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ABSTRACT 
This study is part of ongoing work on situational awareness 

and autonomy of a 16’ WAM-V USV.  The objective of this work 
is to determine the potential and merits of application of two 
different station-keeping controllers for a fixed-pose motion 
control of the USV. The assessment includes performance and 
power consumption metrics tested under harsh environmental 
disturbances to evaluate the robustness of the control methods.  
The first is a nonlinear trajectory-tracking control method based 
on the sliding-mode control technique, while the second method 
uses a machine-learning approach based on Deep 
Reinforcement Learning.  Results from both the approaches are 
compared for various case studies. 

Keywords: nonlinear control, deep reinforcement learning, 
machine-learning, station-keeping, marine robotics, artificial 
intelligence, unmanned surface vehicles, autonomous surface 
vehicles. 
 
1. INTRODUCTION 

 Marine operations involving search-and-rescue, 
research-related surveys, structural inspections, surveillance and 
military missions, often pose a significant challenge and 
potential risks for human operators, especially in remote areas 
under adverse condition. For this reason the need for use of 
unmanned surface vehicles (USV) has been expanding recently.   
Moreover, the level of autonomy of such vessels is improving 
continually owing to technological advances and novel 
algorithms.  These advances, which have been inherited 
primarily from technology used in autonomous ground vehicles, 
allow the USV to model the surrounding environment from data 
acquired using perception sensors such as LiDARs, RADARs, 
monocular and stereo cameras, etc., and decide on its response 
to various surrounding conditions, including obstacles (static and 
dynamic), environmental forces and illumination conditions 
among others.  These decisions depend on the overarching 
mission of the vehicle, which can be broken down into a 

sequence of tasks consisting of processes such as world mapping 
(using information from the perception system), motion 
planning, and control of the dynamics of the vehicle.  The present 
study focuses on this last aspect, particularly on station-keeping 
control, which consists of controlling a fixed pose of the USV 
using (in this particular case) two transom azimuth thrusters.   

Effort is typically made to improve system identification 
procedures [1] in support of determining more accurate 
parameters for the estimated dynamic model, and obtain data 
about environmental conditions that affect the dynamics of the 
vehicle and incorporate them in the model, such as, for example, 
current, wind and wave forces [2].  Other situations may also 
affect the dynamics of the vehicle, especially ones considering 
time-varying properties associated with mass, and mass 
distribution, such as when the vehicle is loaded/offloaded. 
Different approaches to improve the controllability of a USV 
under the aforementioned situations have been developed; in [3] 
for example, a nonlinear observer is utilized to estimate the state 
of environmental forces and include them in the control system.  
In [4], on the other hand, due to the nature of their application, 
parameters based on the vehicle’s displacement and drag are 
taken as time-varying variables with associated uncertainty, and 
thus, an adaptive controller approach is instead applied. 

Here we explore two fundamentally different station-
keeping controllers under the influence of harsh environmental 
disturbances, and characterize their performances and power 
consumption.  The first method is a nonlinear sliding-mode 
trajectory-tracking controller, which is part of what is known as 
robust control [5].  This method allows the knowledge of the 
dynamic model to be imprecise in terms of the estimated rigid-
body and hydrodynamic parameters associated with it, as well as 
due to unmodeled dynamics, which may be introduced by 
environmental disturbances. This imprecise (or simplified) 
model is then utilized to compute a nominal control law which 
along with an additional term (which deals with the uncertainty 
of the model) is able to conduct the USV to the desired state.  
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This method however, produces the required control forces and 
moment at a specific point in the USV, which is chosen to be the 
center of mass.  These values need then to be relocated according 
to the actual geometric configuration of the actuators on the 
vehicle [6].  To this end, the locally-convex quadratic 
programming (QP) optimization method is utilized for the 
control forces and moment allocation, also known as the 
generalized force vector [7].  The second method is based on the 
deep reinforcement learning technique, which is a machine 
learning approach that allows the controller to determine an 
optimal policy via trial-and-error interactions with the 
environment.  The technique consists of training the agent using 
the three degrees-of-freedom (3-DOF) equations of motion 
(EOM), so that it incrementally learns a control policy that maps 
a given state to an optimal set of actions [8] (throttle and steering 
of the thrusters) that conduct the vehicle to the next state.  The 
autonomous low-level actions bring the vessel closer to the 
specified high-level goal, which is ultimately the station-keeping 
pose.   

Both approaches utilize a 3-DOF EOM as described in [9] 
with some updated parameters.  In order to test both control 
methods against inaccuracies in the dynamic model, two 
different sets of parameters for the EOM are defined: a true and 
an estimated set. 

The estimated set is used to produce a nominal nonlinear 
control law and to train the agent, on the conventional and the 
machine-learning methods, respectively.  The values of the 
parameters of the estimated set deviate from the ones in the true 
set in order to account for inaccuracies that are inherent to the 
implementation process, provided that in general the true set is 
unknown. However, the fact that these true values are known for 
this simulated experiment, allows us to characterize the response 
of both type of controllers. 
 
2. WAM-V 16’ USV 

The wave adaptive modular vehicle (WAM-V) 16’ USV is 
a light-weight catamaran (FIGURE 1) .  It consists of a center-
top tray that is connected to each pontoon through a set of front 
and rear articulated bars and a suspension system, which isolates 
the center tray from the motion induced from incident waves.  
This property makes the WAM-V ideal as a data acquisition 
platform, while its payload to weight ratio provides a suitable 
solution as a battery-powered system. 

