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Abstract-A fundamental understanding of how various 
biological traits and features provide organisms with a com
petitive advantage can help us improve the design of several 
mechanical systems. Numerical optimization can be invaluable 
for this purpose, by allowing us to scrutinize the evolution of 
specific biological adaptations. Importantly, the use of numeri
cal optimization can help us overcome limiting constraints that 
restrict the evolutionary capability of biological species. Thus, 
we couple high-fidelity simulations of self-propelled swimmers 
with evolutionary optimization algorithms, to examine peculiar 
swimming patterns observed in a number of fish species. More 
specifically, we investigate the intermittent form of locomotion 
referred to as 'burst-and-coast' swimming, which involves a 
few quick flicks of the fish's tail followed by a prolonged 
unpowered glide. This mode of swimming is believed to confer 
energetic benefits, in addition to several other advantages. 
We discover a range of intermittent-swimming patterns, the 
most efficient of which resembles the swimming-behaviour 
observed in live fish. We also discover patterns which lead to a 
marked increase in swimming-speed, albeit with a significant 
increase in energy expenditure. Notably, the use of multi
objective optimization reveals locomotion patterns that strike 
the perfect balance between speed and efficiency, which can 
be invaluable for use in robotic applications. The analyses 
presented mayaiso be extended for optimal design and control 
of airborne vehicles. As an additional goal of the paper, we 
highlight the ease with which disparate codes can be coupled 
via the software framework used, without encumbering the 
user with the details of efficient parallelization. 

I. INTRODUCTION 

Steady, continuous swimming for long duration is rarely 
observed in most fish species. Instead, individuals usually 
employ short bursts of activity followed by abrief inactive 
period, where inertia allows them to glide along for a certain 
distance [1]. This unsteady swimming pattern, referred to 
as 'burst-and-coast' swimming, has been hypothesized to 
yield energetic benefits [2], [3], and to bestow a competi
tive edge to species employing the technique. This sort of 
intermittent motion is not just limited to fish-swimming, 
but is found in a variety of animal species [4]. In addition 
to reducing energy expenditure, the inactive phase of the 
motion has been attributed with stabilizing the sensory field, 
enhancing the possibility of prey-detection, and diminishing 
the wake-signature to avoid alerting potential prey and 
predators [5], [6]. Unfortunately, all of these advantages 
are usually accompanied by areduction in average speed 
of the organism [7]. 
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Early studies investigating the energetic benefits of in
termittent swimming relied on simplified inviscid flow
dynamics [2], [3]. Certain approaches have even repre
sented fish bodies using prolate spheres [8]. Videler & 
Weihs [3] analysed video of free swimming cod and saithe, 
and used simplified energetics models to surmise that the 
fish used burst-coast patterns that resulted in the most 
efficient locomotion. Müller et a1. [9] and Videler et. 
al [7] used particle image velocimetry (PIV) to study flow
patterns generated during burst-coast swimming. McHenry 
& Lauder investigated the dependence of coasting behaviour 
on changes in the body-morphology [10]. Wu et a1. [11] 
demonstrated the existence of two distinct tail-beat modes 
for swimming carp, which adopt burst-coast swimming 
for approximately 45% to 75% of their swimming time. 
Apart from various experimental investigations, burst-co ast 
swimming has also been the subject of some numerical 
studies [12], [13], albeit using a-priori specified parameters 
for the burst -co ast motion. 

In order to discover the best burst-and-coast swimming 
approach, without having to resort to simplifying assump
tions, we couple high-fidelity simulations of self-propelled 
swimmers with evolutionary-optimization algorithms [14], 
[15]. The use of multi-objective optimization allows us to 
consider two important, and potentially conflicting metrics, 
namely, the average speed, and the Cost of Transport (CoT). 
These two quantities dictate overall performance for the 
majority of motile organisms, and consequently, determine 
their evolutionary fitness to pass on advantageous charac
teristics to future generations. Analyzing flow-patterns gen
erated by individuals that emerge as optimal solutions can 
provide invaluable insight regarding intermittent-swimming 
modes, which can help us improve the efficacy of und er
water propulsion systems. Furthermore, we investigate the 
trade-off between speed and efficiency that fish experience 
when transitioning from the larval to the adult stage of their 
lives. This is essential for ascertaining the causal-effects that 
influence the evolution of the burst-coast pattern, as certain 
studies have shown that the preference for passive coasting 
increases with age (and hence, with the body size) [16]. 

