
Adoption-Centric Software Maintenance Process Improvement

via Information Integration

Shihong Huang

Computer Science & Engineering

Florida Atlantic University

shihong@cse.fau.edu

Scott Tilley

Department of Computer Sciences

Florida Institute of Technology

stilley@cs.fit.edu

Mike VanHilst

Computer Science & Engineering

Florida Atlantic University

mike@cse.fau.edu

Damiano Distante

Research Center on Software Technology

University of Sannio

distante@unisannio.it

Abstract
Software process improvement is an iterative activity,

normally involving measurement, analysis, and change.

For most organizations, the existing software process

has substantial momentum and is seemingly immovable.

Any change to existing process activities causes

turbulence in the organization, which can be a

significant barrier to adoption of the quality

improvement initiative. This paper presents a quiescent,

non-invasive, and adoption-centric approach to process

improvement for software maintenance. The approach

realizes the goal of improving the efficiency of existing

processes by minimizing changes to existing workflows

and focusing on integrating enhancements at the micro-

level of the system. By leveraging information buried in

existing data, making it explicit, and integrating the

results with known facts, more informed decision-making

is made possible. The approach is illustrated with a

model problem concerning redocumentation of an

embedded control system in the context of performing

higher-quality software maintenance.

Keywords: adoption-centric, process improvement,

software maintenance, information integration, process

integration, program redocumentation

1. Introduction

The continuous maintenance and evolution of large-

scale software systems is a constant challenge. The

literature is replete with examples of the difficulty in

dealing with issues of complexity management, program

understanding, and impact analysis. One of the key

drivers for system change is increased quality, which

may be defined using somewhat ill-defined goals such as

“easier to use,” “less buggy,” or “more secure.”

Changes made to the system in response to shifting

business requirements are often accompanied by changes

to the processes used to manage the system. A software

process is a set of activities that leads to the production

of a software product [9]. Process improvement is based

on the assumption that the quality of the engineering

process is critical to product quality. This assumption has

been proven to be true by Japanese manufactured goods.

However, in the academic community, there are

arguments whether the results from manufacturing

engineering can be transferred directly to software

engineering [14]. Nevertheless, process improvement is

still viewed as an effective way to improve the quality of

software engineering activities such as maintenance.

Although there are software process improvement

techniques that have shown promise in limited settings

(e.g., as an academic proposal or in small-scale

controlled experiments), in reality, any approach to

software process improvement should only be

considered successful if it is adopted in a real-world

context (and hopefully by the industry-at-large).

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

Unfortunately, making changes to an organization’s

processes is not a trivial task. For adoption to be

successful it should be voluntary and facile; forcing the

organization to change the fundamental manner in which

they operate is rarely successful.

Many aspects of the existing software process

activities, such as the current business environment, the

familiarity of tools that software developers use, and the

workflow the developers are accustomed to, may have

existed for a long time. For better or worse, the

workflow processes may have become deeply embedded

in the organization’s daily practice. Such processes

exhibit considerable momentum, making change very

difficult to effectuate.

To realize the goal of improving the quality of

software maintenance, dramatic changes to existing

processes is not a viable solution; it can only generate

turbulence within the organization. A better way to

achieve the same goal is to make the process

improvement change transparent to the stakeholders, so

that the adoption is a pleasant experience. One way to

accomplish this is by integrating new procedures into

existing process at the micro-level. The net effect is to

positively change the results of the production process at

the macro level, but with considerably less churn.

This paper presents a quiescent, non-invasive, and

adoption-centric approach to process improvement for

software maintenance. The approach realizes the goal of

improving the efficiency of an existing process by

minimizing changes to existing workflows and focusing

on integrating enhancements at the micro-level of the

system. By leveraging information buried in existing

data, making it explicit, and integrating the results with

known facts, more informed decision-making is made

possible.

The next section discusses some of the fundamental

issues related to software process improvement,

outlining lessons learned as to what has worked and what

has not worked over the years. Section 3 outlines an

adoption-centric approach to process improvement,

using a model problem concerning redocumentation of

an embedded control system in the context of performing

higher-quality software maintenance as a basis. Section 4

provides an illustrative example of the approach in use,

highlighting key steps of the approach used in a real-

world case study involving an industrial partner. Finally,

Section 5 summarizes the paper and outlines possible

avenues for future research.