The WAM-V 16’ USV is equipped with two 2 kW electric 
outboard motors and two corresponding linear actuators 
providing the vehicle with two-transom azimuth thrusters, each 
thruster constrained to a rotation of 𝛼 = ±45°. 

 
2.1 Equations of Motion 

The two control methods studied in this work, utilize the 
SNAME 1950 convention [10] for both body-fixed and inertial 
frames of reference.  The dynamic model of the USV is provided 
in terms of the body-fixed coordinates considering only 3-DOF 
(surge, sway and yaw) as defined in (1) [11], where 𝑴 in (2) is 
the inertia matrix corresponding to the rigid-body and added 
mass combined effects, similarly to 𝑪 in (3) which is the Coriolis 

and centripetal terms matrix while matrix 𝑫 in (4) encompass the 
drag terms.  Vector 𝝉 in (5) correspond to all the external forces, 
including propulsion and environmental disturbances. 

 
               𝑴�̇� + 𝑪(𝝂)𝝂 + 𝑫𝝂 = 𝝉 

              Where 𝝂 = [𝑢 𝑣 𝑟]  
(1) 

     𝑴 =

𝑚 − 𝑋 ̇ 0 0
0 𝑚 − 𝑌 ̇ 0
0 0 𝐼 − 𝑁 ̇

 (2) 

𝑪(𝝂) =

0 0 −(𝑚 − 𝑌 ̇ )𝑣

0 0 (𝑚 − 𝑋 ̇ )𝑢
(𝑚 − 𝑌 ̇ )𝑣 −(𝑚 − 𝑋 ̇ )𝑢 0

 (3) 

𝑫 =   −

𝑋 0 0
0 𝑌 0
0 0 𝑁

 (4) 

        𝝉 = 𝑇  𝑇  𝑀  (5) 

The origin of the body-fixed coordinates is assumed to be at 
the USV’s center of mass and the rigid-body and hydrodynamic 
parameters have been slightly updated from [9]. 

 
2.2 Estimated and True Parameters 

In order to emulate an actual implementation of the methods 
developed in this work, two different sets of parameters are 
defined, as shown in TABLE I.  The first is the estimated set of 
parameters, which is calculated by means of a system 
identification procedure [12] or/and the use of analytic 
techniques such as strip theory [13].  These values deviate from 
the real ones, which in general are unknown.  However, for the 
purpose of this work, a second set called the true set of 
parameters is generated from the first set, by sampling from a 
normal distribution with a standard deviation of 30% for each 
corresponding estimated parameters.  The second set define the 
true dynamics of the USV in this simulated scenario, while the 
first set is used to train the agent when developing the RL 
approach, as well as to define a nominal control law for the 
nonlinear controller.  Both methods are tested against the real 
dynamics, that is, the true set of parameters in order to 
characterize the response of each controller. 
 
3. NONLINEAR SLIDING STATION-KEEPING 

CONTROL 
This approach consists of defining a control law which 

drives all system trajectories to converge to a time-varying 
sliding surface (𝑺) in finite time, also known as the reach time 
𝑡 .  Once on this surface, the system trajectories will remain 
there.  This sliding surface can be interpreted as the tracking error 
of the system’s state vector with respect to a desired state, and is 
defined in terms of the output of interest and its corresponding 
derivatives. The control law then has to be defined such that it 
ensures that the time derivative of the  

Lyapunov function 𝑉 = 1 2⁄ 𝑺𝑻𝑺 is negative in order to 
asymptotically reach stability of the control system. 
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3.1 Sliding Surface  

A sliding surface is defined according to (6) as:

𝑺 =
𝑑

𝑑𝑡
+ 𝚲

𝟐

𝜼𝒕𝑑𝑡 

𝑺 = �̇�𝒕 + 2𝚲𝜼𝒕 + 𝚲𝟐 𝜼𝒕𝑑𝑡
𝒕

𝟎

 

(6) 

Where 𝜼𝒕 corresponds to the pose error of the USV with 
respect to a desired pose 𝜼𝒅, that is 𝜼𝒕 = 𝜼 − 𝜼𝒅 relative to the 
inertial frame of reference, and  𝚲 is a design diagonal matrix 
with elements corresponding to time constants regarding 
exponential convergence of the state trajectory once it reaches 
the sliding surface. 

 
3.2 EOM Relative to Inertial Frame 

Provided the sliding surface function 𝑺 has been defined 
with respect to the inertial frame of reference, the body-fixed 
EOM in (1) are redefined accordingly: 

𝑴𝑱𝑻�̈� + 𝑪𝑱𝑻�̇� + 𝑫𝑱𝑻�̇� = 𝝉 (7) 

Where the expression 𝝂 = 𝑱𝑻(𝜼)�̇� that transforms the 
velocity vector from body-fixed to inertial coordinates, has been 
used along with the rotation matrix defined as: 

𝑱(𝜓) =
𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

 

Equation (7) can be arrange as: 
�̈� = (𝑱 𝑻𝑴 𝟏)(𝝉 − 𝑬𝑱𝑻�̇�) (8) 

Where 𝑬 = 𝑪 + 𝑫.  One can also rewrite (8) replacing 𝜼 for 
𝜼𝒕 provided that in the case of station-keeping control �̇�𝒅 =
�̈�𝒅 = 𝟎, as follows: 

𝜼�̈� = (𝑱 𝑻𝑴 𝟏)(𝝉 − 𝑬𝑱𝑻𝜼�̇�) (9) 

3.3 Nominal Control Law 
The expression “Once the system trajectory gets to the 

sliding surface it remains there” is equivalent to equating the 
time derivative of equation (6) to zero, that is: 

�̇� = �̈�𝒕 + 2𝚲�̇�𝒕 + 𝚲𝟐𝜼𝒕 = 𝟎 (10) 