The current work is distinct from previous numerical 
and analytical studies that have utilized optimization al
gorithms to examine self-propelled swimmers [17]-[22], in 
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that we study intermittent-locomotion modes. Moreover, we 
consider two disparate performance metrics simultaneously; 
both of which are critical for the survival of most organisms. 
From a computational viewpoint, the modular approach 
used for coupling standalone applications in this study; 
each of which is highly specialized for its own particular 
task, a110ws for nearly effortless, and extremely effective 
task-based para11elization of the optimization procedure. 
The para11elization is further enhanced by machine-learning 
based task-scheduling. 

11. SIMULATIO N DETAILS 

We use a software framework, 'MRAG-I2D' [23], to con
duct simulations of self-prope11ed fish-like swimmers. The 
code is an open source framework for simulating two
dimensional, viscous, incompressible flows on multi-core 
architectures. The use of multi-resolution grids, capable of 
adapting automatica11y in both space and time, enables 
accurate simulation of physical systems, while keeping 
both computational cost and memory requirement low. 
The solver used in the present study is based on the 
remeshed vortex methods [24], and has been validated 
and used extensively for simulations of complex, deforming 
objects [18], [21], [25] . 

A. Governing equations 

The velocity field in the simulations is governed by the 
incompressible Navier-Stokes equations: 

V ' u 
8u 
- +(u· V)u 
8t 

(1) 

(2) 

Here, u represents the velocity of the fluid, P is the pressure, 
p is the fluid-viscosity; and t is the simulation time. The 
operators V ·O, V 0, and V 2 ° represent the divergence, the 
gradient, and the Laplacian, respectively. The interaction be
tween fluid-flow and solid objects is achieved via Brinkman 
penalization [26], which leads to a modified form of the 
momentum equation: 

8u -VP 
-8 + (u· V)u = -- + vV 2u + AX (us -u) (3) 

t P 

Here, A is a penalty parameter, and X is the characteristic 
function describing the distribution of the solid object on 
a the Cartesian fluid-grid. The symbol U s in Eq. 3 denotes 
the pointwise velo city of the discretized solid, and accounts 
for translation, rotation, and deformation of the body. The 
vorticity (w) form of the momentum equation is obtained 
by taking the curl of Eq. 3: 

8w at + (u · V)w = vV2w + AV x (X (us -u)) (4) 

Further details regarding spatial discretization, fluid-solid 
interaction, and the time-splitting steps involved in solving 
Eq. 4 are described in refs. [23], [25]. 

B. Swimmer kinematics & Optimization parameters 

The undulatory kinematics of the self-prope11ed swimmer 
is described by the fo11owing trave11ing wave: 

Ymidli ne (S, t) = J(t} 3: (s + 0.03125L}sin ( 2n (i - f + cp )) 
(5) 

Here, s is the curvilinear parameter representing the back
bone of the fish from the head to the tail tip, with sE [0, L]. 
L is the length of the fish, T denotes the time-period of 
the travelling wave, and cp represents a phase shift. Further 
details regarding the description of the body-geometry may 
be found in [25] . 

The function J (t) controls the envelope of the time
varying amplitude of the swimmer. It is defined as a 
piecewise continuous function, with intervals designated 
by the time points tA, t B , t c and t D. At tA, the fish initi
ates a deceleration by reducing its undulatory movement. 
The swimmer ceases a11 motion at t B , and glides in an 
unpowered state until t c . At t c, the swimmer restarts its 
motion until reaching fu11 amplitude at t D • For a swimmer 
performing the i - th burst-and-coast cyde, the piecewise 
function J(t) is computed as fo11ows: 

1 

1- 3A~oas t + 2A~oas t 
J(t) = ° (6) 

3ALrst - 2A~urst 
1 

Here, Acoast' Aburst E [0,1] are ramp functions increasing 
linearly from ° to 1 as t goes from tA to t B (tc to t D re
spectively). This particular definition of the piecewise func
tion prevents discontinuous jerks and acceleration, thereby 
avoiding spurious numerical oscillations in the flow-field. 