2. Process Improvement

The accepted practice of software process

improvement is to apply a standard framework, which is

essentially a checklist of recognized software

engineering best practices. A process “improves” as it

comes into closer alignment with the elements and

practices defined in the checklist. Some frameworks are

applicable to the entire software lifecycle, while others

are more focused on specific activities, such as

maintenance and evolution. Some of the best-known

process improvement frameworks are the Software

Engineering Institute’s Software CMM [11], ISO 15504

(SPICE) [10] and Trillium [1]. There are also many other

process improvement frameworks, created by

international standards bodies, the military, industry

groups, and academic think tanks [13].

The common complaint about process frameworks

is that they add activities rather than reducing or

streamlining the process. Their tendency to emphasize

documentation and inspections adds overhead to existing

processes. When the prescribed activities run against the

existing culture, an organization sometimes create a

separate team to perform the additional work. This runs

counter to the goal of adoption of the process

improvement initiative, since the implicit lack of buy-in

by the key personnel often proves to be an

insurmountable obstacle.

Under the above definition of improvement, the

more common notion of improving productivity is

treated as a sub-area, called “optimization.” There are

fewer accepted practices specific to optimization. The

best known, Primavera [12], the Personal Software

Processes (PSP) [7], and Team Software Processes

(TSP) [8], require frequent documentation of

productivity metrics (e.g., time and results). These

practices also tend to run against existing developer

culture. Detractors of such optimization techniques

sometimes compare them to time management, or even

Taylorism [15].

Software process improvement is an iterative

activity, normally involving measurement, analysis, and

change. However, our experience with large

organizations has been that process improvement is too

often dictated from above, based only on superficial

measurements and shallow analyses. Under pressure

from customers and peers, high-level managers will

dictate that the organization achieves certification under

a particular standards framework. Under pressure to

improve productivity, middle-level managers decide to

adopt new tools and methodologies based on the

vendors’ claims of productivity improvement. At the

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

“bottom” level, the maintainers continue to work as they

always have, ignoring any exhortations to adopt a new

but unproven and heavyweight tool or technique.

At the process change stage, where the actual

improvements take place, normal practice is to impose

new procedures or introduce new methods and tools, and

then attempt to integrate these changes with other

existing activities. Such change is normally intrusive,

and requires significant time and effort, including time

off for training, to be properly introduced. There is a risk

of the disruption creating a period of declining morale

and product-quality degradation in the short term. In the

long term, the improvement may not be adopted.

In contrast, a more effective approach should be

compatible with other process activities and with

organizational procedures and standards already in use at

the organization – even if such practices can be shown to

be suboptimal. Since the ultimate goal is to provide

practical quality improvement within this constrained

context, and to provide a better adoption approach of

process improvement, reuse and transforming existing

information seems to be a logical choice [16].

3. An Adoption-Centric Approach

The previous section identified several shortcomings

in normal approaches to software process improvement.

These shortcomings suggest possible changes to the

existing methods by using an adoption-centric approach,

so that the changed and improved process could be easily

adopted by organizations with minimum ripple effect on

the daily practice of the process. This section outlines

such an approach, using our experience in developing a

methodology for program redocumentation of embedded

control systems as a representative model problem.

Modern real-time control systems are incredibly

intricate hybrids of software components and hardware

mechanisms. Gaining a sufficient understanding of such

a system in order to perform reliable maintenance with

predictable results can be quite difficult. One technique

that has enjoyed considerable attention in this regard is

reverse engineering [3], which is a process of gathering

data through automated processing of the system (e.g.,

parsing source code) and generating abstract

representations of the system to support program

understanding. Reverse engineering can be used to

retroactively provide accurate documentation for existing

software systems. This documentation can then be used

to aid the engineer in performing maintenance and

evolution tasks.

The reverse engineering tools employed in support

of maintenance of embedded control systems have

unique requirements imposed on them due to the

intricacies of the application domain. The unfortunate

result is that many reverse engineering tools and

techniques fail to be adopted by anyone other than their

developers. This is a lamentable situation, since

objective evidence as to the technique’s efficacy is

ultimately provided by the end user – preferably in a

real-world setting [6].

To address this problem, we developed an integrated

approach to program redocumentation that has adoption

as one of its central themes [5]. The approach is

prescriptive in nature: it provides general guidelines for

developing a redocumentation process that has the ability

to meet the user’s requirements, and suggests manners in

which selected tools can be integrated to realize the

approach. The approach relies in part on reusing

information that is hidden in the subject system –

information that is uncovered and made explicit using

reverse engineering.

