The data is fine-grained, 
empirical, and non-invasively collected. Results have been 
tested on several projects in a large organization over a 
period of many years. 
 
Keywords: Repository, effort, metrics, project 
management. 
 
1. Introduction 

 
Effort is a core metric in both project management and 

process improvement. Earned-Value Management, for 
example, compares planned and actual effort to gauge 
schedule progress and slippage. Lean Process Improvement 
compares total effort to value-add when measuring 
productivity. When comparing one project to another, total 
effort can be used as an indicator of their relative size. 

Effort, itself, is a fairly simple concept. It is measured in 
person-hours or person-days. When the cost-per-hour for 
each person is known, cost-adjusted effort can also be 
computed. When the type of work is known, effort and cost 
can also be classified by type. Unfortunately, in software 
development, measuring effort empirically and per activity 
is not always easy. Numbers self-reported by developers 
are sometimes used. However, such numbers are unreliable 
and only account for part of the developer’s time and 
salary. The problem of assigning cost is further 
complicated in organizations where staff members switch 
back and forth among activities that sometimes overlap. 
The problem of determining effort is captured in the 

following excerpt from a published interview with a 
manager concerning challenges in software development. 

“The metrics are very hard to gather. One of the efforts 
under way right now is to figure out what it’s costing us to 
deliver (the product) because before we had no clue. Time 
was being spent everywhere and it wasn’t being put in 
granular buckets to know we spent this much on project 
management, this much on testing, this much on rework or 
whatever.” [1] 

Current methods of measuring effort in software 
development are based on surveys and self-reports. In one 
method, developers are required to fill out reports to 
account for their hours during the week. In another 
practice, when each task is completed, the developer must 
report how much time it took to complete the task. Both of 
these methods are subjective and fail to account for much 
of the time and effort. Neither method corresponds to the 
actual cost to the company. 

To date, the published work on measuring effort with 
tool and repository data has measured only active coding 
time or numbers of lines changed. These methods do not 
correspond to the actual cost to the organization. 
Repositories offer an interesting alternative. Extracting 
metrics from the repository is non-invasive and low cost 
[2]. The data is both objective and fine grained.   

In this paper we report on our experiments with 
repository data to produce empirical measurements of 
effort in units of developer days. Developers are paid for 
the full day, regardless of how they divide their time. Our 
method assigns the time in a developer’s day to the tasks 
and projects on which the developer is active. The data 
used in this analysis was obtained from a large organization 
and covers several projects over a period of many years. 

This paper offers three unique contributions. First, the 
data is from private industry. In this work we leverage 
features of the data that are characteristic of mature 
practices in private industry. Second, the measurement of 
effort corresponds to what the organization actually pays. 
Because developers are paid for entire days, regardless of 
what they are doing, our approach assumes that cost is 
based on days and uses it in assigning effort to projects, 
tasks, and artifacts. Third, our goal is to automate this 
process of measurement. Extracting data from the 
repository is often a manual process where the data is 
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extracted, formatted, explored, and pruned. Here we 
classify the issues that must be addressed and provide an 
executable solution. 

As an example of our type of result we can produce, 
Figure 1 shows a graph of effort on a project, per day, from 
inception to release. The X axis show the project day, 
starting from day 1. The Y axis shows the number of 
developers working on the project on that day. The lowest 
(red) line that rises in the middle and crosses the other 
(green) line, represents developers repairing bugs (rework). 
The middle (green) line that rises at the beginning, and 
drops in the middle, represents developers working on new 
requirements. The highest (blue) line shows the total  
number of developers, regardless of the kind of work being 
done. As explained in the paper, the numbers are adjusted 
to represent actual worker-day units of effort.  

 

 
Figure 1. Number of active developers by 

project day. 
 
The rest of this paper is organized as follows. Section 2 

discusses related work and positions the work in this paper. 
Section 3 describes the important details of the research, 
including issues and resolutions. This section details the 
steps of transformation, from repository extraction to 
metrics display. Section 4 shows results for different 
projects while highlighting significant details. Section 5 
concludes the paper with a discussion of broader 
implications and immediate next steps that are planned. 
 