Substituting equation (9) in (10) leads to: 
 

�̇� = 𝑱 𝑻𝑴 𝟏𝝉 + 𝟐𝚲 − 𝑱 𝑻𝑴 𝟏𝑬𝑱𝑻 �̇�𝒕 + 𝚲𝟐𝜼𝒕 = 𝟎 (11) 

Solving for 𝝉 one obtains the expression for the nominal 
control law: 

𝝉 = − 𝑴𝑱𝑻𝟐𝚲 − 𝑬𝑱𝑻 �̇�𝒕 − 𝑴𝑱𝑻𝚲𝟐𝜼𝒕 (12) 

Where matrices 𝑴 and 𝑬 are formed using equations (2) to 
(4) and the estimated set of parameters in TABLE I.  The total 
control law is then given by: 

𝝉 = 𝝉 − 𝒌𝑠𝑎𝑡(𝑺𝚽 𝟏) (13) 

Where the saturation function is defined as follows: 

𝑠𝑎𝑡 𝑺𝚽 𝟏 =

𝑆

Φ
          𝑖𝑓 𝑆 < Φ

𝑠𝑔𝑛(𝑆 ) 𝑖𝑓 𝑆 > Φ

 (14) 

And thus, the term 𝒌𝑠𝑎𝑡(𝑺𝚽 𝟏) is defined as a vector with 
components 𝑘 ∗ 𝑆 /Φ  or 𝑘 𝑠𝑔𝑛(𝑆 ), depending if the state 
trajectory is inside or outside the bounded region defined by Φ . 

 
3.4 Lyapunov Function and k Computation 

Looking at equation (11) it results convenient to define the 
Lyapunov function as follows: 

𝑉 =
1

2
𝑺𝑻 𝑱 𝑻𝑴 𝟏 𝑺 (15) 

Taking the time derivative of (15) and considering the 
sliding condition criteria in its vectorial form, one gets: 

�̇� = 𝑺𝑻 𝑱 𝑻𝑴 𝟏 �̇� ≤ − 𝑺𝑻 𝑱 𝑻𝑴 𝟏 𝜞 (16) 

Where 𝜞 is a 3-by-1 vector with strictly positive constant 
elements of small magnitude. 

Substituting (11) in (16), and considering the system 
trajectories out of the bounded region defined by 𝚽 one gets: 

�̇� = 𝑺𝑻{𝝉 − 𝑲𝑠𝑔𝑛(𝑺) + (𝑴𝑱𝑻2𝜦 − 𝑬𝑱𝑻)�̇� +   𝑴𝑱𝑻𝜦𝟐𝜼𝒕}

≤ − 𝑺𝑻 𝑱 𝑻𝑴 𝟏 𝜞 
(17) 

Substituting (12) in (17) and solving one gets: 
�̇� = 𝑺𝑻 𝑴 − 𝑴 𝑱𝑻2𝜦�̇�𝒕 + 𝑬 − 𝑬 𝑱𝑻�̇�𝒕 +  𝑴 −

𝑴 𝑱𝑻𝜦𝟐𝜼𝒕 − 𝒌𝑠𝑔𝑛(𝑺) ≤ − 𝑺𝑻 𝑱 𝑻𝑴 𝟏 𝜞  
(18) 

TABLE I:  RIGID BODY AND HYDRODYNAMIC (ESTIMATED AND TRUE) SET 
OF PARAMETERS  

 

Parameters 𝑚 𝐼  𝑥 ̇  𝑦 ̇  𝑁 ̇  𝑋  𝑌  𝑁  

Units 𝒌𝒈 𝒌𝒈. 𝒎𝟐 𝒌𝒈 𝒌𝒈 𝒌𝒈. 𝒎𝟐 
𝒌𝒈

𝒔
 

𝒌𝒈

𝒔
 

𝒌𝒈. 𝒎𝟐

𝒔
 

Estimated 
parameters 

280 239.37 -3.75 -33.52 -24.54 -20 -150 -0.30 

True 
parameters 

325.16 277.98 -3.14 -28.11 -20.58 -16.77 -125.81 -0.25 

FIGURE 1:  WAM-V BODY-FIXED 
COORDINATES AND THRUST 
CONFIGURATION 
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Where hat-values correspond to estimated quantities (with 
intrinsic inaccuracies with respect to the true values).  Now we 
solve for 𝒌 knowing that the product of 𝑺𝑻𝒌𝑠𝑔𝑛(𝑺) = |𝑺𝑻|𝒌 : 

− 𝑺𝑻 𝒌 ≤ −|𝑺𝑻| 𝑱 𝑻𝑴 𝟏 𝜞

− 𝑺𝑻{ 𝑴 − 𝑴 𝑱𝑻𝟐𝜦 �̇�𝒕 +
𝜦

𝟐
𝜼𝒕

+ 𝑬 − 𝑬 𝑱𝑻�̇�𝒕} 

(19) 

We now solve for 𝒌 by taking the absolute value of the 
second term at the right-hand side of (19), and then multiplying 
the entire inequality by |𝑺 |  : 

𝒌 ≥ 𝑴𝑱𝑻𝜞 +  𝓜 𝑱𝑻 2𝚲 �̇�𝒕 +
𝜦

𝟐
𝜼𝒕 + 𝓔 𝑱𝑻�̇�𝒕  (20) 

Where 𝓜 = 𝑴 − 𝑴  and 𝓔 = |𝑬 − 𝑬|.  Provided that in 
this simulated scenario the true parameters of the EOM have 
been generated from the estimated set of parameters by sampling 
from a normal distribution with a standard deviation of 30% the 
values of the estimated parameters, the values for matrices 𝓜 
and 𝓔 are precisely defined as the absolute value of the 
corresponding estimated matrices 𝑴 and 𝑬, multiplied by 0.3. 