The controlling parameters for the optimizations are then: 

_ (i) Ci) 
tDecel - tB - tA E [0.1,1.5] (7) 

_ ( i) (i) 
tCoast - t c - t B E [0,3] (8) 

( i) (i) 
tAccel = t D - t c E [0.1,1.5] (9) 

t = t(i +1 ) _ tCi) 
Steady A D E [0,2] (10) 

This choice of controlling parameters a110ws a simple rep
resentation of burst-and-coast swimming, and keeps the 
dimension of the search-space to a reasonable size. The 
lower bounds, tDecel ~ 0.1 and tAccel ~ 0.1 prevent the 
swimmers from experiencing excessively large accelerations. 

C. PerJormance metrics 

The objective of the self-prope11ed swimmers is to discover 
the best mode of intermittent swimming, which maximizes 
the average speed, while at the same time minimizing 
the energy consumed for trave11ing a unit distance (also 
referred to as the Cost of Transport). Computing the Cost 
of Transport (or CoT) requires knowledge of the pressure-
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and viscosity-induced forces: 

-Pn dS 

2J.-tD·n dS 

(11) 

(12) 

1 
Here, D = - (\7u + \7uT ) is the strain-rate tensor, J.-t is 

2 
the dynamic viscosity of the fluid, n is the surface normal, 
and dS is the infinitesimal surface area. The pressure P is 
computed from a Poisson's equation obtained by taking the 
divergence of the penalized momentum equation (Eq. 3), 
and utilizing the incompressibility condition (\7 . u = 0): 

\72p=_p(\7uT : \7u)+p'A\7·(X(us -u)) (13) 

This Poisson's equation is solved via an extremely efficient 
tree-code algorithm, which is based on multipole expan
sions [27]. Moreover, pressure computations are carried out 
only at the surface nodes of the body, which reduces the 
computational cost significantly. 

The thrust genera ted by the swimmers is determined as 
follows: 

Thrust = 211~1I J J (u· dF + lu· dFI) (14) 

where dF = dFp + dFv. Using these quantities, the thrust
and deformation-power are computed as: 

PThrust Thrust· Ilull 

PDe! = - J JUDe! ·dF 

(15) 

(16) 

where UDe! represents the deformation-velocity of the fish 
body. The instantaneous swimming-efficiency is based on a 
modified form of the Froude efficiency proposed in ref. [28] : 

'rJ = PThrust (17) 
PThrust +max(PDe!,O) 

To compute both 'rJ and the Cost of Transport (CoT), we 
neglect negative values of PDe!, which corresponds to the 
fact that the rigid fish-body may not store energy internally: 

ft~T max(PDe!,O)dt 
CoT(t) = p t (18) 

ft -T Iluildt 
p 

This restriction yields a conservative estimate of potential 
savings in the CoT. To avoid the initial transient when 
the fish accelerates from rest, both the average speed 
and average CoT are determined over the final 2 burst
coast cycles in a simulation, as depicted in Fig. 1. These 
two quantities represent the 'fitness' values used for multi
objective optimization, which is described in greater detail 
in Section 111. The Reynolds number (Re, mentioned in Fig. 1 
caption) is computed as Re = L 2/( vT), where L is the 
length of the swimmer's body, and T is the tail-beat period. 
This number indicates the relative contribution of inertial
forces to viscous-forces in the flow. Viscous-effects tend to 
dominate at lower Reynolds numbers, as in the case of a 
fish-Iarva (Re = 400), whereas inertial effects dominate for 
an adult-fish (Re = 4000). 

6 x10- 2 

li~ 
o 2 4 6 8 10 12 14 16 

Time 

Fig. 1: The instantaneous speed of a swimmer employing 
intermittent locomotion at Re = 400. The highlighted region 
depicts the averaging zone used for computing the fitness 
value. The averaging is done over the last two complete 
cycles to avoid unsteady transients towards the beginning 
of the simulation. 

III. OPTIMIZATION ALGORITHMS 

Evolutionary-optimization algorithms are designed to 
mimic the rules of evolution in biology, and involve the 
processes of mutation, reproduction, and selection. These 
strategies operate on a collection of individuals to iteratively 
improve the population with respect to a certain 'fitness' 
value. The fitness value represents the eligibility of a par
ticular individual to pass on its characteristics to future 
generations, and in our case is determined via high-fidelity 
simulations of self-propelled swimmers. 