2. Related work 

 
The existing research on measuring effort in software 

repositories differs from the work presented here in two 
important respects. The first difference is that the existing 
work is largely academic and based on data from student 
experiments and open source projects. In open source 
development, the work is often voluntary and performed by 
developers in their spare time. Requirements and 
contributed code appear at random intervals. There is no 
real relationship between effort and cost, and bug fix times 
are measured in weeks [3]. In our data, the  relationship 

between effort and progress is direct and the average bug 
fix time is less than 3 days. 

The second difference is that most of the existing 
literature on effort defines effort rather narrowly as “active 
time” spent editing source files. Both Johnson et al. [4] and 
Hochstein et al. [5] instrumented the development 
environment in order to identify times when the developer 
was actually typing. Times between active work periods 
were viewed as “interruptions” or “non-work intervals,” 
and not counted. Measuring effort in this way makes sense 
if the goal is to determine which tool is the easiest to use. 
But when applied to industry, it fails to account for a large 
part of the developers’ time, and the project’s overall cost.  

Perry et al. conducted several studies of how developers 
spend their time [6].  In their studies, they used self-reports 
and direct observation. Not surprisingly, they found that 
developers spend significant amounts of time in meetings, 
on the phone, reading and answering email, preparing 
reports, and creating documents. In an interesting comment, 
they noted that much of the observed communication did 
not involve technical matters, but instead concerned the 
process.  Process costs of this type do not appear in 
measurements that include only “active time.” 

In this paper, our concern is not about how developers 
spend their time. Rather, our concern is simply to measure 
total developer time, regardless of how it is spent, and to 
count that time, as a cost attributed to specific projects, 
tasks, and artifacts. Only when the developer works on a 
different project, or does not work at all, is the time not 
counted. In private industry all of the developers’ time 
should be accounted for.  

While not specifically concerned with effort, there is 
other repository work that bears some relationship to the 
work presented here. Connecting data from bug tracking 
with data from configuration management is described in 
Fischer et al. [7]. They used a process that is very similar to 
the one described here – applying Perl scripts to the 
extracted files and storing the results in a database. They 
even faced a similar challenge of finding the task ID in 
configuration management records and again applied a 
similar solution – looking for the ID string embedded in 
other fields. In their data, the ID appears in the comment. In 
our data, the ID appears in the comment or the branch 
name. Our work differs in that we describe the process of 
identifying effort. In their case, the work produced release 
histories for artifacts. We also look at release histories, but 
not in the work described here.  

Part of the work presented here concerns automating the 
process of collecting repository data and reducing it to 
produce the effort metrics. A number of papers describe 
projects to automate the collection of repository data. 
Bevan et al. for example, describe a system they call 
Kenyon [8]. In their work, the main focus is on capturing 
code changes. They mention capturing the developer ID 
(author), but only in a discussion of making such 
“metadata” consistent across different tools. Similarly, they 
are concerned with correlation between commits of 
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different artifacts, but not between records in different 
kinds of tools. 
 
3. Our research 

 
The goal of our work is to extract metrics from the 

repository that can be used for both project management 
and process improvement. In private industry, managers 
want to know how much things cost. They want to know 
how much effort is spent on work and how much is spent 
on rework. At any given time, they want to know who is 
doing what, and how it compares to prior estimates. When 
improvements are made, they want measurements to show 
if things are getting better. All of this information requires 
tracking effort. 

Our hypothesis is that it is possible to construct reliable 
measurements of effort, with daily and per-artifact 
granularity using data from the repository of a development 
organization in private industry. We make an important 
assumption about the data, that it reflects an organization 
with reasonably mature practices. Our goal is to construct 
such measurements automatically and on demand. 

Effort is measured in developer days or hours. For a 
given day, the effort is the number of developers working 
on that day. To compute this effort, we leverage the fact 
that our data comes from private industry. In a business, 
developers are on a payroll. If they are active, they work 
for the business and generate repository events on a nearly 
daily basis. Project effort can be computed daily by 
counting the number of developers working on that project 
on that day. The challenge is to figure out which developers 
are active and on which tasks and projects they are 
working. In cases where developers are working on more 
than one task and/or project, or are switching between 
projects, the overlap must be detected and addressed. 