 
3.5 Stability Analysis 

The total control law in (13) is derived based on the sliding 
condition in (16).  Integration of the latter verifies that the 
trajectory reaches the corresponding sliding surface in (6), in 
finite time when 𝑆 > 0 as shown below: 

𝑱 𝑻𝑴 𝟏 �̇� ≤ − 𝑱 𝑻𝑴 𝟏 𝜞 

𝑴 �̇�𝑑𝑡 ≤ −𝑴 𝜞𝑑𝑡
𝒕𝒓

𝟎

 

Solving the inequality for the reach time one gets: 
𝚪

|𝚪|𝟐
𝑴 𝟏𝑴𝑺(0) ≥ 𝒕𝒓 

Similarly when 𝑆 < 0 one obtains: 

−
𝚪

|𝚪|𝟐
𝑴 𝟏𝑴𝑺(0) ≥ 𝒕𝒓 

Therefore, one can rewrite the final expression for the reach time 
as: 

 
𝚪

|𝚪|𝟐
𝑴 𝟏𝑴𝑺(0) ≥ 𝒕𝒓 

 
3.6 Constrained Nonlinear Iterative Control Allocation 
Using Quadratic Programming 

The generalized force vector computed according to (13) is 
located at the center of mass of the USV, which in general differs 
from the actual location of the thrusters in a marine craft.  The 
goal with control allocation is to produce a set of thruster actions 
(forces) in order to obtain, as close as possible, an equivalent 
effect in the dynamics of the vehicle. 

Control allocation of azimuth thrusters in marine crafts 
imposes a nonconvex optimization problem which can be 
reformulated as a locally convex QP optimization problem, as 
defined in equation (21), similarly to as in [7]. 

Equation (21) represents a cost function which is to be 
minimized by optimizing the values of the variables in vector 
[Δ𝒇, Δ𝜶, 𝒔], where 𝒇 = 𝒇 + Δ𝒇 corresponds to the current force 
vector which includes all active thrusters in the vehicle’s 

configuration, and is defined as the sum of the last force 𝒇  and 
the increment Δ𝒇 computed after optimization.  Similarly, the 
current azimuth angles are defined according to 𝜶 = 𝜶𝒐 + Δ𝜶, 
where 𝜶𝒐 corresponds to the previous sample while Δ𝜶 ensures 
the azimuth angles do not deviate more than what the actuator 
can achieve within a sample time.  This electromechanical 
limitation is addressed according to constraint (25).  Finally, 
vector 𝑺 (which is different from 𝑺 in Section 3), is just a slack 
variable which accounts for the difference (error) between the 
goal (generalized force vector) and the control forces and 
moment achieved after control allocation.  An entire description 
of the control allocation implemented for this particular vehicle 
and thrust configuration is found in [14]. 

𝐶 =
𝑚𝑖𝑛

Δ𝒇, Δ𝜶, 𝒔
Δ𝒇 𝑷Δ𝒇 + 𝒔 𝑸𝒔 + Δ𝜶 𝛀Δ𝛂 + 𝐟 2𝑷Δ𝒇

+
𝜕

𝜕𝜶

𝜚

𝜀 + det (𝑻(𝜶)𝑻 (𝜶)
𝜶

Δ𝜶  

(21) 

Subject to: 

𝒔 + 𝑻(𝜶 )Δ𝒇 +
𝜕

𝜕𝜶
(𝑻(𝜶 )𝒇)|𝜶 ,𝒇 Δ𝜶 = 𝝉 − 𝑻(𝜶 )𝒇  

(22) 

𝒇 − 𝒇 ≤ Δ𝒇 ≤ 𝒇 − 𝒇  (23) 

𝜶 − 𝜶 ≤ Δ𝜶 ≤ 𝜶 − 𝜶  (24) 

Δ𝜶 ≤ Δ𝜶 ≤ Δ𝜶  (25) 

 
4. DEEP REINFORCEMENT LEARNING  

 
4.1 Deep Reinforcement Learning 

Reinforcement learning (RL) [8] is a process by which an 
‘agent’ (in this case, an autonomous USV) learns to earn rewards 
through trial-and-error interactions with an ‘environment’. This 
trial-and-error nature allows the agent to operate with virtually 
complete autonomy, and to adapt effectively to unforeseen 
circumstances. This characteristic is vital when operating in 
unfamiliar surroundings, or in continually changing 
environmental conditions. 

The ‘environment’ in the present study is represented by the 
set of ordinary differential equations in (1) that describe the 3-
DOF of the USV, in addition to any imposed external 
disturbances. The agent is provided with a high-level goal, which 
in our case is to hold a specified goal pose (station-keeping), and 
it determines optimal control-responses at any given time based 
on its ‘state’. In the present study, the state vector consists of 10 
quantities of interest: radial distance from target coordinates; 
deviation from the desired orientation; the yaw angle in the 
inertial reference frame (𝜓); the longitudinal, lateral, and 
rotational velocities in the inertial frame (�̇�, �̇�, �̇�); the port and 
starboard thrust values (Tport, Tstarboard); and the port and 
starboard motor azimuth angles (δport, δstarboard). This set of 
variables allows us to comprehensively describe the state of the 
USV within its environment (i.e., a testing arena, or the open 
ocean). 
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The control-responses determined by the RL algorithm are 
referred to as ‘actions’, and consist of 4 variables that control the 
maneuvering of the USV, namely, 2 thrust values for the port and 
starboard motors, and their respective azimuth angles. Whenever 
the agent performs an action by selecting appropriate values for 
these 4 variables, it transitions to a new state, and receives a 
‘reward’ based on whether it is closer to achieving its specified 
high-level objective. We note that when designing a problem 
using RL, shaping the reward function has the most significant 
influence on the overall behavior of the agent, especially since 
we do not manage the low-level decision-making process of the 
agent directly. The mapping between the agent’s states and the 
optimal actions can be achieved using either a tabulated 
formulation, or with the help of Artificial Neural Networks 
(ANN). Further details regarding the algorithm and the training 
procedure are provided below. 