The approach is structured according to the

following five high-level steps:

1. Collect documentation requirements

2. Identify data sources and synthesis needs

3. Select tools according to an existing reverse

engineering environment framework

4. Create a common schema

5. Develop a control integration strategy

Rather like the CMM’s “key practices,” each step

of the approach describes what should be done, but it

should not be interpreted as mandating how the process

should be implemented. There is enough flexibility in the

approach that each step can be tailored as needed.

Due to space requirements, this paper focuses on

just one of the five steps of the approach most directly

related to information integration: Step 2 - identifying

available data sources that can readily provide the

needed information. For program redocumentation, the

likeliest candidate is source code. However, secondary

and ancillary sources are also candidates. Examples of

such sources include existing documentation,

requirements specifications, design models, test cases,

and maintenance histories.

Depending on the nature of the source, special-

purpose data gathering engines will likely be required to

extract what is needed. The approach does not specify

the functional nature of the data-gathering engine, nor

does it dictate details such as the internal representation

used. The only requirement is the ability to extract the

necessary data from the source and possibly blend the

result in combination with other similarly gathered data.

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

If there are no appropriate data sources, or if the

documentation requirements cannot easily be satisfied by

single input streams, then the result must be synthesized.

The synthesis is made possible by the common schema

and loosely integrated tools described below. The

synthesis may be as simple as combining the results from

two queries against the database. Or, the synthesis may

be a complex iterative activity that both uses and

expands upon known information to derive the necessary

insights into the application.

4. An Illustrative Example

The previous section outlined an adoption-centric

approach to the process for a specific software

maintenance activity: program redocumentation. The

success of this approach rests on the underlying

assumption of the importance of minimal invasiveness

when introducing a new process into an organization. In

other words, how difficult it is to integrate the

instantiation of the approach into existing processes.

This section again focuses on Step 2 of the approach: the

identification of data sources and synthesis needs.

This illustrative example continues the use of an

embedded control system as a representative problem in

a complex application domain. With this particular

system, the documentation requirements collection step

identified three types of information that would be of

particular use for the engineers: control flow and data

flow documentation, functional structure documentation,

and software architecture documentation. The first two

types of documentation are accessible using a variety of

data analysis techniques, while the third type of

documentation required more elaborate processing and

data synthesis.

The documentation requirements of control flow and

data flow, functional structure, and software architecture

consume various forms of data as input to the

redocumentation procedure. This data can only come

from two places: data that is readily available for

gathering, and data that must be synthesized for use.

Data analysis is relatively straightforward, although the

actual task of processing the raw source may be non-

trivial. If there are no appropriate data sources, or if the

documentation requirements cannot easily be satisfied by

single input streams, then the result must be synthesized.

The synthesis is made possible by the common schema

and a loosely integrated tool control strategy outlined

above. The synthesis may be as simple as combing the

results from two queries against the database. Or the

synthesis may be a complex iterative activity that both

uses and expands upon known information to derive the

necessary insights into the application.

4.1 Control Flow and Data Flow Documentation

via Data Analysis

In the model problem, control flow and data flow

documentation capture information related to two types

of relations: function invocations and the usage of global

variables by functions. Function invocations are

essentially the def/use relationships that are extracted

from the source code. The variable usage is classified as

“read,” “write,” or “readwrite.” The exact nature of the

variable usage is determined by source code analysis.

Depending on the capability of the tool used to process

the system’s source code, this information may be

readily available, or it may require further analysis to

synthesize the result.

For the model problem, the main source of data was

the control system’s C source code. This is illustrated in

Figure 1. The following types of artifacts were gathered

from the source code: variables, constants, functions,

files, label access, and function calls. Bit variables were

extracted from the source code, augmented with

manually processed information and database analysis

routines (as described below). The code is truly “real

world” in the sense that it makes use of programming

language constructs that pose analysis difficulties (e.g.,

macros).

Existing documents were also used as input to the

data gathering process. Writing documentation means

collecting information, making investigations,

combining this information with other sources, inferring

new facts, understanding the whole, and generating

Figure 1: Control and Data Flow Analysis

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

updated documentation. Therefore, creating new

documentation can be interpreted as the reengineering of

existing documentation. Similarly, redocumentation can

be viewed as the same process as regular documentation,

only the data sources are different. This makes adoption

of the redocumentation process into existing processes

even more important: the new information must be

produced in an unobtrusive manner.