As previously mentioned, our process assumes that the 
data is from a mature organization. Mature organizations 
have practices and enforce policies that assure order and 
avoid trouble. These practices affect the quantity, quality, 
and reliability of data in the repository. Specific practices 
and their implications are described below. The teams 
whose data we used were certified at the Software 
Engineering Institute’s CMMI level 3 or higher. The work 
reported here uses data from historical records maintained 
by Rational ClearQuest and Rational ClearCase.  

 
3.1 The Data 

 
In a mature organization, all development work must 

have a reason and be associated with a documented work 
request. Work requests, or tasks, are maintained by a task 
tracker. A task tracker record includes the task, the project, 
the date submitted, the date resolved, and the type of task. 
The two main types of tasks are new requirements and 
defect repairs. A record in the task tracker may contain 
additional information such as assigned developers, the 
developers’ reported hours (as indicated above), and the 

identity of the test that found the bug. For this work, we 
needed only the task’s ID, its project, the task type 
(requirement or fix), and the resolved date. 

In the Rational repository, all development work is done 
on separate branches. The main product branch contains 
only approved and tested code. When a developer starts 
work on a new task, a new branch for development is 
opened. Work continues on that branch until all changes are 
tested and complete. Only then are the changes merged 
with the product back onto the main branch. Thus we see 
the beginning of an activity in configuration management 
logs as the creation of a branch. The continuation of the 
activity appears as the checking in of versions of artifacts 
on that branch. Records from the configuration 
management log contain a date and time, a developer ID, 
the event type (e.g. “create branch”), the name of the 
branch, and the name of the artifact. There is also a 
comment field. For this work we need only the event date 
and type, the branch name, and the developer ID. Once we 
have the raw data, work proceeds in three phases: 
preprocessing, data reduction, and data extraction. As 
mentioned earlier, our data came from a ClearQuest task 
tracker and ClearCase history logs. Similar data would be 
found in Bugzilla and CVS or SVN. The vendor in our case 
(IBM) provides a tool for extracting the raw data, including 
some formatting options. 

The projects in our study are substantial, with up to 100 
developers, task counts in the thousands, and numbers of 
configuration management events approaching six figures. 
The exact size, in terms of lines changed or function points, 
is proprietary and cannot be published.  

Our goal is not to create a benchmark for other 
corporations or entities, nor to indicate that the organization 
involved in our study is doing better or worse than others. 
Organizations have different people, different practices, 
and projects. Rather, the data is used to create an 
organization’s own baseline and metrics to plan and track 
improvement. From one project to the next, within an 
organization, the people, practices, and projects are not so 
different. The contribution in this paper concerns the 
process of deriving the metrics, and their ability to shed 
light within the organization from which they are collected. 

 
3.2 Preprocessing 

 
Most of our analysis work is done using a database. In 

the initial preprocessing step we transform raw data, 
obtained from a software repository, into forms that can be 
loaded into database tables. The database dictates formats 
for date and time and puts limits on the size of various 
fields.  The order of the fields is also fixed. Each table field 
must be given either a meaningful value or the database 
equivalent of a null value. Preprocessing “cleans up” data, 
formats it correctly, infers values that are not directly 
given, and excludes data that is not needed.  

The two main challenges in preprocessing are: 1) 
extracting the data needed for correlating configuration 
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management events with task tracking records, and 2) 
determining which repository events represent valid work. 
We discuss each problem in turn. 

In mature organizations, it is common to have a policy 
that code cannot be changed without a corresponding task. 
Unfortunately, most configuration management tools do 
not support, let alone enforce, the connection to a task 
tracker task. However, this functionality can often be 
added. For many tools, example scripts can be found on the 
Web. In our case, the connection between a branch and its 
task was enforced only by a convention for naming 
branches. The name of the branch included information that 
identified the task. Preprocessing extracted this 
information, including variations and misspellings, and 
generated the needed field for task ID. In some cases, a 
branch is associated with more than one task. When this 
occurs, we simply duplicate the event for each task. The 
method of counting effort, described below, addresses 
multiple and overlapping tasks, so that double counting of 
the effort does not occur. 