 
4.2 The Bellman Equation 

The trial-and-error nature of RL implies that initially the 
agent is unable to make useful decisions. As the agent starts 
interacting with its environment in a random fashion, it will 
happen upon certain actions that improve its chances of 
collecting a high long-term reward. Hundreds to thousands of 
successive experiments are then run, which allows the agent to 
improve its decision-making capabilities continually using a 
combination of exploration and exploitation. The training 
procedure depends on the Bellman equation, which aims to 
maximize the total cumulative reward received throughout an 
experiment: 

𝑉
∗
(𝑠 ) =  

𝑚𝑎𝑥

𝑎
( 𝑟(𝑠 , 𝑎 ) + 𝛾 𝑃(𝑠 |𝑎 , 𝑠 ) 𝑉

∗
(𝑠 ) ) 

The training is assumed to be complete when 𝑉
∗
converges, 

i.e., it no longer changes with further training. Here, π* represents 
the optimal ‘policy’ that encodes the behavior of the agent, and 
γ represents the discount factor, which emphasizes long-term 
rewards over short-term benefits. The emphasis on long-term 
reward is an important distinguishing feature of RL, since it 
allows the agent the freedom to choose actions that may be 
detrimental in the immediate future, but which may prove to be 
the best possible choice for maximizing the reward received over 
the long term. In the present work, the value γ=0.99 is used for 
all training runs. 

To determine the optimal policy π* during training, the agent 
observes the state of the environment st at every new turn, and 
performs an action at. 𝑃(𝑠 |𝑎 , 𝑠 ) denotes the probability that 
this particular action will cause the agent to a transition to a new 
state st+1. The action thus influences both the transition to the 
next state and the reward received rt+1. In basic RL algorithms 
such as Q-Learning or DQN (Deep Q Networks), the agent’s 
goal is to learn the optimal control policy at = π*(st) that 
maximizes the Value function Vπ*(st). More recent RL 
algorithms rely on two independent networks for encoding the 
optimal actions and the Value functions, and are referred to as 
actor-critic methods [15]. The specific RL algorithm used for 

training in the present work is referred to as ‘RACER’, and the 
relevant details may be found in ref. [16]. 

 
4.3 The Training Procedure 

One of the primary tasks in RL is to determine the optimal 
policy π* that guides the agent’s actions. More specifically, the 
policy can be thought of as a multivariate function, where the 
state-variables serve as inputs, and the actions are the outputs. 
Thus, the task of training an agent involves determining a 
suitable functional-approximator for the policy, which relates the 
input state-values to the most appropriate action-values. When 
considering relatively simple problems, trained policies may 
take the form of ‘tables’, where the best action value for every 
possible combination of states-actions is tabulated in a grid. This 
approach is feasible when dealing with a small number of states 
and actions, and especially when working with discrete values of 
these variables. However, such tables quickly become unwieldy 
when considering a large number of action- and state-variables, 
or when non-discrete (continuous) values are used for these 
variables. In the current scenario, we are concerned with 10 
distinct state-variables and 4 action-variables, which vary 
continuously between specified physical bounds. Thus, ANNs 
are more suitable to use as functional approximators instead of a 
tabulated approach. The ANN used in this study consists of an 
input layer, an output layer, and 3 hidden-layers, with each 
hidden-layer being comprised of 128 nodes. 

For training the agent, the USV is initialized with 
randomized initial position, velocity, and yaw angle within a 
square box of size 40m centered on the target station-keeping 
point. The initial yaw angle is sampled from a uniform 
distribution in [-𝜋, 𝜋]. The randomized initialization of the state-
variables is vital to prevent ‘overfitting’ of the ANN, and to 
ensure that the learned policy is sufficiently general to be 
effective when the agent starts with different initial conditions. 
Furthermore, randomly fluctuating environmental forces are 
imposed in both the North and East directions during training, 
with the force components sampled from a Gaussian distribution 
with mean 0 N and standard deviation 300 N. This allows the 
agent to learn how to adapt effectively to unforeseen 
environmental disturbances. 

During training, both the state vector and the corresponding 
reward are communicated from the environment to the agent at 
pre-determined time-intervals (0.1s in our case). The agent then 
uses this information to update the parameters of the ANN (the 
weights and the biases), such that the mean-squared error based 
on the Bellman equation is minimized. The ANN also outputs 
the 4 action values which are communicated to the environment 
such that the simulation may proceed forward in time by 
integrating the equations of motion (1), and the agent ends up in 
a new state. This process repeats continually until the training 
terminates. At each communication step, the agent evaluates the 
reward it receives, which may be a combination of the various 
objectives that the craft must attain. For instance, in our case, the 
craft’s objective is to navigate to the station-holding target point, 
assume the specified heading, and minimize power consumption 
in the process. To achieve the first two goals, the agent is 
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assigned an increasingly negative award the more it deviates 
from the target coordinates and angle. More specifically, the 
agent is allotted a reward of −100(Δ𝑟 + Δ𝜃) at every turn, 
where Δ𝑟 represents the radial distance from target, and Δ𝜃 
represents the heading error.  Furthermore, high rotation rates are 
punished by allocating a reward of −100 �̇�  at evert turn. To 
minimize power consumption, a stepwise reward of -2/3P(T) 
(where P(T) is described in Eq. (26)) is given to the agent. Once 
the agent manages to reach within a radius of 0.1L (10% of the 
craft’s length) from the target point, we keep a record of the 
radial and heading errors, which may fluctuate in time due to the 
presence of environmental disturbances. At the end of each 
episode, the mean square of these errors is assigned as a negative 
terminal reward, which encourages the agent to minimize long-
term oscillations in the desired parameters. The duration of each 
simulation episode is 70s. 