We focus on multi-objective fitness functions that produce 
an output in jR2, which can be ordered using the concept 
of Pareto dominance. A vector u E jRn dominates a vector 
v E jRn in terms of Pareto dominance if the following two 
conditions are met: 

Vi E {I, ... , n} Ui ~ Vi 

:3j E {l, ... ,n} Uj < Vj 

(19) 

(20) 

Any vector that is not dominated by any other vector 
in the set is called 'non-dominated'. Each fitness value is 
associated with a non-domination rank, which is set to 0 for 
non-dominated solutions. Further non-domination ranks are 
computed iteratively using the fitness values, after excluding 
individuals with lower ranks. 

The two algorithms described below use the concept 
of Pareto dominance to solve multi-objective optimization 
problems, by assigning each individual of the population a 
rank according to its level of non-dominance. Individuals 
with the same non-dominance ranks are ordered either 
using the S-metric (MO-CMA-ES [29]), or the crowding 
distance parameter (NSGA-II) . The algorithm parameters, 
such as population size and mutation probability were not 
varied in the current study, owing to the relatively high 
computational cost of individual function-evaluations. We 
remark that the use of meta-models (such as simplified 
inviscid vortex dynamics [2], [3], or Lighthill's slender-body 
theory [30]) may not yield accurate results, considering 
the fact that optimal individuals exhibit markedly different 
behaviour depending on the Reynolds number (relevant 
discussion in Section V). 
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A. Multi-Objective Covariance Matrix Adaptation Evolution 
Strategy (MO-CMA-ES) 

The Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) [31] is one of the most powerful evolutionary 
algorithms for real-valued optimization. It omits the concept 
of reproduction, and relies solelyon mutation. The MO
CMA-ES algorithm [15] implemented in the 'Shark' C++ 
library [32] was used for multi-objective optimization in 
the current work. An oudine of the steps involved is shown 
in Algorithm 1, with further details described in the text 
below. 

Algorithm 1: MO-CMA-ES 

1 Initialize population pro) of size iJ and set generation 
counter g = O. 

2 while No stopping criterion is met do 
3 fork=I, ... ,iJdo 

4 I Sampie an offspring xk "-' N(xkg ), akg ), c~g)). 
5 end 
6 Choose the best iJ individuals from a mixed 

population containing parents and offspring and 
store them in p(g+ 1). 

7 fork=I, ... ,iJdo 

8 Update success rate p(g+1k) and global step size 
suce, 

(g + l ) a k 

9 Update evolution path P(kg+1) and the covariance 
,e 

matrix c~g+ 1) • 

10 end 
11 g=g+1 
12 end 
13 Output the current population. 

The k-th individual in the g-th generation is described 
by a 5-tuple: 

arg ) = [x(g ) p-(g ) arg ) p(g ) cCg )] 
k k ' suee,k' k ' e,k' k 

(21) 

Here, xk represents the vector of search-parameters, and 
Psuee,k denotes the average success rate of this individual. ak 

is the global step size, Pc,k is the cumulative evolution path, 
and Ck is the covariance matrix. The average success rate 
P e,k is a heuristic used to manage the global step size ab 

and the covariance matrix Ck determines the most probable 
direction of the mutation. The covariance matrix is updated 
using the evolution path P e,b which keeps track of the 
mutation-direction of the previous few steps. The success 
rate of each individual is updated as follows: 

_(g+1 ) - (1 c )-(g ) (g ) 
Psuee,k - - P Psuee,k + c pPsuee,k (22) 

where ~P is a cons~ant weighting factor, and p;~le ,k is equal 
to one If the offspnng of the k-th individual dominates its 
parent. The step size update then becomes: 

( _ ,a,ger ) 
1 Psucc,k- Psucc 

(g+ 1) (g ) ;r 1- '"'ger a k = a k • e Psuce (23) 

Here, d is a damping parameter and ptarge t is the target , suce 
success probability. Intuitively, the step size drops if the 
smoothed success prob ability Psuee k is smaller than the 
target success prob ability P~~:tt , and grows otherwise. The 
update of the the covariance matrix is done differently 
depending on whether Psuee is sm aller than some threshold 
P thresh E [0,1] ( [15]). This is necessary to prevent the 
eigenvalues of Ck from becoming too large. 

B. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

Non-dominated Sorting Genetic Algorithm 11 (NSGA-
11) [14] improves on the original NSGA [33] by introducing 
elitism, the crowding distance parameter, and a fast non
dominated sorting algorithm. Elitism refers to the best indi
viduals of a generation being carried over to the next gener
ation. The crowding distance parameter is an estimate of the 
average side-Iength of the cuboid formed by an individual's 
two dosest neighbours. Individuals with a higher crowding 
distance are preferred because they increase diversity in the 
solution. The steps involved in the NSGA-II algorithm are 
as follows : 

1) Initialize population pro) of size iJ and set generation 
counter g = 0 

2) While no stopping criterion is met 

• Generate an offspring population p(g+1 ) from the 
parent population p(g ) using crossover (SBX) and 
mutation (PBM) 

• Combine offspring p(g+ l ) and parent population 
p(g ) into a mixed population and sort it according 
to non-domination rank and crowding distance 

• Select the best iJ individuals for the next parent 
generation p(g+1 ) 

• g=g+1 
3) Output the current population 

The k-th individual in generation g is described by a 
(g ) .. th h vector x k contammg e searc parameters. The crossover 

step of the algorithm is performed using Simulated Binary 
Crossover (SBX), whereas Parameter-based Mutation (PBM) 
is used for the mutation step [34]. All the individuals are 
represented by real-valued, n-dimensional vectors, where 
n is the dimension of the search-space (i.e., the number 
of parameters being optimized). In the current study, the 
probability of crossover was set to 0.9, with a crossover 
distribution index of 5, whereas the probability of mutation 
was set to 0.5 with a mutation distribution index of 10. 

IV. HIGH PERFORMANCE OPTIMIZATIO N FRAMEWORK 

The parallel implementation of the optimization algo
rithms is based on the TORC task-parallel library [35]. 
TORC provides a programming and runtime environment 
similar to OpenMP tasks, but allows parallel programs to 
run on both shared and distributed memory systems. MPI 
applications run on the compute nodes with one or more 
workers, and can submit tasks for asynchronous execution 
from any nesting level of parallelism. The library exports 
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a C/C++ and Fortran interface, provides transparent task 
and data management, and supports load balancing through 
intra- and inter-node work stealing, enhanced by a set 
of task distribution policies that can be applied by the 
programmer. 

TORC has already been used for the parallelization of al
gorithms for single objective stochastic optimization and un
certainty quantification algorithms, as part of the I14U [36] 
framework. It has been shown to achieve excellent parallel 
efficiency on up to 512 compute nodes of Piz Daint, even in 
cases where the simulation time exhibits significant variance 
depending on the input parameters. We note that only the 
function-evaluations are parallelized in the current work, 
whereas the optimization algorithm, which is executed only 
intermittently upon completion of a generation, is run in 
serial on a master thread. Function-evaluations correspond 
to multi-core simulations performed by MRAG-I2D, using 
input parameters specified by the optimization algorithm. 
We utilize a single worker per compute node, launch MRAG
I2D with the fork-exec system calls, and perform data 
exchange through the local filesystem. 

The large variance of the MRAG-I2D simulation-time 
introduces load imbalance that can lead to poor hardware 
utilization. This can be avoided by setting the popula
tion size of the optimization algorithms to be larger than 
the number of available workers, and exploiting the task
stealing mechanism of the library. To further assist this 
approach, at every optimization step, function-evaluation 
tasks with larger expected runtime are scheduled first. In 
particular, we sort the tasks in descending order, dis tribute 
cydically the first W of them to the W available workers, 
and insert the remaining to a single queue which is checked 
by idle workers for pending tasks. 

To estimate the expected runtime for each function eval
uation of a new generation, we exploit the information 
available from all previous generations. More specifically, 
we design a fully connected artificial neural network, with 
one hidden layer consisting of 32 neurons and a non
saturating activation function. The training dataset consists 
of the simulation parameters (input) and the correspond
ing estimated runtimes (output). We optimize the mean 
squared error of the network using the L-BFGS optimization 
algorithm. The open source OpenANN library 1 was used 
for the implementation of the neural network. We note 
that managed scheduling in this manner can yield up to 
a 20% increase in parallel efficiency for the optimization 
campaigns. 