Not every event in the repository represents work. Some 
repository events reflect activity by tool administrators or 
automated scripts or daemons. In our metric, effort is 
activity by a developer working on a task. Each episode of 
work has a beginning, a period of continuation, and an end. 
In preprocessing, we add a tag that specifically identifies 
non-developer and non-development work. Several 
heuristics are required, including the type of event, fixed 
and stylized comments, specific branches, and the types of 
artifacts involved. We eliminate records from certain 
administrative acts and any activity associated with 
automatic processes. 

One type of event not found on a development branch is 
still needed to complete the analysis. When a task is 
completed, the work on a development branch is merged 
back to the product branch. This special event marks the 
real completion of the task. The event appears as new 
artifact versions, by a select group of developers, on the 
main branch of the product. Unless it is included in the 
comment, these main branch records lack any reference to a 
task ID. The problem, and our solution, is very similar to 
one described in Fisher et al [7]. In the preprocessing step, 
we identify all version events on a main product branch and 
give them a special tag for later processing. 

A Perl script was used to automate the preprocessing 
phase. Automation makes it possible to make adjustments 
and quickly repeat the entire phase. The preprocessing 
script generates a separate SQL script to load the data into 
database tables. 

 
3.3 Reduction 

 
In the reduction phase, we combine the task tracker and 

configuration management data into a single work event 
table. A work event is one developer working on one 
branch for one task over a contiguous period of time. A 
record in the work event table includes the developer, the 

branch name, the first and last dates of valid change events, 
the task, and the type of work (requirement or repair). The 
table is specific to a single project. 

Using branches to represent work proves very 
convenient. On a branch, work happens between the date 
when the first artifact is checked in and the last artifact 
change occurs. But there are issues to be resolved. A 
developer may be working on several branches at the same 
time. More than one developer may be using the same 
branch. Finally, work may start on a branch, be interrupted, 
and resume at a later date. We address each of these issues 
in turn. 

We often find instances where a developer has several 
branches active at the same time. While performing work, 
developers may open additional branches. Branching can 
be used to separate instrumented from non-instrumented 
code, to try alternatives, or to test changes against different 
product variants. In the extraction phase, we count a 
developer as being active if they have work that is active on 
any branch. Work is allocated by developer, not by branch. 
Thus, there is no danger of double counting effort when the 
same developer is active on more than one branch. 

A special case of developers with multiple branches 
occurs when a developer is active on branches for more 
than one project at the same time. In this case, we have to 
decide if the developer is multi-tasking, or if one branch 
was interrupted to work on the other project. The 
determination is made depending on whether events on the 
two projects interleave, or all of the work on one project 
fits entirely between two stretches of work on the other 
project. In the former case, where there is multitasking in 
active periods that include the same day, we divide the time 
evenly among the tasks involved. In the latter case where 
there is an interruption causing the developer to work on a 
different project, the surrounding stretches are split into 
separate work events. Because we have data on all projects 
(it is in the same repository), we can do the necessary 
comparison, even with tasks in different projects. 

Two developers may work on the same task, or, though 
rare, even the same branch. For branch begin and end dates, 
we group the events by both developer and branch. Thus 
each developer’s work is treated separately with their own 
begin and end dates. These dates are then used to decide, 
on a given date, which developers are working in some 
capacity on the current project. 

When we compare dates reported in the task tracker 
with actual dates found in the configuration management 
event log, we face a new issue. Work occurs on branches 
after the date when the corresponding task was reported as 
resolved. Three possible explanations are considered: 1) the 
task tracker data was incorrect, 2) the task tracker data was 
correct, but final adjustments were needed before merging 
with the main branch, or 3) work that was attributed to the 
task was not being done for the current project.  

In the first case, task tracker reports are subjective and 
might not be entirely accurate. Work actually continues for 
1 or 2 additional days after the report of resolution. In the 

249



second case, the task work has passed inspection and 
acceptance testing. But before the work can be merged 
back into the main branch, last minute adjustments are 
needed to resolve conflicts. The work typically appears 
within 10 days of the reported completion, does not involve 
a new branch, and is immediately before the merge. In 
either case, the work is counted towards project effort.  