We note that in order to speed up training, we also limit the 
maximum radial distance that the agent can traverse; if the agent 
exceeds a radial distance of 30 meters from the target point, the 
training-simulation terminates and the agent receives a large 
negative terminal reward (-4e5). This large punishment 
discourages the agent from exploring regions that are far away 
from the target point, and results in shorter training durations. 
The general training approach adopted here implies that the 
optimal policy produced from a single training campaign can be 
used for all of the case studies described in the Results section. 

 
5. METHODOLOGY 

This section describes all the simulation and 
electromechanical parameters, as well as the environmental 
forces affecting the response of both type of controllers in every 
test run.  The simulation time step has been set to 0.01 seconds 
for the nonlinear controller, which is equivalent as to having a 
data acquisition system streaming sensor data (such as position 
and heading of the USV) at a frequency of 100 Hz, which 
corresponds to the capacity of our actual equipment to be used 
in future implementations.  The time step size used for advancing 
the equations of motion in the RL simulations is 0.001s, but the 
control interval is 0.1s. 

The electromechanical constraints of each of the transom 
thrusters are given by its thrust limits [-250, 350] N (according 
to bollard-pull test in [17], and azimuth rotation limits [-45°, 
45°].  The thrust rate is modelled by low-pass filtering the thrust 
values in order to obtain a more realistic propulsive response, as 
described in [14].  The azimuth rotation rate, on the other hand, 
is limited to rotate at a maximum of 0.45° per sample, that is 
equivalent to 0.079𝑟𝑎𝑑 0.01𝑠⁄ = 0.79𝑟𝑎𝑑 𝑠⁄ , this is according 
to experimental data performed over the actual thrusters.  This 
value per sample of 0.079 rad is then used to define Δ𝜶  and 
Δ𝜶  in equation (25). 

The propulsive power consumption is computed at each 
sample according to the follow expression in [18]: 

 

𝑃(𝑇) = (𝑃 − 𝑃 )
|𝑇|

𝑇
+ 𝑃  

(26) 

Where, 
𝑃 =  1120 𝑊, max. propulsive power per motor 
𝑃 = 0 𝑊; 
𝑇 = 350 𝑁;   𝑇 = −250 𝑁; 
1.3 ≤ 𝜂 ≤ 1.7, typically. 

A quadratic polynomial fit of equation (26) is performed in 
order to compute the entries for the two dimensional matrix 𝑷 in 
(21). 

A constant wind force of +50 N in the y direction is added 
throughout the entire test run, and superimposed during the 
duration of an additional wind gust.  This wind gust is introduced 
as an environmental perturbation at time 40 s, and it will last for 
the following 10 s, according to the expression below: 
𝑤𝑖𝑛𝑑_𝑔𝑢𝑠𝑡 = | 𝐴 ∗ sin(2𝜋 𝑇⁄ ∗ 𝑡𝑖𝑚𝑒) |, 
where A = 300N and T = 20s.  Moreover, the wind gusts are 
applied at an angle of 60° according to the NED coordinates 
convention, leading to the most critical condition in the y-
direction (east). 

 
6. RESULTS 

Characterization of the time response of both control 
systems is done considering three different case scenarios, which 
differ not only with respect to the distance from the initial to the 
goal pose, but also on the kind of behavior expected from the 
controllers.  Below is a description of each of the cases as 
pictured in FIGURE 2: 
a)  Near-field station keeping control:  The initial and goal 
poses are given by (0, 0, 5𝜋 4⁄ ) and (3, 1, 𝜋), respectively.  
This case is intended to evaluate the performance of each of the 
two controllers at close proximity to the goal.  The USV is 
expected to rotate in a counter-clockwise direction in order to 
achieve the goal, since it leads to lower power consumption. 
b)  Mid-field station keeping control:  The initial and goal 
poses are given by (0, 0, 𝜋) and (10, 0, 𝜋), respectively.  This 
case is intended not only to evaluate the performance of each 
controller at a medium distance from the goal, but also to 
propel a particular response which conducts the USV in a full-
reverse motion, without altering the heading along the entire 
trajectory (the heading will only be affected by the wind 
perturbations). 
c)  Far-field station keeping control:  The initial and goal poses 
are given by (0, 0, 𝜋) and (19, 5, 𝜋 4⁄ ), respectively.  This case 
is intended to evaluate the performance of each controller at a 
large distance from the goal.  The USV is expected to rotate in 
a counter-clockwise direction in order to achieve the goal, since 
it leads to lower power consumption.  