V. RESULTS 

The optimization studies were conducted at two different 
Reynolds numbers, Re = 400 and Re = 4000, in order to 
characterize differences in the swimming behaviour of fish 
larvae and adults. A single optimization campaign required 
approximately 20 generations consisting of 32 individuals 

1 https:j j girhub.comjOpenANNjOpenANN 
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Fig. 2: Pareto front obtained from the optimization of burst
and-coast swimmers at (a) Re = 400, and (b) Re = 4000. 
The front obtained from the NSGA-II algorithm is shown 
in blue, whereas the front obtained using MO-CMA-ES is 
shown in red. The dominated individuals (non-optimal) are 
depicted as open cirdes. 

each. Multiple distinct simulations were run in parallel, 
with each simulation representing a single individual of 
the population, and utilizing 8 threads (spanning an entire 
compute node) to average a wall-dock time of approxi
mately 3 hours. The lower bounds for the 4 optimization
parameters introduced in Section II-B were specified to 
be [0.1,0,0.1,0], whereas the upper bounds were set to 
[1.5,3.0,1.5,1.5]. At the end of the optimization runs, the 
individuals that comprise the best possible solutions from 
the entire population constitute the 'Pareto front', as shown 
in Fig. 2. The figure also depicts a variety of non-optimal 
individuals that were obtained as part of the optimization 
process. The entire population shown in Figs. 2a and 2b is 
comprised of individuals obtained from both the MO-CMA
ES and the NSGA-II algorithms. We observe that for the 
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selected algorithm settings, MO-CMA-ES is able to generate 
a much more diverse Pareto front than NSGA-II. However, 
the latter may discover individuals with better fitness values 
in some instances (e.g., the fastest individual in Fig. 2b). 
We remark that all of the individuals that lie on the front 
represent Pareto-optimal solutions with different physical 
characteristics, but they may not necessarily represent the 
"true" underlying front. A select few of the non-dominated 
individuals from the combined population of both MO-CMA
ES and NSGA-II were chosen for further analysis, namely, 
the most efficient, a generalist, and the fastest swimmer. 
Of these three, the efficient and the fast swimmers were 
chosen as the individuals on either extreme of the Pareto 
front, whereas the generalist swimmer was selected as the 
median of the Pareto-optimal individuals. 

A. Vorticity Jield and burst-coast characteristics 

The flow-fields generated by an adult steady swimmer, 
and by three different adult individuals obtained as out
comes of the optimization procedure, are shown in Fig. 3. 
In a given time, the swimmers cover varying distances owing 
to differences in their average speed, which is a consequence 
of adopting different swimming patterns. There are notable 
differences in the wake-vortices, influenced by the particular 
intermittent modes selected by the different swimmers. 
From Fig. 3a, we observe that the steady swimmer gene rates 
regularly spaced wake vortices, owing to its sinusoidally 
varying body undulations. The efficient adult swimmer 
(Figs. 3b-3e, Movie 1) undergoes a long coasting period 
(tCoast), which results in minimal vortex-shedding into the 
surrounding flow-field. Upon resuming body-undulations, 
the swimmer sheds three distinct vortices (Fig. 3e), which 
resemble the trio of vortices generated during the initial 
asymmetric start-up. The 'generalist swimmer', i.e., the 
optimal individual that embodies a useful compromise be
tween the two conflicting objectives (i.e., high speed and 
high energy efficiency), spends a measurable amount of 
time swimming steadily, and experiences relatively gen
tle accelerations. The resulting wake vortices resemble a 
combination of those generated by the steady (Fig. 3a) 
and the most efficient swimmers. The fast adult swimmer, 
on the other hand, utilizes extremely short speed-up and 
slow-down times, and correspondingly large accelerations. 
The relevant tail-beat motion allows the fast swimmer to 
rapidly accelerate packets of fluid backward, which in turn 
gene rates large forward thrust. Moreover, the acceleration 
phase is followed by a short coasting phase, which allows 
the adult to move out of the unsteady transient it generates, 
before initiating another acceleration cyde. The resulting 
strong vortices that emerge in the wake are visible in 
Figs. 3c-3e. 