The third form of document data gathering is

incorporating user input. Senior engineers often carry

implicit knowledge concerning the system, such as why

particular design decisions were made. By making this

knowledge explicit and storing it in the same repository

as the other two sources of data (source code and

existing documents), a repository is created that captures

the essential documentation building blocks that are used

later in the redocumentation phase.

There are also secondary data sources that contain

important information regarding the system’s

requirements, design, and construction written in a

variety of other non-programming language formats. For

example, information regarding real-time objects such as

tasks, processes, and interrupt service routines was

contained in a semi-structured text file. A coarse

description of the system’s architecture was written by

hand in an Excel spreadsheet by one of the system’s

original developers.

Even with such a rich variety of data sources

available, not all information was readily present to

support all types of documentation requirements. For

example, for the functional structure documentation,

there was a need to connect logical information from one

data source to code information from another. Perhaps

the most challenging requirement was bit-level data flow

analysis, which required extensive synthesis of

information already in the central repository to create the

necessary documentation.

4.2 Functional Structure Documentation via

Data Analysis

In the context of the model problem, “functional

structure” refers to a representation of the functional

components of the system—in particular, to its logical

structure according to engineer-defined “functionality.”

From a traditional software engineering perspective, the

term “functionality” may be counterintuitive. It does not

directly refer to functional requirements. Rather, it refers

to a logical clustering of sub-functionalities (a recursive

definition) and files that constitute a logical component.

The functional structure is hierarchical in nature and

best modeled as a layered graph, where a node in the

graph can be either a sub-graph representing sub-

functionality or a terminal node representing a non-

decomposable entity. The advantage of using a layered

graph with “super nodes” that represent sub-graphs is

that this model seems inherently in tune with how

developers think of the system’s functional structure.

This implies that an important criterion for tool selection

is support for hierarchical displays of information,

preferably in an interactive manner. Without this ability,

any graphical representation of nested structure would be

severely compromised.

To provide functional structure documentation, there

must be a way of extracting information from the system

that indicates the structure of the “functionalities” (the

term used in the project for the representation of the

system’s functional components). For most programs,

this information is not available in the source code.

Instead, secondary sources of information must be used

to provide this data. This requirement implies that

traditional forms of data gathering based on static source

code analysis will not be sufficient. Once the functional

structure data has been gathered, there must be a way to

merge this data into the central repository to facilitate

later analysis. This can be accomplished (in part) through

data synthesis.

4.3 Software Architecture Documentation via

Data Synthesis

Most architecture recovery tools rely solely on static

source code analysis. But the rich architectural

information is not codified in source; it is usually kept as

mental models in the engineers’ heads, or documented in

an informal manner. This makes data gathering and

subsequent analysis of this information quite

challenging, imposing special requirements on the

toolset used for the process.

As with functional structure analysis, there must be

a way of extracting data from the system that carries

some value in terms of architectural structure. As

mentioned before, for most programs, this information is

not available in the source code. Instead, secondary data

sources must be used to provide this information.

Moreover, there must be a way to merge this data into

the central repository to facilitate later analysis.

For the project, architectural information was kept in

semi-structured documents such as Excel spreadsheets,

which implies that analysis of this information must be

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

blended with other sources to create a complete picture

of the system.

5. Summary

This paper presented a quiescent, non-invasive, and

adoption-centric approach to process improvement for

software maintenance. The underlying thesis is that

improvements to the software process will produce

measurable improvements to the resultant software

product. Making process improvements of this scope

have proven notoriously difficult to properly execute.

To address this historical deficiency, the approach

realizes the goal of improving the efficiency of an

existing process by minimizing changes to existing

workflows and focusing on integrating enhancements at

the micro-level of the system. By leveraging information

buried in existing data, making it explicit, and

integrating the results with known facts, more informed

decision-making is made possible.

The approach was illustrated with a model problem

concerning redocumentation of an embedded control

system in the context of performing higher-quality

software maintenance. Software engineers have long

relied upon documentation as a valuable source of

information when it comes to making informed decisions

regarding potential changes to the application. The

approach described has the ability to blend data from

multiple sources to create a more complete

documentation package.