A set of time-domain specifications are used in order to 
characterize the response of both controllers, explained as 
follows.  The rise time 𝑡 , is considered as the time the controller 
takes to conduct the USV to 90% the desired value of a particular 
control variable, that is 𝑥, 𝑦 or 𝜓.  The rise value is computed 
according to the following expression: 
𝑉 = (𝑉 − 𝑉 ) ∗ 0.9 + 𝑉  

The peak time 𝑡  and the peak overshoot 𝑀  are considered 
at the maximum value (or minimum when it’s a negative 
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overshoot) of a particular control variable, before the wind gust 
appears.  The peak overshoot 𝑀  is the magnitude of this 
deviation with respect to the desired value of a control variable. 

The settling time 𝑡  is considered to be after the initial peak 
overshoot (for underdamped cases) whenever the value of the 
control variable is first within a 5% deviation with respect to the 
desired value, remaining in this region from that point on.  This 
criteria however sometimes needed to be adjusted provided the 
response of the control system settled at a value beyond the 5% 
tolerance, which happened for example for the y variable in the 
near-field case (TABLE II), were 7% was used instead.  

The wind gust peak 𝑀  is the magnitude of the maximum 
deviation with respect to the desired value of a control variable, 
caused by the wind gust. 

 
6.1 Nonlinear Station Keeping Control 
This robust control based approach allows for uncertainty in 

the dynamic model of the USV and its associated physical 
parameter.  In this particular case, the rigid-body and 
hydrodynamic parameters are allowed to deviate from the true 
values by up to 30%, as explained in Section 3.4, relative to 
TABLE I.  Parameters for the total control law in (13) were 
defined as follows: 𝚲 = diag(1.8, 1.8, 1.8), 𝜙 = 0.05 for all i 
in (14) and 𝜞 = [0.02, 0.02, 0.02]𝑻 in (20). 

Inspecting at FIGURE 2 and TABLE II, we observe, in 
general, a smooth response of the control system with some 
overshooting and rather small oscillations for all case scenarios.  
The rise time reveals a swift reaction of the controller in order to 
conduct the USV to its desired state, while the settling time 𝑡  is 
achieved just a few seconds later.  Also, the steady-state error 
SSE is low for all control variables, except perhaps for the y 
coordinate in the far-field case where this error is around 8.7 cm, 
which is still very low.  The highest deviations with respect to 
desired values are produced at the initial transient response of the 
control system, defined by the value of 𝑀 , but is then swiftly 
decreased from that point forward, even in the presence of  high 
wind gusts, as confirmed by the values of 𝑀 .  This means that 
the controller successfully rejects the harsh environmental 
disturbances. 

FIGURE 3 shows the response of the thrusters over time, for 
the last and most critical case scenario in terms of thruster 
activity and saturation of the motors and actuators, which 
happens in the far-field run, as can be verified by its cumulative 
power value in  (fourth column).  It is easy to see from this figure, 
a high level of thruster activity (in terms of thrust values and 
azimuth rotations) at the initial transient response and when the 
wind gust appears (at 40 seconds), and correspondingly, high 
propulsive power consumption. 

One can also verify from FIGURE 2 the expected counter-
clockwise rotations for cases a) and c), and the full reverse 
motion in case b), as was expected in the first place, in order to 
economize the power consumption of the USV. 

 
6.2 RL-Based Control 
The results from the machine-learning based approach are 

compared in this section against the performance of the non-
linear controller. Just as in the previous case, the rigid-body and 
hydrodynamic parameters differ from the true values by up to 
30. In FIGURE 4 and TABLE IV, we observe that an initial 
overshoot and gradual oscillation are present for all the scenarios 
tested, as confirmed by the peak overshoot values 𝑀 .  The rise 
times (𝑡 ) for the three cases are under 10 seconds, including the 
critical far-field case. With the constraint of a 5 percent error the 
settling times  𝑡  , were large or nonexistent in all cases; 
however, the settling times recorded in TABLE IV use the larger 
criteria of 10 percent for the x and 𝜓, the variables which can 
then be seen to settle within 12 seconds . We note that there is a 
significant offset in the y direction which indicates that the 
autonomous controller has difficulty in maintaining the specified 
pose. The source of this error was the constant force applied in 
the y-direction during prediction runs, which was not included 
when training the RL agent. Moreover, the oscillatory behavior 
of the solution can also be attributed to the application of the 
large constant force. We confirmed both of these occurrences 
using prediction runs with no constant forcing applied, which 
yielded minimal steady-state error and no oscillations. The 
steady-state error SSE was estimated from the difference of the 
desired value and mean of values between the peak time 𝑡  and 
the introduction of the wind gust. From this estimation, the errors 
as given in TABLE IV are generally greater than desired, 
particularly for the y coordinate, as discussed. At the critical 
instance of the wind gust, the system response deviates from the 
desired values, as evidenced by the wind gust peak values 𝑀 . 

The port, starboard and cumulative propulsive power for 
each of the cases are shown in TABLE V. Notably the far-field 
case has the lowest power consumption despite the greatest 
initial distance to traverse. The time-response of the thrusters for 
the far-field case is shown in FIGURE 5, with respect to azimuth 
angle, thrust, and power consumption. The thrust and power 
have large values during the initial displacement and the wind 
gust, but both these values and the azimuth angle display 
oscillatory behavior over the entire time period. This can again 
be attributed to the presence of the constant force that was not 
included during training runs, and causes the controller to keep 
correcting continually, but inefficiently. We expect that the 
performance will improve substantially when the training 
parameters are expanded to include scenarios involving constant 
currents. 