Analyzing the burst-coast cyde-time quantitatively in 
Fig. 4, we realize that the most efficient swimmers spend 
a negligible amount of time swimming with a steady gait, 
irrespective of the developmental stage they may be in 
(i.e., larva or adult). This correlates well with experimental 
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Fig. 4: Breakdown of the burst-coast cyde time for the 
intermittent (a) larval swimmers (Re = 400), and (b) adult 
swimmers (Re = 4000). 

observations, where fish executing burst-and-coast patterns 
are rarely observed to employ steady motion. We notice 
striking similarities between the burst-coast time-profiles for 
both the adult and larval efficient swimmers; there is an 
initial deceleration, followed by more than 50% of the time 
spent coasting, which is followed by an acceleration phase 
with almost no steady swimming in between. The generalist 
adult swimmer spends most of its time executing active 
motion, and coasts only for a short duration (Fig. 4). The 
burst-co ast profile of the generalist larva is similar in nature, 
with the larva also adopting a short coasting stage. 

The most notable differences appear in the burst -co ast 
time-profiles of the fast adult and larval swimmers; while 
both of these adopt very short speed-up and slow-down 
times (t Accel and t Decel)' giving rise to correspondingly large 
accelerations, the larva prefers to spend the majority of 
its time executing steady swimming, whereas the adult 
swimmer exhibits a strong preference for coasting. This is 
an important result, since the only difference in the two 
cases is the Reynolds number. The reluctance of the larva 
to und ergo coasting may reflect the fact that it experiences 
large deceleration during coasting, due to high viscous drag, 
which is not the case for the adult swimmer. It is crucial that 
the optimizer is able to discern this key physical difference, 
which has a purely hydrodynamic origin. Furthermore, the 
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Fig. 3: The vortieity field generated by (a) a steady adult swimmer; (b) the effieient, the generalist, and the fast swimmers 
at t = 2.0 (right before the initiation of burst-eoast eycles); (e) at t = 4.5; (d) at t = 7.0; and (e) at t = 9.5. Movie 1 
shows an animation of the flow-fields generated by the adult swimmers. Positive vorticity, which indieates regions of fluid 
'swirling' in an anti-cloekwise manner are eoloured in red, whereas negative vortieity (depieting cloekwise swirl) is shown 
in blue. Snapshots of the flow-fields generated by the larval swimmers are not shown here, but the relevant animation 
may be found in Movie ~. 
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Fig. 5: (a) Speed, (b) distance travelled, and (c) cost of 
transport for three different larval swimmers (Re = 400). 
The dashed black line corresponds to the effieient swimmer, 
the solid blue line to the generalist swimmer, and the dotted 
red line to the fast swimmer. 

propensity of both the fast larva and the adult to accelerate 
a significant mass of water in a short time is reminiscent of 
the strategy used by fish executing escape manoeuvres in 
life-threatening situations [18], [37], [38]. 

B. Performance metrics 

The performance metrics of interest, namely, the speed, 
the distance traversed, and the Cost of Transport (CoT, 
Eq. 18) are shown in Fig. 5 for the larval swimmer, and in 
Fig. 6 for the adult swimmer. In both situations, we clearly 
observe the increasing trend in instantaneous speed and 
net distance traversed, as we move from the efficient, to 
the generalist, to the fast swimmer. For the sake of clarity, 
the metrics for the fast adult swimmer have been plotted 
using a different y-range, shown on the right hand side 
of the graphs (Fig. 6). Importantly, the peak CoT values 
(Figs. Sc and 6c) show a marked increase in the case of 
the fast swimmers (approximately 2x for the larva, and 
8x for the adult), but are comparable for the efficient and 
the generalist swimmers. The peak power output is usually 
constrained by the musculature of an organism, in addition 
to internal metabolic limitations, which may explain why 
the fast intermittent kinematies observed in Movie 1 is 
generally not encountered in nature [20]. 
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Fig. 6: (a) Speed, (b) distance travelled, and (c) cost of 
transport for three different adult swimmers (Re = 4000). 
The dashed black line corresponds to the efficient swimmer, 
the solid blue line to the generalist swimmer, and the dotted 
red line to the fast swimmer. The secondary y-axes shown 
on the right hand side of each figure correspond to the fast 
adult swimmer. 