In the third case, the existing task ID is used for work 
that ultimately becomes part of a different variant, or future 
product release. Typical scenarios could be that the original 
fix proved valuable and was quickly applied to other 
product variants without opening a new task. In an alternate 
explanation, a better solution was found and tested, but 
only for use in a later release. In both of these cases, the 
work has its own sub-branch, and is begun later than the 
reported resolved date. The work being done is also never 
merged with the current project’s main branch. In these 
cases, the effort is not counted towards the current project. 

The reduction phase is performed by an SQL script and 
output to a single work event table containing all the data 
for one project. The work event table includes the 
developer ID, the branch name, the first and last dates of 
the developer’s work on that branch, the task ID, and the 
type of work (requirement or repair). 

 
3.4 Extraction 

 
In the last step, we count how many developers are 

actively working for the project on each project day. The 
output is an effort table with one record for each project 
day. An effort record has fields for calendar day, number of 
active workers, number of workers active on requirements, 
and number of workers active on repairs. To perform the 
adjustments for overlapping work, we count workers 
involved in both development and repair tasks, workers 
involved in development and non-project tasks, workers 
involved in repairs and non-project tasks, and workers 
involved in all three types of work (development, repair, 
and outside the project). The last case is very rare. These 
last counts are used to adjust the data, dividing the effort so 
that the totals match the actual number of developers. 

At this point, the major challenge is deciding what to 
count as a project day. If we count every calendar day, we 
would also count weekends and holidays when no work is 
actually being done. It seemed better to count just the 
traditional work days – Monday through Friday, minus 
holidays. But looking in the repository, some weekends had 
significant activity. A project could show less effort by 
having work done on weekends, and thus not counted as 
effort. In the end we included weekend days which, after 
adjusting for work in different time zones, showed 
evidence of significant work. We excluded holidays when 
there was relatively little work.  

A developer is counted as working if they have a work 
event record (as described in the previous section) where 
the current day falls between its first and last day of work. 
As explained earlier, a developer may have multiple 

branches within a task, and may also be working on more 
than one task, in which case only part of the day is counted 
under each activity.  

 
3.5 Display 

 
After extraction, the data is ready for display. The daily 

records of effort are output to a Comma-Separated-Value 
(CSV) text document, which is then loaded into a 
spreadsheet. The data is then displayed. A sample result is 
shown in Figure 1. 

 Because we adjust for overlapping effort on different 
projects, tasks, and task types, the line for all developers is 
in fact the sum of the other two lines (development and 
repair). Since a few developers may be working on both 
requirements and repairs at the same time, without 
adjusting the allocated effort, a simple sum would have 
counted them twice. Similarly, the effort of workers active 
in more than one project might otherwise be counted twice 
between the projects. 

 Days in this graph are project days, not calendar days. 
In general, weekends and holidays are excluded. But busy 
“non-work” days were included, as explained above.  

To draw the graph in Figure 1, we smoothed the data 
using a 7 day sliding window average. Without the 
smoothing, daily fluctuations obscure the longer trends. 
The 7 days was chosen as the window size to also smooth 
over variations due to the day of the week. Figure 2 shows 
the same data, prior to being smoothed. 

 

 
Figure 2. The same data as Figure 1 without 

smoothing. 
 

The project’s total developer effort, measured in person 
days, is the area under the curve. This area is easily 
computed  by summing the daily counts over the life of the 
project. For the project in Figures 1 and 2, total developer 
effort was 14,600 developer days. For new work and 
rework, the numbers were 9,700 and 4,900 respectively. 
Rework accounted for 33% of total effort. At the time of 
this project, 33% was slightly better than average for 
similar projects within the organization. 
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4. Results 

 
In the previous section we described how the data is 

collected and transformed to produce effort metrics. Here 
we discuss our experience and some uses of the data. 

 

 
Figure 3. Effort graphs for a recent project with 

better practices. 
 

 
Figure 4. A troubled project with major effort for 

rework. 
 