5.1 Results

Although this paper focused on just one step of the

approach, the entire procedure has been implemented

and deployed at an industrial site, and has been in

continuous use for over three years. Because the

resultant toolset and the software maintenance process

that it supported were relatively easy to integrate into

existing workflows, the system was adopted with little

negative impact on daily activities. Indeed, the positive

impact of the program redocumentation activity was

significant: information previously unobtainable was

made available to support software maintenance

activities in an automated manner.

The program redocumentation procedure can be

initiated on-demand by a system engineer, to produce

timely information as part of normal maintenance

activities. Since the system was also incorporated into

the nightly build process, extra information is

automatically produced and made available for use on as

as-needed basis the following workday [4].

Although this was just one case study, the results

were encouraging and seem to support the central

hypothesis that process improvement initiatives, whether

they are focused on general activities or specific ones

such as maintenance and evolution, must be adoption-

centric from the very beginning; otherwise, they will

have little measurable (positive) effect on the target

organization.

5.2 Future Work

One of the most promising areas of future work

concerns incorporating new sources of semi-structured

data into the redocumentation process. These sources are

rich in informal history and shared experience by past

project members. However, such sources can also prove

to be difficult to analyze in an automated manner.

Fortunately, for program redocumentation purposes the

analysis need not be exact; it just needs to provide new

information not otherwise available to the decision

maker.

There is also a clear need for continued use of

evidence-based methods [2] to measure the efficacy of

the approach. As with many other developments in

software engineering, the user is the ultimate judge as to

the value of a new tool or technique. When the

techniques concern changes to incumbent processes, a

key to adoption appears to be minimally-invasive

alterations in the status quo with maximally-observable

benefits to the encompassing production cycle.

References

[1] Bell Canada. TRILLIUM - Model for Telecom Product
Development and Support Process Capability. 1994.

[2] Budgen, D.; Brereton, P.; Kitchenham, B.; and Linkham,
S. International Workshop on Evidence-Based Software
Engineering (EBSE 2005: May 17, 2005; St. Louis, MO).
In Proceedings of the 27

th
International Workshop on

Software Engineering (ICSE 2005: May 15-21, 2005; St.
Louis, MO), pp. 687. New York, NY: ACM Press, 2005.

[3] Chikofsy, E.; and Cross, J. “Reverse Engineering and
Design Recovery: A Taxonomy.” IEEE Software 7(1):13-
17, January 1990.

[4] Hartmann, J.; Huang, S.; and Tilley, S. “Documenting
Software Systems with Views II: An Integrated Approach
Based on XML.” Proceedings of the 19

th
Annual

International Conference on Systems Documentation
(SIGDOC 2001: Santa Fe, NM; October 21-24, 2001), pp.
237-246. ACM Press: New York, NY, 2001.

[5] Huang, S. An Integrated Approach to Program
Redocumentation. Ph.D. Dissertation, University of
California, Riverside. 2004.

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

[6] Huang, S. and Tilley, S. “On the Challenges in Fostering
Adoption via Empirical Studies.” Proceedings of the 4

th

International Workshop on Adoption-Centric Software
Engineering (ACSE2004: May 25, 2004; Edinburgh, UK).

[7] Humphrey, W. Introduction to the Personal Software
Process. Addison-Wesley, 1996.

[8] Humphrey, W. Introduction to the Team Software
Process. Addison-Wesley, 1999.

[9] Humphrey, W. Managing the Software Process. Addison-
Wesley, 1989.

[10] ISO/IEC. “Information Technology - Software Process
Assessment.” ISO/IEC Technical Report TR-15504 1998.

[11] Paulk, M.; Weber, C.; and Curtis, B. (eds). The Capability
Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.

[12] Pressman, R. Software Engineering: A Practitioner's
Approach (6

th
Ed). McGraw-Hill, 2004.

[13] Sheard, S. “The Frameworks Quagmire.” Crosstalk,
September 1997. Online at
www.stsc.hill.af.mil/crosstalk/1997/09/frameworks.asp.

[14] Sommerville, I. Software Engineering (7
th
Ed.). Addison-

Wesley, 2004.

[15] Taylor F. The Principles of Scientific Management. 1911.

[16] VanHilst, M; Garg, P; Lo, C. “Repository Mining and Six
Sigma for Process Improvement.” International Workshop
on Mining Software Repositories (MSR’05: St Louis, MO;
August, 2005).

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25, 2009 at 16:22 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