 
7. CONCLUSIONS 

Inspecting the performance of both type of controllers in 
Figures 2 and 4, it is noticeable their potential to control the 
dynamics of the WAM-V 16’ USV for the station-keeping 
operation.  They both showed a quick response to conduct the 
vehicle near the desired state, in less than 10s according to 𝑡 , for 
all case scenarios.  The nonlinear controller, however, proved to 
be more stable, showing very little oscillations, as opposed to the 
RL controller which showed pronounced oscillations, especially 
for the x variable in the near- and middle- field trajectories.  This 
behavior of the RL controller can be explained due to the fact 
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TABLE II:  TIME DOMAIN SPECIFICATIONS FOR THE NONLINEAR STATION KEEPING CONTROLLER 
RESPONSE FOR DIFFERENT CASE SCENARIOS 

Variable Units 𝐭𝐫 [s] 𝐯𝐚𝐥(𝐭𝐫) 𝐭𝐩 [𝐬] 𝐯𝐚𝐥(𝐭𝐩) 𝐭𝐬 [𝐬] 𝐯𝐚𝐥(𝐭𝐬) 𝐌𝐩 𝐌𝐠 SSE 

Near-field 

x m 2.49 2.72 3.45 3.16 3.67 3.15 0.16 0.13 0.005 
y m 1.88 0.91 3.34 1.22 4.75 1.07 0.22 0.43 0.06 
𝝍 rad 1.53 3.22 2.38 2.92 2.85 2.99 0.22 0.0 0.008 

Mid-field 

x m 4.01 9.03 X X 4.41 9.51 X 0.13 0.0 
y m X X 4.67 0.58 X X 0.58 0.43 0.06 
𝝍 rad X X 11.19 3.750 15.74 3.29 0.608 0.0 0.008 

Far field 

x m 5.71 17.17 7.63 20.48 8.78 19.95 1.48 0.17 0.01 
y m 6.96 4.52 9.59 6.40 12.88 5.25 1.40 0.57 0.087 
𝝍 rad 4.99 1.016 7.09 -0.689 11.96 0.821 1.47 0.002 0.008 

TABLE III:  PROPULSIVE POWER CONSUMPTION FOR THE THREE CASE SCENARIOS.  (ALL UNITS 
IN WATTS) 

Thruster 
Power  

Case (a) 
Power  

Case (b) 
Power  

Case (c) 
Cumulative 

Power 

Port 1,135,332 1,310,280 1,465,549 3,911,161 

Starboard 686,235 821,672 791,194 2,299,101 

Cumulative Power 1,821,567 2,131,952 2,256,743 6,210,262 

FIGURE 2:  NONLINEAR STATION KEEPING CONTROL RESPONSE OVER TIME IN TERMS OF THE POSE OF 
THE USV  (𝒙, 𝒚, 𝝍).  FROM HIGH TO LOW:  NEAR-FIELD, MID-FIELD AND FAR-FIELD CASE SCENARIOS. 
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TABLE IV:  TIME DOMAIN SPECIFICATIONS FOR THE MACHINE-LEARNING STATION-KEEPING 
CONTROLLER RESPONSE FOR DIFFERENT CASE SCENARIOS. 

Variable Units 𝐭𝐫 [s] 𝐯𝐚𝐥(𝐭𝐫) 𝐭𝐩 [𝐬] 𝐯𝐚𝐥(𝐭𝐩) 𝐭𝐬 [𝐬] 𝐯𝐚𝐥(𝐭𝐬) 𝐌𝐩 𝐌𝐠 SSE 

Near-field 

x m 3.54 2.70 5.10 3.61 6.05 3.30 0.61 1.71 0.16 
y m 1.87 0.90 5.08 2.41 X X 1.42 5.08 -0.94 
𝝍 rad 2.53 3.23 4.88 3.32 2.53 3.23 0.18 0.85 .025 

Mid-field 

x m 4.12 9.0 6.61 11.84 7.91 11.00 1.84 1.58 0.62 
y m 4.04 0.0 38.05 1.03 X X 1.03   4.92 -0.79 
𝝍 rad X X 4.94 2.45 6.10 2.83 0.69 0.89 0.09 

Far field 

x m 7.25 17.1 10.44 20.55 7.25 10.44 1.55 1.48 0.49 
y m 9.47 4.5 34.90 6.05 X X 1.05 2.72 0.29 
𝝍 rad 2.24 1.02 3.86 -.067 11.76 .706 0.85 .35 -0.02 

 

FIGURE 3:  THRUSTERS RESPONSE OVER TIME (BLUE FOR PORT).   

FIGURE 4:  MACHINE-LEARNING STATION KEEPING CONTROL RESPONSE OVER TIME IN TERMS OF THE 
POSE OF THE USV  (𝒙, 𝒚, 𝝍).  
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TABLE V:  PROPULSIVE POWER CONSUMPTION FOR THE THREE CASE SCENARIOS.  (ALL UNITS IN 
WATTS) 

Thruster 
Power  

Case (a) 
Power  

Case (b) 
Power  

Case (c) 
Cumulative 

Power 

Port 12,224,500 14,116,100 12,659,900 39,000,500 

Starboard 9,750,690 11,369,900 6,968,660 28,089,300 

Cumulative Power 21,975,200 25,486,100 19,628,600 67,089,800 

 

 
that the controller was not trained against randomly constant 
wind force values, and thus, further training is required in order 
to improve this condition.  The nonlinear controller also showed 
the best performance in terms of holding the desired pose against 
strong wind gusts (according to 𝑀  values) and steady-state error 
values (SSE).  Furthermore, Tables III and V also revealed the 
superiority of the nonlinear controller to optimize for power 
consumption, by a factor of almost 11. 
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FIGURE 5:  THRUSTERS RESPONSE OVER TIME. FROM LEFT TO RIGHT:  AZIMUTH ROTATIONS, THRUST AND 
PROPULSIVE POWER. 