Figures 3 and 4 show effort curves for two other 
projects. The project in Figure 3 is a more recent project. 
Total effort was 7,700 developer days. In this case, rework 
effort was only 22%. We have not investigated all of the 
differences to account for this improvement. But the 
organization has improved its use of unit testing. Another 
difference, visible in the graphs is the steeper ramp up at 
the beginning and ramp down at the end, showing better 
time utilization, partly due to better coordination among 
projects. 

The project in Figure 4 was an older project that 
experienced significant difficulties. The effort ramped up 
quickly in the beginning, but soon ran into trouble. 
Developers were pulled from requirements early to focus 
on rework. Another interesting feature, visible in the data, 
is a design change around day 300, resulting in a second 
hump on the line for new work. Total effort was 15,650 

developer days. But rework accounted for 48% of total 
effort. 

Views like those presented here are not currently 
available to managers in our organization. Current 
measurements of effort are based on reports collected from 
developers. We had access to these reports for some of the 
projects in the study. Overall, the reports varied widely. 
Many showed little relationship to the evidence in the 
repository. More significantly, as we reported in an earlier 
paper [9], they only account for 20% of the developers’ 
time. When we compared developer days with hours 
reported for thousands of tasks, short and long, the 20% 
figure was surprisingly consistent. We don’t know if it is a 
coincidence, but 20% matches the industry average value-
add efficiency for development engineers reported by 
Kennedy [10]. Developers are paid for days at work, not 
just self-reported hours of value-adding activity. Thus the 
method of measurement presented here is a more realistic 
indicator of cost.  

Starting with the views shown, and based on the same 
methods of data reduction and analysis, our approach 
presents many opportunities for further drill-down analysis. 
It is possible, on any day, to determine who is working on 
what project, which task, and which type of task. That data 
is actually present, and in that exact form, in the reduction 
step. Managers we spoke to said they often wanted that 
information, but cannot get a reliable report. From the same 
data, managers could also determine which tasks, are 
started but not yet complete, have been running for the 
longest time and are consuming the most effort. 

By changing the grouping criteria, again in the reduction 
step, the approach could be used to divide the effort by 
product subsystem or component, or types of artifact. 
Hindle, Godfrey, and Holt [11] describe a method of 
partitioning among document update, test preparation, and 
other activities. Their method could be applied with the 
data here. 
 
5. Conclusion and future work 

 
We had produced a graph, much like the one in Figure 

1, during an earlier phase of our research [9,12]. But the 
data from that one project was cleaned manually, and the 
metrics for effort was extracted only after many 
intermediate steps of data reduction and transformation. In 
the work presented here, we wanted to demonstrate that the 
metrics for effort are generally available, and that the 
process of extracting them from common repository data 
could be automated. We are now able to produce these 
graphs for any project in our repository, at will. 

When publishing details of our work, we frequently 
encounter the question of whether the numbers we produce 
are comparable across organizations. These metrics depend 
on specific reporting practices, the way in which work is 
organized, and the individuals involved. But, in process 
improvement, the goal is to do better than we ourselves 
have done in the past. The processes, practices, and people 
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within an organization stay pretty much the same. Thus the 
metrics are highly reliable for internal and longitudinal 
measurements of process improvement. While specific 
details may vary, what is generalizable across the industry, 
is the general method of extracting data and presenting it in 
a view. Moreover, practices of using branches for 
development work and associating changes with tasks, are 
themselves best practices and not unique to the 
organization that was studied. We believe that our method 
of allocating and measuring effort can be applied beyond 
the organization in this study. 

In many fields, project managers use the Earned Value 
(EV) method of tracking progress. Earned Value counts the 
effort of a task as its value, and tracks how much of the 
expected effort has been achieved to date. It is difficult to 
apply the Earned Value method of management when your 
only metrics are hours spent, lines written, and defects not 
yet fixed. In the future, we hope to show that we can 
produce reliable metrics to support this type of 
management. 

Our work began with efforts to use repository data for 
objective, and actionable measurements of the process 
using the types of data available in private industry [13]. 
We are succeeding in that effort. More recent work has 
focused on methods of visualization [14]. At this time, our 
effort is shifting to put these kinds of tools directly in the 
hands of the organization’s decision makers. The work 
presented here is a step closer to that goal. 
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