TABLE I: Fitness data for larval swimmers at Re = 400. The 
values have been normalized with respect to the data for 
the Steady swimmer. 

Swimmer CaT Avg. Speed 
Steady 1.00 1.00 

Efficient 0.62 0.53 
Generalist 0.87 0.84 

Fast 2.70 1.47 

TABLE 11: Fitness data for adult swimmers at Re = 4000. 
The values have been normalized with respect to the data 
for the Steady swimmer. 

Swimmer CaT Avg. Speed 
Steady 1.00 1.00 

Efficient 0.48 0.63 
Generalist 0.77 0.88 

Fast 3.57 1.95 

The fitness values, computed by averaging the appro
priate quantities over the last two burst-coast cycles, are 
listed in Tables land 11 for the larval and adult swimmers, 
respectively. Towards the end of a swimming bout (marked 
by the termination time t = 16 for all cases), the fast larva 
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experiences dose to a 47% increase in average speed com
pared to a steadily-swimming larva (Table I). However, this 
increase in speed is accompanied by a 170% increase in the 
amount of energy spent for covering a unit distance (i.e., the 
CoT). On the other hand, the burst-co ast mode allows the 
most efficient larva to reduce energy-consumption by 38%, 
but with a reduction of 47% in average speed. Similarly, 
the generalist larva reduces energy consumption by 13% 
and average speed by 16%. 

The benefits of burst-coast swimming are more pro
nounced in the case of the adult swimmer, as can be sur
mised by examining the data in Table II. The most efficient 
adult reduces energy consumption by 52%, but with only a 
37% drop in average speed. The generalist adult swimmer 
shows excellent performance gains, and reduces energy ex
penditure by almost a quarter, with merely a 12% reduction 
in average speed. The fast adult swimmer sees a 2 x speed
up compared to a steady swimmer, but with an immense 
increase (257%) in CoT. Moreover, the adult is capable of 
attaining much higher speeds than the larva, at the expense 
of much lower CoT, which supports the hypothesis that rapid 
increase of body-length is a high priority for fish larvae, so 
as to escape the detrimental effects of high viscosity [39]. 
These results suggest that it is feasible to discover a di
verse array of optimal locomotion techniques by combining 
high-fidelity simulations with multi-objective optimization 
techniques, especially when conflicting objectives may need 
to be considered simultaneously. Future investigations will 
build upon the current work by examining the optimal 
swimmers' motion from a hydrodynarnie perspective, with 
the aim of better understanding the physics driving the 
evolution of intermittent locomotion in fish-like swimmers. 

VI. CONCLUSION 

We have coupled task-parallel multi-objective opnmlza
tion algorithms with high-fidelity simulations of self
propelled swimmers, to discover efficient intermittent loco
motion modes in self-propelled swimmers. This approach 
has allowed us to discover a diverse range of motion 
patterns, each of which are optimal in their own right, 
but give rise to very different locomotion characteristics. 
The most efficient swimmers discovered by the optimization 
algorithms display prolonged coasting behaviour, which 
allows them to conserve energy. The fastest swimmers were 
able to generate large forward thrust by rapidly accelerating 
'packets' of fluid opposite to their direction of motion. 
Intriguingly, the fast larva and the fast adult adopt markedly 
differently burst-coast behaviour, which may be ascribed to 
the increased viscous drag experienced by the larva during 
coasting. This indicates that the optimization algorithms are 
capable of correctly accounting for expected differences in 
the physics of the problem. The primary advantage of using 
such computational tools lies in the fact that it can lead to 
the discovery of patterns which may not generally occur in 
nature, but can be invaluable for use in robotic applications; 
optimal swimming gaits can be selected specifically to suit 

particular mlsslon-requirements, e.g., to maXlmlze energy 
conservation, minimize travel time, or utilize an optimal 
combination of both. The resulting increase in range, en
durance, and average speed can greatly enhance the mission 
capability of robotic swimmers. The tools and techniques 
described here are not only relevant for studying artificial 
swimmers, but mayaiso be used for design- and control
optimization of a variety of aerial vehides. 
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